Logical Database Design

- We have seen how to design a relational schema by first designing an ER schema and then transforming it into a relational one.
- Now we focus on how to transform the generated relational schema into a "better" one.
- Goodness of relational schemas is defined in terms of the notion of normal form.

Examples of Redundancy

<table>
<thead>
<tr>
<th>Employee</th>
<th>Salary</th>
<th>Project</th>
<th>Budget</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>Mars</td>
<td>2</td>
<td>technician</td>
</tr>
<tr>
<td>Green</td>
<td>35</td>
<td>Jupiter</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Green</td>
<td>35</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Venus</td>
<td>15</td>
<td>manager</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Jupiter</td>
<td>15</td>
<td>consultant</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Mars</td>
<td>2</td>
<td>manager</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Jupiter</td>
<td>15</td>
<td>manager</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Mars</td>
<td>2</td>
<td>manager</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
</tbody>
</table>

Normal Forms and Normalization

- A normal form is a property of a database schema.
- When a database schema is un-normalized (that is, does not satisfy the normal form), it allows redundancies of various types which can lead to anomalies and inconsistencies.
- Normal forms can serve as basis for evaluating the quality of a database schema and constitutes a useful tool for database design.
- Normalization is a procedure that transforms an un-normalized schema into a normalized one.
Anomalies
The value of the salary of an employee is repeated in every tuple where the employee is mentioned, leading to a redundancy. Redundancies lead to anomalies:
- If salary of an employee changes, we have to modify the value in all corresponding tuples (update anomaly)
- If an employee ceases to work in projects, but stays with company, all corresponding tuples are deleted, leading to loss of information (deletion anomaly)
- A new employee cannot be inserted in the relation until the employee is assigned to a project (insertion anomaly)

What’s Wrong???
- We are using a single relation to represent data of very different types.
- In particular, we are using a single relation to store the following types of entities, relationships and attributes:
 - Employees and their salaries;
 - Projects and their budgets;
 - Participation of employees in projects, along with their functions.
- To set the problem on a formal footing, we introduce the notion of functional dependency (FD).

Functional Dependencies (FDs) in the Example
- Each employee has a unique salary. We represent this dependency as Employee → Salary
 and say "Salary functionally depends on Employee".
- Meaning: if two tuples have the same Employee attribute value, they must also have the same Salary attribute value
- Likewise, Project → Budget
 i.e., each project has a unique budget

Functional Dependencies
- Given schema R(X) and non-empty subsets Y and Z of the attributes X, we say that there is a functional dependency between Y and Z (Y→Z), iff for every relation instance r of R(X) and every pair of tuples t₁, t₂ of r, if t₁.Y = t₂.Y, then t₁.Z = t₂.Z.
- A functional dependency is a statement about all allowable relations for a given schema.
- Functional dependencies have to be identified by understanding the semantics of the application.
- Given a particular relation r₀ of R(X), we can tell if a dependency holds or not; but just because it holds for r₀, doesn’t mean that it also holds for R(X)!
Looking for FDs

<table>
<thead>
<tr>
<th>Employee</th>
<th>Salary</th>
<th>Project</th>
<th>Budget</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>Mars</td>
<td>2</td>
<td>technician</td>
</tr>
<tr>
<td>Green</td>
<td>35</td>
<td>Jupiter</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Green</td>
<td>35</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Venus</td>
<td>15</td>
<td>manager</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Mars</td>
<td>2</td>
<td>consultant</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Mars</td>
<td>2</td>
<td>manager</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Jupiter</td>
<td>15</td>
<td>manager</td>
</tr>
</tbody>
</table>

Non-Trivial Dependencies

- A functional dependency \(Y \rightarrow Z \) is **non-trivial** if no attribute in \(Z \) appears among attributes of \(Y \), e.g.,
 - \(\text{Employee} \rightarrow \text{Salary} \) is non-trivial;
 - \(\text{Employee,Project} \rightarrow \text{Project} \) is trivial.
- Anomalies arise precisely for the attributes which are involved in (non-trivial) functional dependencies:
 - \(\text{Employee} \rightarrow \text{Salary} \);
 - \(\text{Project} \rightarrow \text{Budget} \).
- Moreover, note that our example includes another functional dependency:
 - \(\text{Employee,Project} \rightarrow \text{Function} \).

Dependencies Cause Anomalies, ...Sometimes!

- The first two dependencies cause undesirable redundancies and anomalies.
- The third dependency, however, does not cause redundancies because \(\{\text{Employee,Project}\} \) constitutes a key of the relation (...and a relation cannot contain two tuples with the same values for the key attributes.)

Dependencies on keys are OK, other dependencies are not!

