Logical Database Design

- We have seen how to design a relational schema by first designing an ER schema and then transforming it into a relational one.
- Now we focus on how to transform the generated relational schema into a "better" one.
- Goodness of relational schemas is defined in terms of the notion of normal form.
Normal Forms and Normalization

- A **normal form** is a property of a database schema.
- When a database schema is un-normalized (that is, does not satisfy the normal form), it allows redundancies of various types which can lead to anomalies and inconsistencies.
- Normal forms can serve as basis for evaluating the quality of a database schema and constitutes a useful tool for database design.
- **Normalization** is a procedure that transforms an un-normalized schema into a normalized one.

Examples of Redundancy

<table>
<thead>
<tr>
<th>Employee</th>
<th>Salary</th>
<th>Project</th>
<th>Budget</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>Mars</td>
<td>2</td>
<td>technician</td>
</tr>
<tr>
<td>Green</td>
<td>35</td>
<td>Jupiter</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Green</td>
<td>35</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Venus</td>
<td>15</td>
<td>manager</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Jupiter</td>
<td>15</td>
<td>consultant</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Mars</td>
<td>2</td>
<td>consultant</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Mars</td>
<td>2</td>
<td>manager</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Jupiter</td>
<td>15</td>
<td>manager</td>
</tr>
</tbody>
</table>
Anomalies

The value of the salary of an employee is repeated in every tuple where the employee is mentioned, leading to a *redundancy*. Redundancies lead to anomalies:

- If salary of an employee changes, we have to modify the value in all corresponding tuples (*update anomaly*)
- If an employee ceases to work in projects, but stays with company, all corresponding tuples are deleted, leading to loss of information (*deletion anomaly*)
- A new employee cannot be inserted in the relation until the employee is assigned to a project (*insertion anomaly*)

What’s Wrong???

- We are using a single relation to represent data of very different types.
- In particular, we are using a single relation to store the following types of entities, relationships and attributes:
 - Employees and their salaries;
 - Projects and their budgets;
 - Participation of employees in projects, along with their functions.
- To set the problem on a formal footing, we introduce the notion of *functional dependency (FD)*.
Functional Dependencies (FDs) in the Example

- Each employee has a unique salary. We represent this dependency as
 \(\text{Employee} \rightarrow \text{Salary} \)
 and say "Salary functionally depends on Employee".
- Meaning: if two tuples have the same Employee attribute value, they must also have the same Salary attribute value.
- Likewise,
 \(\text{Project} \rightarrow \text{Budget} \)
 i.e., each project has a unique budget.

Functional Dependencies

- Given schema \(R(X) \) and non-empty subsets \(Y \) and \(Z \) of the attributes \(X \), we say that there is a functional dependency between \(Y \) and \(Z \) (\(Y \rightarrow Z \)), iff for every relation instance \(r \) of \(R(X) \) and every pair of tuples \(t_1, t_2 \) of \(r \), if \(t_1.Y = t_2.Y \), then \(t_1.Z = t_2.Z \).
- A functional dependency is a statement about all allowable relations for a given schema.
- Functional dependencies have to be identified by understanding the semantics of the application.
- Given a particular relation \(r_0 \) of \(R(X) \), we can tell if a dependency holds or not; but just because it holds for \(r_0 \), doesn’t mean that it also holds for \(R(X) \)!
Looking for FDs

<table>
<thead>
<tr>
<th>Employee</th>
<th>Salary</th>
<th>Project</th>
<th>Budget</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>Mars</td>
<td>2</td>
<td>technician</td>
</tr>
<tr>
<td>Green</td>
<td>35</td>
<td>Jupiter</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Green</td>
<td>35</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Venus</td>
<td>15</td>
<td>manager</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Jupiter</td>
<td>15</td>
<td>consultant</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Mars</td>
<td>2</td>
<td>consultant</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Mars</td>
<td>2</td>
<td>manager</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Jupiter</td>
<td>15</td>
<td>manager</td>
</tr>
</tbody>
</table>

Non-Trivial Dependencies

- A functional dependency $Y \rightarrow Z$ is non-trivial if no attribute in Z appears among attributes of Y, e.g.,
 - $\text{Employee} \rightarrow \text{Salary}$ is non-trivial;
 - $\text{Employee,Project} \rightarrow \text{Project}$ is trivial.