Another Example

ER Model

Relational Model

This is NOT a relation

Redundancy

<table>
<thead>
<tr>
<th>SI#</th>
<th>Name</th>
<th>Address</th>
<th>Hobbies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>biking, hiking</td>
</tr>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>hiking</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SI#</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>biking</td>
</tr>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>hiking</td>
</tr>
</tbody>
</table>
How Do We Eliminate Redundancy?

- Decomposition: Use two relations to store Person information:
 - Person1 (SI#, Name, Address)
 - Hobbies (SI#, Hobby)
- The decomposition is more general: people with hobbies can now be described independently of their name and address.
- No update anomalies:
 - Name and address stored once;
 - A hobby can be separately supplied or deleted;
 - We can represent persons with no hobbies.

Superkey Constraints

- A superkey constraint is a special functional dependency: Let K be a set of attributes of R, and U the set of all attributes of R. Then K is a superkey iff the functional dependency K → U is satisfied in R.
 - E.g., SI# → SI#, Name, Address (for a Person relation)
- A key is a minimal superkey, i.e., for each X ⊂ K, X is not a superkey
 - SI#, Hobby → SI#, Name, Address, Hobby but
 - SI# → SI#, Name, Address, Hobby
 - Hobby → SI#, Name, Address, Hobby
- A key attribute is an attribute that is part of a key.

More Examples

- Address → PostalCode
 - DCS’s postal code is M5S 3H5
- Author, Title, Edition → PublicationDate
 - Ramakrishnan, et al., Database Management Systems, 3rd publication date is 2003
- CourseID → ExamDate, ExamTime
 - CSC343’s exam date is December 18, starting at 7pm

When are FDs "Equivalent"?

- Sometimes functional dependencies (FDs) seem to be saying the same thing, e.g., Addr → PostalCode, Str# vs Addr → PostalCode, Addr → Str#
- Another example
 - Addr → PostalCode, PostalCode → Province vs Addr → PostalCode, PostalCode → Province vs Addr → Province
- When are two sets of FDs equivalent? How do we "infer" new FDs from given FDs?
Entailment, Closure, Equivalence

- If \(F \) is a set of FDs on schema \(R \) and \(f \) is another FD on \(R \), then \(F \) entails \(f \) (written \(F \models f \)) if every instance \(r \) of \(R \) that satisfies every FD in \(F \) also satisfies \(f \).

 Example: \(F = \{ A \rightarrow B, B \rightarrow C \} \) and \(f \) is \(A \rightarrow C \)

 - If \(\text{Phone#} \rightarrow \text{Address} \) and \(\text{Address} \rightarrow \text{ZipCode} \), then \(\text{Phone#} \rightarrow \text{ZipCode} \)

- The closure of \(F \), denoted \(F^+ \), is the set of all FDs entailed by \(F \).

- \(F \) and \(G \) are equivalent if \(F \) entails \(G \) and \(G \) entails \(F \).

How Do We Compute Entailment?

- Satisfaction, entailment, and equivalence are semantic concepts – defined in terms of the "meaning" of relations in the "real world."

- How to check if \(F \) entails \(f \), \(F \) and \(G \) are equivalent?

 - Apply the respective definitions for all possible relation instances for a schema \(R \) ...

 - Find algorithmic, syntactic ways to compute these notions.

 - Note: The syntactic solution must be "correct" with respect to the semantic definitions.

 - Correctness has two aspects: soundness and completeness – see later.

Armstrong’s Axioms for FDs

- This is the syntactic way of computing/testing semantic properties of FDs

 - Reflexivity: \(Y \subseteq X \rightarrow X \rightarrow Y \) (trivial FD)

 e.g., \(\rightarrow \text{Name, Address} \rightarrow \text{Name} \)

 - Augmentation: \(X \rightarrow Y \rightarrow XZ \rightarrow YZ \)

 e.g., \(\text{Address} \rightarrow \text{ZipCode} \rightarrow \text{Address,Name} \rightarrow \text{ZipCode, Name} \)

 - Transitivity: \(X \rightarrow Y, Y \rightarrow Z \rightarrow X \rightarrow Z \)

 e.g., \(\text{Phone#} \rightarrow \text{Address}, \text{Address} \rightarrow \text{ZipCode} \rightarrow \text{Phone#} \rightarrow \text{ZipCode} \)

Soundness

- Theorem: \(F \models f \) implies \(F \models f \)

 - In words: If FD \(f: X \rightarrow Y \) can be derived from a set of FDs \(F \) using the axioms, then \(f \) holds in every relation that satisfies every FD in \(F \).

 - Example: Given \(X \rightarrow Y \) and \(X \rightarrow Z \) then

 \[
 X \rightarrow XY \quad \text{Augmentation by } X

 YX \rightarrow YZ \quad \text{Augmentation by } Y

 X \rightarrow YZ \quad \text{Transitivity}
 \]

 - Thus, \(X \rightarrow YZ \) is satisfied in every relation where both \(X \rightarrow Y \) and \(X \rightarrow Z \) are satisfied. We have derived the union rule for FDs.
Completeness

- Theorem: $F \models f$ implies $F \vdash f$
- In words: If F entails f, then f can be derived from F using Armstrong's axioms.
- A consequence of completeness is the following (naïve) algorithm to determining if F entails f:

Algorithm: Use the axioms in all possible ways to generate F^+ (the set of possible FD’s is finite so this can be done) and see if f is in F^+

Correctness

- The notions of soundness and completeness link the syntax (Armstrong’s axioms) with semantics, i.e., entailment defined in terms of relational instances.
- This is a precise way of saying that the algorithm for entailment based on the axioms is ``correct” with respect to the definitions.

Decomposition Rule

- Another example of a derivation rule we can use in generating F^+:
 - $X \rightarrow AB$, $AB \rightarrow A$ (refl), $X \rightarrow A$ (trans)
 - So, whenever we have $X \rightarrow AB$, we can "decompose" this functional dependency to two functional dependencies $X \rightarrow A$, $X \rightarrow B$

Generating F^+

Thus, $AB \rightarrow BD$, $AB \rightarrow BCD$, $AB \rightarrow BCDE$, and $AB \rightarrow E$ are all elements of F^+.
Attribute Closure

- Calculating attribute closure leads to a more efficient way of checking entailment.
- The attribute closure of a set of attributes \(X \) with respect to a set of FDs \(F \), denoted \(X^+_F \), is the set of all attributes \(A \) such that \(X \rightarrow A \)
- \(X^+_F \) is not necessarily same as \(X^+_G \) if \(F \neq G \)
- Attribute closure and entailment:

Algorithm: Given a set of FDs, \(F \), then \(X \rightarrow Y \) if and only if \(Y \subseteq X^+_F \)

Computing Attribute Closure: An Example

<table>
<thead>
<tr>
<th>(F): (AB \rightarrow C)</th>
<th>(X)</th>
<th>(X^+_F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow D)</td>
<td>(A)</td>
<td>{A, D, E}</td>
</tr>
<tr>
<td>(D \rightarrow E)</td>
<td>(AB)</td>
<td>{A, B, C, D, E}</td>
</tr>
<tr>
<td>(AC \rightarrow B)</td>
<td>(AC)</td>
<td>{A, C, B, D, E}</td>
</tr>
</tbody>
</table>

Is \(AB \rightarrow E \) entailed by \(F \)? Yes
Is \(D \rightarrow C \) entailed by \(F \)? No

Result: \(X^+_F \) allows us to determine all FDs of the form \(X \rightarrow Y \) entailed by \(F \)

Computing the Attribute Closure \(X^+_F \)

```plaintext
closure := X;  // since \( X \subseteq X^+_F \)
repeat
    old := closure;
    if there is an FD \( Z \rightarrow V \) in \( F \) such that
    \( Z \subseteq closure \) and \( V \subseteq closure \)
    then closure := closure \cup V
until old = closure
```

- If \(T \subseteq closure \) then \(X \rightarrow T \) is entailed by \(F \)

Normal Forms

- Each normal form is a set of conditions on a schema that together guarantee certain properties (relating to redundancy and update anomalies).
- First normal form (1NF) is the same as the definition of relational model (relations = sets of tuples; each tuple = sequence of atomic values).
- Second normal form (2NF) 1NF plus every attribute that is not part of a candidate key (that is, a non-prime attribute) must depend on an entire candidate key (not part of it).
- The two most used are third normal form (3NF) and Boyce-Codd normal form (BCNF).
- We will discuss in detail the 3NF.
The Third Normal Form

- A relation \(R(X) \) is in third normal form (3NF) if, for each (non-trivial) functional dependency \(Y \rightarrow Z \), at least one of the following is true:
 - \(Y \) contains a key \(K \) of \(R(X) \);
 - Each attribute in \(Z \) is contained in at least one (candidate) key of \(R(X) \). That is, each attribute in \(Z \) is a prime attribute.

- 3NF does not remove all redundancies.
- 3NF decompositions founded on the notion of minimal cover.