- Anomalies arise precisely for the attributes which are involved in (non-trivial) functional dependencies:
 - $\text{Employee} \rightarrow \text{Salary}$;
 - $\text{Project} \rightarrow \text{Budget}$.

- Moreover, note that our example includes another functional dependency:
 - $\text{Employee,Project} \rightarrow \text{Function}$.
Dependencies Cause Anomalies, ...Sometimes!

- The first two dependencies cause undesirable redundancies and anomalies.
- The third dependency, however, does not cause redundancies because \(\{\text{Employee}, \text{Project}\} \) constitutes a key of the relation (...and a relation cannot contain two tuples with the same values for the key attributes.)

Dependencies on keys are OK, other dependencies are not!

Another Example

<table>
<thead>
<tr>
<th>SI#</th>
<th>Name</th>
<th>Address</th>
<th>Hobbies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>{biking, hiking}</td>
</tr>
</tbody>
</table>

Relational Model

- This is NOT a relation

Redundancy

<table>
<thead>
<tr>
<th>SI#</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>biking</td>
</tr>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>hiking</td>
</tr>
</tbody>
</table>
How Do We Eliminate Redundancy?

- Decomposition: Use two relations to store Person information:
 - Person1 (SI#, Name, Address)
 - Hobbies (SI#, Hobby)

- The decomposition is more general: people with hobbies can now be described independently of their name and address.

- No update anomalies:
 - Name and address stored once;
 - A hobby can be separately supplied or deleted;
 - We can represent persons with no hobbies.

Superkey Constraints

- A superkey constraint is a special functional dependency: Let K be a set of attributes of R, and U the set of all attributes of R. Then K is a superkey iff the functional dependency K → U is satisfied in R.
 - E.g., SI# → SI#, Name, Address (for a Person relation)

- A key is a minimal superkey, i.e., for each X ⊂ K, X is not a superkey
 - SI#, Hobby → SI#, Name, Address, Hobby but
 - SI# → SI#, Name, Address, Hobby
 - Hobby → SI#, Name, Address, Hobby

- A key attribute is an attribute that is part of a key.
More Examples

- Address \rightarrow PostalCode
 - DCS’s postal code is M5S 3H5
- Author, Title, Edition \rightarrow PublicationDate
 - Ramakrishnan, et al., Database Management Systems, 3rd publication date is 2003
- CourseID \rightarrow ExamDate, ExamTime
 - CSC343’s exam date is December 18, starting at 7pm

When are FDs "Equivalent"?

- Sometimes functional dependencies (FDs) seem to be saying the same thing, e.g., $Addr \rightarrow PostalCode, Str#$
 vs $Addr \rightarrow PostalCode, Addr \rightarrow Str#$
- Another example
 $Addr \rightarrow PostalCode, PostalCode \rightarrow Province$
 vs $Addr \rightarrow PostalCode, PostalCode \rightarrow Province$
 vs $Addr \rightarrow Province$
- When are two sets of FDs equivalent? How do we "infer" new FDs from given FDs?
Entailment, Closure, Equivalence

- If F is a set of FDs on schema R and f is another FD on R, then F entails f (written $F \models f$) if every instance r of R that satisfies every FD in F also satisfies f.

 Example: $F = \{A \rightarrow B, B \rightarrow C\}$ and f is $A \rightarrow C$

 - If Phone# \rightarrow Address and Address \rightarrow ZipCode, then Phone# \rightarrow ZipCode

- The closure of F, denoted F^+, is the set of all FDs entailed by F.
- F and G are equivalent if F entails G and G entails F.