Decomposition into 3NF: Basic Idea

- Decomposition into 3NF can proceed as follows.
 - For each functional dependency of the form \(Y \rightarrow Z \), where \(Y \) contains a subset of a key \(K \) of \(R(X) \), create a projection on all the attributes \(Y, Z \) (2NF).
 - For each dependency of the form \(Y \rightarrow Z \), where \(Y \) doesn’t contain any key, and not all attributes of \(Z \) are key attributes, create a projection on all the attributes \(Y, Z \) (3NF).
- The new relations only include dependencies \(Y \rightarrow Z \), where \(Y \) contains a key \(K \) of \(R(X) \), or \(Z \) contains only key attributes.

Basic Idea

- \(R(ABCD), A \rightarrow D \)
- Projection:
 - \(R1(AD), A \rightarrow D \)
 - \(R2(ABC) \)

Normalization Through Decomposition

- A relation that is not in 3NF, can be replaced with one or more normalized relations using normalization.
- We can eliminate redundancies and anomalies for the example relation
 \(\text{Emp(Employee,Salary,Project,Budget,Function)} \)
 if we replace it with the three relations obtained by projections on the sets of attributes corresponding to the three functional dependencies:
 - \(\text{Employee} \rightarrow \text{Salary} \);
 - \(\text{Project} \rightarrow \text{Budget} \);
 - \(\text{Employee}, \text{Project} \rightarrow \text{Function} \).
...Start with...

<table>
<thead>
<tr>
<th>Employee</th>
<th>Salary</th>
<th>Project</th>
<th>Budget</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>Mars</td>
<td>2</td>
<td>technician</td>
</tr>
<tr>
<td>Green</td>
<td>35</td>
<td>Jupiter</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Green</td>
<td>35</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Jupiter</td>
<td>15</td>
<td>manager</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Mars</td>
<td>2</td>
<td>consultant</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Mars</td>
<td>2</td>
<td>consultant</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Mars</td>
<td>2</td>
<td>manager</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Jupiter</td>
<td>15</td>
<td>manager</td>
</tr>
</tbody>
</table>

Result of Normalization

<table>
<thead>
<tr>
<th>Employee</th>
<th>Salary</th>
<th>Project</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>Mars</td>
<td>2</td>
</tr>
<tr>
<td>Green</td>
<td>35</td>
<td>Jupiter</td>
<td>15</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Venus</td>
<td>15</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Mars</td>
<td>2</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Jupiter</td>
<td>15</td>
</tr>
</tbody>
</table>

The keys of new relations are lefthand sides of functional dependencies; satisfaction of 3NF is therefore guaranteed for the new relations.

Another Example

<table>
<thead>
<tr>
<th>Employee</th>
<th>Project</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Mars</td>
<td>Chicago</td>
</tr>
<tr>
<td>Green</td>
<td>Jupiter</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Green</td>
<td>Venus</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Saturn</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Venus</td>
<td>Birmingham</td>
</tr>
</tbody>
</table>

This relation satisfies the functional dependencies:

Employee → Branch
Project → Branch

A Possible Decomposition

<table>
<thead>
<tr>
<th>Employee</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Chicago</td>
</tr>
<tr>
<td>Green</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Birmingham</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mars</td>
<td>Chicago</td>
</tr>
<tr>
<td>Jupiter</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Saturn</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Venus</td>
<td>Birmingham</td>
</tr>
</tbody>
</table>

...but now we don’t know each employee’s projects!
The Join of the Projections

<table>
<thead>
<tr>
<th>Employee</th>
<th>Project</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Mars</td>
<td>Chicago</td>
</tr>
<tr>
<td>Green</td>
<td>Jupiter</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Green</td>
<td>Venus</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Saturn</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Venus</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Green</td>
<td>Saturn</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Jupiter</td>
<td>Birmingham</td>
</tr>
</tbody>
</table>

The result of the join is different from the original relation.

We lost some information during the decomposition!

Lossless Decomposition

- The decomposition of a relation $R(X)$ on X_1 and X_2 is *lossless* if for every instance r of $R(X)$ the join of the projections of R on X_1 and X_2 is equal to r itself (that is, does not contain spurious tuples).
- Of course, it is clearly desirable to allow only lossless decompositions during normalization.

A Condition for Lossless Decomposition

- Let $R(X)$ be a relation schema and let X_1 and X_2 be two subsets of X such that $X_1 \cup X_2 = X$. Also, let $X_0 = X_1 \cap X_2$.
- If $R(X)$ satisfies the functional dependency $X_0 \rightarrow X_1$ or $X_0 \rightarrow X_2$, then the decomposition of $R(X)$ on X_1 and X_2 is lossless.
- In other words, $R(X)$ has a lossless decomposition on two relations if the set of attributes common to the relations is a superkey for at least one of the decomposed relations.

Intuition Behind the Test for Losslessness

- Suppose $R_1 \cap R_2 \rightarrow R_2$. Then a row of r_1 can combine with exactly one row of r_2 in the natural join (since in R_2 a particular set of values for the attributes in $R_1 \cap R_2$ defines a unique row).
A Lossless Decomposition

<table>
<thead>
<tr>
<th>Employee</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Chicago</td>
</tr>
<tr>
<td>Green</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Birmingham</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Employee</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Mars</td>
</tr>
<tr>
<td>Green</td>
<td>Jupiter</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Saturn</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Venus</td>
</tr>
</tbody>
</table>

Notation

- Instead of saying that we have relation schema $R(X)$ with functional dependencies F, we will say that we have schema $\mathcal{R} = (R, F)$ where R is a set of attributes and F is a set of functional dependencies.

- The 3NF normalization problem is then to generate a set of relation schemas $\mathcal{R}_1 = (R_1, F_1), \ldots, \mathcal{R}_n = (R_n, F_n)$, such that \mathcal{R}_i is in 3NF.

Another Example

- Schema (R, F) where
 - $R = \{\text{SI#}, \text{Name}, \text{Address}, \text{Hobby}\}$
 - $F = \{\text{SI#} \rightarrow \text{Name, Address}\}$

 can be decomposed into
 - $R_1 = \{\text{SI#}, \text{Name, Address}\}$
 - $F_1 = \{\text{SI#} \rightarrow \text{Name, Address}\}$

 and
 - $R_2 = \{\text{SI#, Hobby}\}$
 - $F_2 = \{\}$

 since $R_1 \cap R_2 = \text{SI#}$, $\text{SI#} \rightarrow R_1$ the decomposition is lossless.

Another Problem...

- Assume we wish to insert a new tuple that specifies that employee Armstrong works in the Birmingham branch and participates in project Mars.

- In the original relation, this update would be identified as illegal, because it would cause a violation of the $\text{Project} \rightarrow \text{Branch}$ dependency.

- For the decomposed relations, however, this is not possible because the two attributes Project and Branch have been moved to different relations.
Preserving Dependencies (Intuition)

- A decomposition preserves dependencies if each of the functional dependencies of the original relation schema involves attributes that appear together in one of the decomposed relation schemas.
- It is clearly desirable that a decomposition preserves dependencies because then it is possible to (efficiently) ensure that the decomposed schema satisfies the same constraints as the original schema.

Example

- Schema \((R, F)\) where
 \(R = \{\text{SI#}, \text{Name}, \text{Address}, \text{Hobby}\}\)
 \(F = \{\text{SI#} \rightarrow \text{Name}, \text{Address}\}\)
 can be decomposed into
 \(R_1 = \{\text{SI#}, \text{Name}, \text{Address}\}\)
 \(F_1 = \{\text{SI#} \rightarrow \text{Name}, \text{Address}\}\)
 and
 \(R_2 = \{\text{SI#}, \text{Hobby}\}\)
 \(F_2 = \{\}\)
- Since \(F = F_1 \cup F_2\) the decomposition is dependency preserving.

Another Example

- Schema: \((ABC; F), F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}\)
- Decomposition:
 \(AC, F_1 = \{A \rightarrow C\}\)
 \(BC, F_2 = \{B \rightarrow C, C \rightarrow B\}\)
- \(A \rightarrow B \notin (F_1 \cup F_2)\), but \(A \rightarrow B \in (F_1 \cup F_2)^+\).
 \(F^+ = (F_1 \cup F_2)^+\) and thus the decomposition is still dependency preserving.

Dependency Preservation

- If \(f\) is a FD in \(F\), but \(f\) is not in \(F_1 \cup F_2\), there are two possibilities:
 \(f \in (F_1 \cup F_2)^+\)
 - If the constraints in \(F_1\) and \(F_2\) are maintained, \(f\) will be maintained automatically.
 \(f \notin (F_1 \cup F_2)^+\)
 - \(f\) can be checked only by first taking the join of \(r_1\) and \(r_2\). ...This is costly...
Desirable Qualities for Decompositions

Decompositions should always satisfy the properties of lossless decomposition and dependency preservation:

- **Lossless decomposition** ensures that the information in the original relation can be accurately reconstructed based on the information represented in the decomposed relations.
- **Dependency preservation** ensures that the decomposed relations have the same capacity to represent the integrity constraints as the original relations and therefore to reveal illegal updates.

Minimal Cover

- A **minimal cover** for a set of dependencies F is a set of dependencies U such that:
 - U is equivalent to F (i.e., $F^+ = U^+$)
 - All FDs in U have the form $X \rightarrow A$ where A is a single attribute
 - It is not possible to make U smaller (while preserving equivalence) by
 - Deleting an FD
 - Deleting an attribute from an FD (its LHS)

- FDs and attributes that can be deleted in this way are called **redundant**.