How Do We Compute Entailment?

- Satisfaction, entailment, and equivalence are semantic concepts – defined in terms of the "meaning" of relations in the "real world."

- How to check if F entails f, F and G are equivalent?
 - Apply the respective definitions for all possible relation instances for a schema R ...
 - Find algorithmic, syntactic ways to compute these notions.

- Note: The syntactic solution must be "correct" with respect to the semantic definitions.

- Correctness has two aspects: soundness and completeness – see later.
Armstrong’s Axioms for FDs

- This is the syntactic way of computing/testing semantic properties of FDs
 - **Reflexivity**: $Y \subseteq X \implies X \rightarrow Y$ (trivial FD)
 - e.g., \rightarrow Name, Address \rightarrow Name
 - **Augmentation**: $X \rightarrow Y \implies XZ \rightarrow YZ$
 - e.g., Address \rightarrow ZipCode \rightarrow Address, Name \rightarrow ZipCode, Name
 - **Transitivity**: $X \rightarrow Y, Y \rightarrow Z \implies X \rightarrow Z$
 - e.g., Phone# \rightarrow Address, Address \rightarrow ZipCode \rightarrow Phone# \rightarrow ZipCode

Soundness

- Theorem: $F \vdash f$ implies $F \models f$
- In words: If FD f: $X \rightarrow Y$ can be derived from a set of FDs F using the axioms, then f holds in every relation that satisfies every FD in F.
- Example: Given $X \rightarrow Y$ and $X \rightarrow Z$ then
 - $X \rightarrow XY$ Augmentation by X
 - $YX \rightarrow YZ$ Augmentation by Y
 - $X \rightarrow YZ$ Transitivity
- Thus, $X \rightarrow YZ$ is satisfied in every relation where both $X \rightarrow Y$ and $X \rightarrow Z$ are satisfied. We have derived the union rule for FDs.
Completeness

- Theorem: $F \models f$ implies $F \vdash f$
- In words: If F entails f, then f can be derived from F using Armstrong's axioms.
- A consequence of completeness is the following (naive) algorithm to determining if F entails f:

Algorithm: Use the axioms in all possible ways to generate F^+ (the set of possible FD's is finite so this can be done) and see if f is in F^+

Correctness

- The notions of *soundness* and *completeness* link the syntax (Armstrong's axioms) with semantics, i.e., entailment defined in terms of relational instances.
- This is a precise way of saying that the algorithm for entailment based on the axioms is ``correct” with respect to the definitions.
Decomposition Rule

- Another example of a derivation rule we can use in generating F^+:
- $X \rightarrow AB$, $AB \rightarrow A$ (refl), $X \rightarrow A$ (trans)
- So, whenever we have $X \rightarrow AB$, we can "decompose" this functional dependency to two functional dependencies $X \rightarrow A$, $X \rightarrow B$

Generating F^+

Thus, $AB \rightarrow BD$, $AB \rightarrow BCD$, $AB \rightarrow BCDE$, and $AB \rightarrow E$ are all elements of F^+.
Attribute Closure

- Calculating *attribute closure* leads to a more efficient way of checking entailment.
- The *attribute closure* of a set of attributes X with respect to a set of FDs F, denoted X^+_F, is the set of all attributes A such that $X \rightarrow A$
 - X^+_F is not necessarily same as X^+_G if $F \neq G$
- Attribute closure and entailment:

 Algorithm: Given a set of FDs, F, then $X \rightarrow Y$ if and only if $Y \subseteq X^+_F$

Computing the Attribute Closure X^+_F

```
closure := X;       // since $X \subseteq X^+_F$
repeat
    old := closure;
    if there is an FD $Z \rightarrow V$ in $F$ such that $Z \subseteq closure$ and $V \subseteq closure$
        then closure := closure $\cup$ $V$
until old $=$ closure
```

- If $T \subseteq closure$ then $X \rightarrow T$ is entailed by F
Computing Attribute Closure: An Example