Computing the Minimal Cover

Example: $F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$

- **Step 1**: Make RHS of each FD into a single attribute: Use decomposition rule for FDs.
 - Example: $L \rightarrow AD$ replaced by $L \rightarrow A$, $L \rightarrow D$; $ABH \rightarrow CK$ by $ABH \rightarrow C$, $ABH \rightarrow K$
- **Step 2**: Eliminate redundant attributes from LHS: If B is a single attribute and FD $XB \rightarrow A \in F$, $X \rightarrow A$ is entailed by F, then B is unnecessary.
 - e.g., Can an attribute be deleted from $ABH \rightarrow C$?
 - Compute ABH^+_F, AH^+_F, BH^+_F; Since $C \in (BH)^+_F$, $BH \rightarrow C$ is entailed by F and A is redundant in $ABH \rightarrow C$.

Computing the Minimal Cover (cont’d)

- **Step 3**: Delete redundant FDs from F: If $F - \{f\}$ entails f, then f is redundant; if f is $X \rightarrow A$ then check if $A \in X^+_F - \{f\}$
 - e.g., $BGH \rightarrow L$ is entailed by $E \rightarrow L$, $BH \rightarrow E$, so it is redundant
- **Note**: The order of steps 2, 3 can’t be interchanged!! See textbook for a counterexample.

$$F_1 = \{ABH \rightarrow C, ABH \rightarrow K, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E\}$$
$$F_2 = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, BH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E\}$$
$$F_3 = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\}$$
Synthesizing a 3NF Schema

Starting with a schema $R = (R, F)$:

- **Step 1**: Compute minimal cover U of F. The decomposition is based on U, but since $U^+ = F^+$ the same functional dependencies will hold.
 - A minimal cover for $F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$ is $U = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\}$.

Synthesizing ... Step 2

- **Step 2**: Partition U into sets $U_1, U_2, ... U_n$ such that the LHS of all elements of U_i are the same:
 - $U_1 = \{BH \rightarrow C, BH \rightarrow K\}$, $U_2 = \{A \rightarrow D\}$,
 - $U_3 = \{C \rightarrow E\}$, $U_4 = \{L \rightarrow A\}$, $U_5 = \{E \rightarrow L\}$.

Synthesizing ... Step 3

- **Step 3**: For each U_i form schema $R_i = (R_i, U_i)$, where R_i is the set of all attributes mentioned in U_i.
 - Each FD of U will be in some R_i. Hence the decomposition is **dependency preserving**:
 - $R_1 = \{BHCK; BH \rightarrow C, BH \rightarrow K\}$,
 - $R_2 = \{AD; A \rightarrow D\}$,
 - $R_3 = \{CE; C \rightarrow E\}$,
 - $R_4 = \{AL; L \rightarrow A\}$,
 - $R_5 = \{EL; E \rightarrow L\}$.

Synthesizing ... Step 4

- **Step 4**: If no R_i is a superkey of R, add schema $R_0 = (R_0, \{\})$ where R_0 is a key of R.
 - $R_0 = \{BGH, \{\}\}$; R_0 might be needed when not all attributes are contained in $R_1 \cup R_2 \ldots \cup R_n$;
 - A missing attribute A must be part of all keys (since it’s not in any FD of U, deriving a key constraint from U involves the augmentation axiom);
 - R_0 might be needed even if all attributes are accounted for in $R_1 \cup R_2 \ldots \cup R_n$.
Synthesizing … Step 4 (cont’d)

- Example: \((ABCD; \{A \rightarrow B, C \rightarrow D\})\), with step 3 decomposition: \(R_1 = (AB; \{ A \rightarrow B \}), R_2 = (CD; \{ C \rightarrow D \})\).

Lossy! Need to add \((AC; \{\})\), for losslessness

- Step 4 guarantees lossless decomposition:
 - ABCD --decomp--> AB, ACD
 - --decomp--> AB, AC, CD

Boyce–Codd Normal Form (BCNF)

- A relation \(R(X)\) is in *Boyce–Codd Normal Form* if for every non-trivial functional dependency \(Y \rightarrow Z\) defined on it, \(Y\) contains a key \(K\) of \(R(X)\). That is, \(Y\) is a superkey for \(R(X)\).

- Example: Person1(\(SI\#\), Name, Address)
 - The only FD is \(SI\# \rightarrow Name, Address\)
 - Since \(SI\#\) is a key, Person1 is in BCNF

- Anomalies and redundancies, as discussed earlier, do not occur in databases with relations in BCNF.