<table>
<thead>
<tr>
<th>X</th>
<th>X_F^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: $AB \rightarrow C$</td>
<td>$A \rightarrow {A, D, E}$</td>
</tr>
<tr>
<td>$A \rightarrow D$</td>
<td>$AB \rightarrow {A, B, C, D, E}$</td>
</tr>
<tr>
<td>$D \rightarrow E$</td>
<td>$AC \rightarrow {A, C, B, D, E}$</td>
</tr>
<tr>
<td>$AC \rightarrow B$</td>
<td>$B \rightarrow {B}$</td>
</tr>
<tr>
<td>D</td>
<td>${D, E}$</td>
</tr>
</tbody>
</table>

Is $AB \rightarrow E$ entailed by F? **Yes**
Is $D \rightarrow C$ entailed by F? **No**

Result: X_F^+ allows us to determine all FDs of the form $X \rightarrow Y$ entailed by F

Normal Forms

- Each normal form is a set of conditions on a schema that together guarantee certain properties (relating to redundancy and update anomalies).
- First normal form (1NF) is the same as the definition of relational model (relations = sets of tuples; each tuple = sequence of atomic values).
- Second normal form (2NF) 1NF plus every attribute that is not part of a candidate key (that is, a non-prime attribute) must depend on an entire candidate key (not part of it).
- The two most used are **third normal form** (3NF) and **Boyce-Codd normal form** (BCNF).
- We will discuss in detail the 3NF.
The Third Normal Form

- A relation $R(X)$ is in \textit{third normal form} (\textit{3NF}) if, for each (non-trivial) functional dependency $Y \rightarrow Z$, at least one of the following is true:
 - Y contains a key K of $R(X)$;
 - Each attribute in Z is contained in at least one (candidate) key of $R(X)$. That is, each attribute in Z is a prime attribute.

- \textit{3NF} does not remove all redundancies.
- \textit{3NF} decompositions founded on the notion of \textit{minimal cover}.

Decomposition into 3NF: Basic Idea

- Decomposition into 3NF can proceed as follows.
 - For each functional dependency of the form $Y \rightarrow Z$, where Y contains a subset of a key K of $R(X)$, create a projection on all the attributes Y, Z (2NF).
 - For each dependency of the form $Y \rightarrow Z$, where Y, doesn’t contain any key, and not all attributes of Z are key attributes, create a projection on all the attributes Y, Z (3NF).
 - The new relations only include dependencies $Y \rightarrow Z$, where Y contains a key K of $R(X)$, or Z contains only key attributes.
Basic Idea

- $R(ABCD)$, $A \rightarrow D$
- Projection:
 - $R1(AD)$, $A \rightarrow D$
 - $R2(ABC)$

Normalization Through Decomposition

- A relation that is not in 3NF, can be replaced with one or more normalized relations using normalization.
- We can eliminate redundancies and anomalies for the example relation $Emp(Employee,Salary,Project,Budget,Function)$ if we replace it with the three relations obtained by projections on the sets of attributes corresponding to the three functional dependencies:
 - $Employee \rightarrow Salary$
 - $Project \rightarrow Budget$
 - $Employee,Project \rightarrow Function$.
...Start with...

<table>
<thead>
<tr>
<th>Employee</th>
<th>Salary</th>
<th>Project</th>
<th>Budget</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>Mars</td>
<td>2</td>
<td>technician</td>
</tr>
<tr>
<td>Green</td>
<td>35</td>
<td>Jupiter</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Green</td>
<td>35</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Venus</td>
<td>15</td>
<td>manager</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Jupiter</td>
<td>15</td>
<td>consultant</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Mars</td>
<td>2</td>
<td>consultant</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Mars</td>
<td>2</td>
<td>manager</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Venus</td>
<td>15</td>
<td>designer</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Jupiter</td>
<td>15</td>
<td>manager</td>
</tr>
</tbody>
</table>