Non-BCNF Examples

- Person(\(SI\#, Name, Address, Hobby\))
 - The FD \(SI\# \rightarrow Name, Address\) does not satisfy conditions for BCNF since the key is \((SSN, Hobby)\)

- HasAccount(\(AcctNum, ClientId, OfficeId\))
 - The FD \(AcctNum \rightarrow OfficeId\) does not satisfy BCNF conditions if we assume that keys for HasAccount are \((ClientId, OfficeId)\) and \((AcctNum, ClientId)\); rather than \(AcctNum\).

A Relation not in BCNF

<table>
<thead>
<tr>
<th>Manager</th>
<th>Project</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Mars</td>
<td>Chicago</td>
</tr>
<tr>
<td>Green</td>
<td>Jupiter</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Saturn</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Venus</td>
<td>Birmingham</td>
</tr>
</tbody>
</table>

Assume the following dependencies:
- \(Manager \rightarrow Branch\) — each manager works in a particular branch;
- \(Project, Branch \rightarrow Manager\) — each project has several managers, and runs on several branches; however, a project has a unique manager for each branch.
A Problematic Decomposition

- The relation is not in BCNF because the left hand side of the first dependency is not a superkey.
- At the same time, no decomposition of this relation will work: Project, Branch → Manager involves all the attributes and thus no decomposition is possible.
- Sometimes BCNF cannot be achieved for a particular relation and set of functional dependencies without violating the principles of lossless decomposition and dependency preservation.

Denormalization

- Tradeoff: Judiciously introduce redundancy to improve performance of certain queries
- Example: Add attribute Name to Transcript → Transcript'
 SELECT T.Name, T.Grade
 FROM Transcript' T
 WHERE T.CrsCode = 'CS305' AND T.Semester = 'S2002'
 ✓ Join is avoided;
 ✓ If queries are asked more frequently than Transcript is modified, added redundancy might improve average performance;
 ✓ But, Transcript' is no longer in BCNF since key is (StudId, CrsCode, Semester) and StudId → Name.

Normalization Drawbacks

- By limiting redundancy, normalization helps maintain consistency and saves space.
- But performance of querying can suffer because related information that was stored in a single relation is now distributed among several
- Example: A join is required to get the names and grades of all students taking CS343 in 2006F.

```sql
SELECT S.Name, T.Grade
FROM Student S, Transcript T
WHERE S.Id = T.StudId AND T.CrsCode = 'CS343' AND T.Semester = '2006F'
```

BCNF and 3NF

- The Project-Branch-Manager schema is not in BCNF, but it is in 3NF.
- In particular, the Project, Branch → Manager dependency has as its left hand side a key, while Manager → Branch has a unique attribute for the right hand side, which is part of the {Project, Branch} key.
- The 3NF is less restrictive than the BCNF and for this reason does not offer the same guarantees of quality for a relation; it has the advantage however, of always being achievable.
Normal Forms

3NF Tolerates Some Redundancies!

<table>
<thead>
<tr>
<th>Manager</th>
<th>Project</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Mars</td>
<td>Chicago</td>
</tr>
<tr>
<td>Green</td>
<td>Jupiter</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Green</td>
<td>Mars</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Saturn</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Venus</td>
<td>Birmingham</td>
</tr>
</tbody>
</table>

Functional dependencies:
- Manager → Branch, Division -- each manager works at one branch and manages one division;
- Branch, Division → Manager -- for each branch and division there is a single manager;
- Project, Branch → Division, Manager -- for each branch, a project is allocated to a single division and has a sole manager responsible.

A Revised Example

<table>
<thead>
<tr>
<th>Manager</th>
<th>Project</th>
<th>Branch</th>
<th>Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Mars</td>
<td>Chicago</td>
<td>1</td>
</tr>
<tr>
<td>Green</td>
<td>Jupiter</td>
<td>Birmingham</td>
<td>1</td>
</tr>
<tr>
<td>Green</td>
<td>Mars</td>
<td>Birmingham</td>
<td>1</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Saturn</td>
<td>Birmingham</td>
<td>2</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Venus</td>
<td>Birmingham</td>
<td>2</td>
</tr>
</tbody>
</table>

BCNF Normalization (Partial)

Given: $R = (R; F)$ where $R = ABCDEGHK$ and $F = \{ABH \rightarrow C, A \rightarrow DE, BGH \rightarrow K, K \rightarrow ADH, BH \rightarrow GE\}$

Step 1: Find a FD that violates BCNF
- $ABH \rightarrow C$ (ABH)* includes all attributes (BH is a key)
- $A \rightarrow DE$ violates BCNF since A is not a superkey ($A^* = ADE$)

Step 2: Split R into:
- $R_1 = (ADE; F_1 = \{A \rightarrow DE\})$
- $R_2 = (ABC\text{-}GHK; F_2 = \{ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G\})$

Note 1: R_1 is in BCNF
Note 2: Decomposition is lossless since A is a key of R_1.
Note 3: FDs $K \rightarrow D$ and $BH \rightarrow E$ are not in F_1 or F_2.
- But both can be derived from $F_1 \cup F_2$.
 - (E.g., $K \rightarrow A$ and $A \rightarrow D$ implies $K \rightarrow D$)
- Hence, decomposition is dependency preserving.