Result of Normalization

<table>
<thead>
<tr>
<th>Employee</th>
<th>Salary</th>
<th>Project</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>Mars</td>
<td>technician</td>
</tr>
<tr>
<td>Green</td>
<td>35</td>
<td>Jupiter</td>
<td>designer</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Venus</td>
<td>manager</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Jupiter</td>
<td>consultant</td>
</tr>
<tr>
<td>Hoskins</td>
<td>55</td>
<td>Mars</td>
<td>consultant</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Mars</td>
<td>manager</td>
</tr>
<tr>
<td>Moore</td>
<td>48</td>
<td>Venus</td>
<td>designer</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Venus</td>
<td>designer</td>
</tr>
<tr>
<td>Kemp</td>
<td>48</td>
<td>Jupiter</td>
<td>manager</td>
</tr>
</tbody>
</table>

The keys of new relations are lefthand sides of functional dependencies; satisfaction of 3NF is therefore guaranteed for the new relations.
Another Example

<table>
<thead>
<tr>
<th>Employee</th>
<th>Project</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Mars</td>
<td>Chicago</td>
</tr>
<tr>
<td>Green</td>
<td>Jupiter</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Green</td>
<td>Venus</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Saturn</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Venus</td>
<td>Birmingham</td>
</tr>
</tbody>
</table>

This relation satisfies the functional dependencies:

Employee \rightarrow Branch
Project \rightarrow Branch

A Possible Decomposition

<table>
<thead>
<tr>
<th>Employee</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Chicago</td>
</tr>
<tr>
<td>Green</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Birmingham</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mars</td>
<td>Chicago</td>
</tr>
<tr>
<td>Jupiter</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Saturn</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Venus</td>
<td>Birmingham</td>
</tr>
</tbody>
</table>

...but now we don't know each employee's projects!
The Join of the Projections

<table>
<thead>
<tr>
<th>Employee</th>
<th>Project</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Mars</td>
<td>Chicago</td>
</tr>
<tr>
<td>Green</td>
<td>Jupiter</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Saturn</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Venus</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Green</td>
<td>Saturn</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Jupiter</td>
<td>Birmingham</td>
</tr>
</tbody>
</table>

The result of the join is different from the original relation.

We lost some information during the decomposition!

Lossless Decomposition

- The decomposition of a relation $R(X)$ on X_1 and X_2 is *lossless* if for every instance r of $R(X)$ the join of the projections of R on X_1 and X_2 is equal to r itself (that is, does not contain *spurious* tuples).
- Of course, it is clearly desirable to allow only lossless decompositions during normalization.
A Condition for Lossless Decomposition

- Let $R(X)$ be a relation schema and let X_1 and X_2 be two subsets of X such that $X_1 \cup X_2 = X$. Also, let $X_0 = X_1 \cap X_2$.
- If $R(X)$ satisfies the functional dependency $X_0 \rightarrow X_1$ or $X_0 \rightarrow X_2$, then the decomposition of $R(X)$ on X_1 and X_2 is lossless.
- In other words, $R(X)$ has a lossless decomposition on two relations if the set of attributes common to the relations is a superkey for at least one of the decomposed relations.

Intuition Behind the Test for Losslessness

- Suppose $R_1 \cap R_2 \rightarrow R_2$. Then a row of r_1 can combine with exactly one row of r_2 in the natural join (since in r_2, a particular set of values for the attributes in $R_1 \cap R_2$ defines a unique row).

A Lossless Decomposition

<table>
<thead>
<tr>
<th>Employee</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Chicago</td>
</tr>
<tr>
<td>Green</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Birmingham</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Employee</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Mars</td>
</tr>
<tr>
<td>Green</td>
<td>Jupiter</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Saturn</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Venus</td>
</tr>
</tbody>
</table>

Notation

- Instead of saying that we have relation schema $R(X)$ with functional dependencies F, we will say that we have schema $R = (R, F)$, where R is a set of attributes and F is a set of functional dependencies.
- The 3NF normalization problem is then to generate a set of relation schemas $R_i = (R_{i1}, F_{i1}), \ldots, R_i = (R_{in}, F_{in})$, such that R_i is in 3NF.
Another Example

- Schema \((R, F)\) where
 \[
 R = \{SI\#, Name, Address, Hobby\}
 \]
 \[
 F = \{SI\# \rightarrow Name, Address\}
 \]
 can be decomposed into
 \[
 R_1 = \{SI\#, Name, Address\}
 \]
 \[
 F_1 = \{SI\# \rightarrow Name, Address\}
 \]
 and
 \[
 R_2 = \{SI\#, Hobby\}
 \]
 \[
 F_2 = \{\}
 \]
 since \(R_1 \cap R_2 = SI\#, SI\# \rightarrow R_1\) the decomposition is lossless.

Another Problem...

- Assume we wish to insert a new tuple that specifies that employee Armstrong works in the Birmingham branch and participates in project Mars.
- In the original relation, this update would be identified as illegal, because it would cause a violation of the \(Project \rightarrow Branch\) dependency.
- For the decomposed relations, however, this is not possible because the two attributes \(Project\) and \(Branch\) have been moved to different relations.
Preserving Dependencies (Intuition)

- A decomposition preserves dependencies if each of the functional dependencies of the original relation schema involves attributes that appear together in one of the decomposed relation schemas.
- It is clearly desirable that a decomposition preserves dependencies because then it is possible to (efficiently) ensure that the decomposed schema satisfies the same constraints as the original schema.

Example

- Schema \((R, F) \) where
 \[R = \{SI\#, Name, Address, Hobby\} \]
 \[F = \{SI\# \rightarrow Name, Address\} \]
 can be decomposed into
 \[R_1 = \{SI\#, Name, Address\} \]
 \[F_1 = \{SI\# \rightarrow Name, Address\} \]
 and
 \[R_2 = \{SI\#, Hobby\} \]
 \[F_2 = \{ \} \]
- Since \(F = F_1 \cup F_2 \) the decomposition is dependency preserving.
Another Example

- Schema: \((ABC; F), F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}\)
- Decomposition:
 - \((AC, F_1), F_1 = \{A \rightarrow C\}\)
 - [Note: \(A \rightarrow C \notin F\), but in \(F^+\)]
 - \((BC, F_2), F_2 = \{B \rightarrow C, C \rightarrow B\}\)

- \(A \rightarrow B \notin (F_1 \cup F_2)\), but \(A \rightarrow B \in (F_1 \cup F_2)^+\).
 - So \(F^+ = (F_1 \cup F_2)^+\) and thus the decomposition is still dependency preserving

Dependency Preservation

- If \(f\) is a FD in \(F\), but \(f\) is not in \(F_1 \cup F_2\), there are two possibilities:
 - \(f \in (F_1 \cup F_2)^+\)
 - If the constraints in \(F_1\) and \(F_2\) are maintained, \(f\) will be maintained automatically.
 - \(f \notin (F_1 \cup F_2)^+\)
 - \(f\) can be checked only by first taking the join of \(r_1\) and \(r_2\). ...This is costly...
Desirable Qualities for Decompositions

Decompositions should always satisfy the properties of lossless decomposition and dependency preservation:

- **Lossless decomposition** ensures that the information in the original relation can be accurately reconstructed based on the information represented in the decomposed relations.
- **Dependency preservation** ensures that the decomposed relations have the same capacity to represent the integrity constraints as the original relations and therefore to reveal illegal updates.