BCNF Decomposition Algorithm

Input: $R = (R; F)$

Decomp := R

while there is $S = (S; F') \in \text{Decomp}$ and S not in BCNF do

Find $X \rightarrow Y \in F'$ that violates BCNF // X isn’t a superkey in S

Replace S in Decomp with $S_1 = (XY; F_1), S_2 = (S - (Y - X); F_2)$ // F_1 = all FDs of F' involving only attributes of XY

// F_2 = all FDs of F' involving only attributes of $S - (Y - X)$

end

return Decomp
A Good Decomposition

<table>
<thead>
<tr>
<th>Manager</th>
<th>Branch</th>
<th>Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Chicago</td>
<td>1</td>
</tr>
<tr>
<td>Green</td>
<td>Birmingham</td>
<td>1</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Birmingham</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project</th>
<th>Branch</th>
<th>Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mars</td>
<td>Chicago</td>
<td>1</td>
</tr>
<tr>
<td>Jupiter</td>
<td>Birmingham</td>
<td>1</td>
</tr>
<tr>
<td>Mars</td>
<td>Birmingham</td>
<td>1</td>
</tr>
<tr>
<td>Saturn</td>
<td>Birmingham</td>
<td>2</td>
</tr>
<tr>
<td>Venus</td>
<td>Birmingham</td>
<td>2</td>
</tr>
</tbody>
</table>

- Note: The first relation has a second key \(\{ \text{Branch}, \text{Division} \} \).
- The decomposition is in 3NF but not in BCNF; moreover, it is lossless and dependencies are preserved.
- This example demonstrates that BCNF may be too strong a condition to impose on a relational schema.

Database Design and Normalization

- The theory of normalization can be used as a basis for quality control operations on schemas, during both conceptual and logical design.
- Analysis of the relations obtained during the logical design phase can identify places where the conceptual design was inaccurate: such a validation of the design is usually relatively easy.
- Normalization can also be used during conceptual design for quality control of each element of a conceptual schema (entity or relationship).

Decomposing Product

- Supplier is (or should be) an independent entity, with its own attributes (code, surname and address).
- If Product and Supplier are distinct entities, they should be linked through a relationship.
- Since there is a functional dependency from Code to SupplierCode, we are sure that each product has at most one supplier (maximum cardinality 1).
- Since there is no dependency from SupplierCode to Code, we have an unrestricted maximum cardinality (N) for Supplier in the relationship.

Analysis of an Entity

- The functional dependency \(\text{SupplierCode} \rightarrow \text{Supplier, Address} \) holds here: all properties of a supplier are identified by its SupplierCode.
- The entity violates 3NF since this dependency has a left-hand-side that does not contain the identifier and a right-hand-side made up of attributes that are not part of the key.
Decomposing Product

This decomposition satisfies fundamental properties:

- It is a lossless decomposition, because of one-to-many relationship that allows us to reconstruct the values of the attributes of the original entity;
- Moreover, it preserves dependencies because each dependency is embedded in one of the entities or can be reconstructed from them.

Some Functional Dependencies

- Student → DegreeProgramme (each student is enrolled in one degree programme)
- Student → Professor (each student writes a thesis under the supervision of a single professor)
- Professor → Department (each professor is associated with a single department and the students under her supervision are students in that department)

The (unique) key of the relationship is Student (given a student, the degree programme, the professor and the department are identified uniquely)

The third FD causes a violation of 3NF.

Analysis of a Relationship

Now we show how to analyze n-ary relationships for n≥3, in order to determine whether they should be decomposed.

Consider

Decomposing Thesis

The following is a decomposition of Thesis where the two decomposed relationships are both in 3NF (also in BCNF)
More Observations...

- The relationship Thesis is in 3NF, because its key is made up of the Student entity, and its dependencies all have this entity on the left hand side.
- However, not all students write theses, therefore not all students have supervisors.
- From a normal form point of view, this is not a problem.
- However, our conceptual schema should reflect the fact that being in a degree programme and having a supervisor are independent facts.