Minimal Cover

- A *minimal cover* for a set of dependencies F is a set of dependencies U such that:
 - U is equivalent to F (i.e., $F^+ = U^+$)
 - All FDs in U have the form $X \rightarrow A$ where A is a single attribute
 - It is not possible to make U smaller (while preserving equivalence) by deleting an FD
 - Deleting an attribute from an FD (its LHS)
- FDs and attributes that can be deleted in this way are called **redundant**.
Computing the Minimal Cover

Example: \(F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, \\
BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\} \)

- **Step 1:** Make RHS of each FD into a single attribute: Use decomposition rule for FDs.
 - Example: \(L \rightarrow AD \) replaced by \(L \rightarrow A, L \rightarrow D \); \(ABH \rightarrow CK \) by \(ABH \rightarrow C, ABH \rightarrow K \)

- **Step 2:** Eliminate redundant attributes from LHS: If B is a single attribute and FD \(XB \rightarrow A \in F \), \(X \rightarrow A \) is entailed by \(F \), then \(B \) is unnecessary.
 - e.g., Can an attribute be deleted from \(ABH \rightarrow C \)?
 - Compute \(AB^+_F, AH^+_F, BH^+_F \); Since \(C \in (BH)^+_F \), \(BH \rightarrow C \) is entailed by \(F \) and \(A \) is redundant in \(ABH \rightarrow C \).

Computing the Minimal Cover (cont’d)

- **Step 3:** Delete redundant FDs from \(F \): If \(F - \{f\} \) entails \(f \), then \(f \) is redundant; if \(f \) is \(X \rightarrow A \) then check if \(A \in X^+_F - \{f\} \),
 - e.g., \(BGH \rightarrow L \) is entailed by \(E \rightarrow L, BH \rightarrow E \), so it is redundant
 - Note: The order of steps 2, 3 can't be interchanged!! See textbook for a counterexample.

\(F_1 = \{ABH \rightarrow C, ABH \rightarrow K, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E\} \)
\(F_2 = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, BH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E\} \)
\(F_3 = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\} \)
Synthesizing a 3NF Schema

Starting with a schema $R = (R, F)$:

- Step 1: Compute minimal cover U of F. The decomposition is based on U, but since $U^+ = F^+$ the same functional dependencies will hold.

 ✓ A minimal cover for $F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$ is

 \[U = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\} \]

Synthesizing ... Step 2

- Step 2: Partition U into sets U_1, U_2, \ldots, U_n such that the LHS of all elements of U_i are the same:

 ✓ $U_1 = \{BH \rightarrow C, BH \rightarrow K\}$, $U_2 = \{A \rightarrow D\}$,

 $U_3 = \{C \rightarrow E\}$, $U_4 = \{L \rightarrow A\}$, $U_5 = \{E \rightarrow L\}$
Synthesizing … Step 3

- Step 3: For each U_i form schema $R_i = (R_i, U_i)$, where R_i is the set of all attributes mentioned in U_i.
 - Each FD of U will be in some R_i. Hence the decomposition is dependency preserving:
 - $R_1 = (BHCK; BH \rightarrow C, BH \rightarrow K)$,
 - $R_2 = (AD; A \rightarrow D)$,
 - $R_3 = (CE; C \rightarrow E)$,
 - $R_4 = (AL; L \rightarrow A)$,
 - $R_5 = (EL; E \rightarrow L)$

Synthesizing … Step 4

- Step 4: If no R_i is a superkey of R, add schema $R_0 = (R_0, \{\})$ where R_0 is a key of R.
 - $R_0 = (BGH, \{\})$; R_0 might be needed when not all attributes are contained in $R_1 \cup R_2 \ldots \cup R_n$.
 - A missing attribute A must be part of all keys (since it’s not in any FD of U, deriving a key constraint from U involves the augmentation axiom);
 - R_0 might be needed even if all attributes are accounted for in $R_1 \cup R_2 \ldots \cup R_n$.
Synthesizing … Step 4 (cont’d)

- Example: \((ABCD; \{A \rightarrow B,C \rightarrow D\})\), with step 3 decomposition: \(R_1 = (AB; \{A\rightarrow B\}), R_2 = (CD; \{C\rightarrow D\})\).

Lossy! Need to add \((AC; \{\})\), for losslessness

- Step 4 guarantees lossless decomposition:
 \(ABCD \rightarrow \text{decomp} \rightarrow AB,ACD\)
 \(\rightarrow \text{decomp} \rightarrow AB,AC,CD\)

Boyce–Codd Normal Form (BCNF)

- A relation \(R(X)\) is in *Boyce–Codd Normal Form* if for every non-trivial functional dependency \(Y \rightarrow Z\) defined on it, \(Y\) contains a key \(K\) of \(R(X)\). That is, \(Y\) is a superkey for \(R(X)\).

- Example: Person1\((SI\#, Name, Address)\)
 - The only FD is \(SI\# \rightarrow Name, Address\)
 - Since \(SI\#\) is a key, Person1 is in BCNF

- Anomalies and redundancies, as discussed earlier, do not occur in databases with relations in BCNF.
Non-BCNF Examples

- Person(SI#, Name, Address, Hobby)
 - The FD SI# → Name, Address does not satisfy conditions for BCNF since the key is (SSN, Hobby)

- HasAccount(AcctNum, ClientId, OfficeId)
 - The FD AcctNum → OfficeId does not satisfy BCNF conditions if we assume that keys for HasAccount are (ClientId, OfficeId) and (AcctNum, ClientId); rather than AcctNum.

A Relation not in BCNF

<table>
<thead>
<tr>
<th>Manager</th>
<th>Project</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Mars</td>
<td>Chicago</td>
</tr>
<tr>
<td>Green</td>
<td>Jupiter</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Green</td>
<td>Mars</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Saturn</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Venus</td>
<td>Birmingham</td>
</tr>
</tbody>
</table>

Assume the following dependencies:
- Manager → Branch — each manager works in a particular branch;
- Project,Branch → Manager — each project has several managers, and runs on several branches; however, a project has a unique manager for each branch.
A Problematic Decomposition

- The relation is not in BCNF because the left hand side of the first dependency is not a superkey.
- At the same time, no decomposition of this relation will work: \texttt{Project,Branch} \rightarrow \texttt{Manager} involves all the attributes and thus no decomposition is possible.
- Sometimes BCNF cannot be achieved for a particular relation and set of functional dependencies without violating the principles of lossless decomposition and dependency preservation.

Normalization Drawbacks

- By limiting redundancy, normalization helps maintain consistency and saves space.
- \textit{But} performance of querying can suffer because related information that was stored in a single relation is now distributed among several.
- Example: A join is required to get the names and grades of all students taking CS343 in 2006F.

```sql
SELECT S.Name, T.Grade
FROM Student S, Transcript T
WHERE S.Id = T.StudId AND T.CrsCode = 'CS343' AND T.Semester = '2006F'
```
Denormalization

- Tradeoff: *Judiciously* introduce redundancy to improve performance of certain queries.
- Example: Add attribute Name to Transcript → Transcript'

  ```sql
  SELECT T.Name, T.Grade
  FROM Transcript' T
  WHERE T.CrsCode = 'CS305' AND T.Semester = 'S2002'
  ```

 - Join is avoided;
 - If queries are asked more frequently than Transcript is modified, added redundancy might improve average performance;
 - But, Transcript' is no longer in BCNF since key is (StudId,CrsCode,Semester) and StudId → Name.

BCNF and 3NF

- The Project-Branch-Manager schema is not in BCNF, but it *is* in 3NF.
- In particular, the Project,Branch → Manager dependency has as its left hand side a key, while Manager → Branch has a unique attribute for the right hand side, which is part of the {Project,Branch} key.
- The 3NF is less restrictive than the BCNF and for this reason does not offer the same guarantees of quality for a relation; it has the advantage however, of always being achievable.
3NF Tolerates Some Redundancies!

<table>
<thead>
<tr>
<th>Manager</th>
<th>Project</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Mars</td>
<td>Chicago</td>
</tr>
<tr>
<td>Green</td>
<td>Jupiter</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Green</td>
<td>Mars</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Saturn</td>
<td>Birmingham</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Venus</td>
<td>Birmingham</td>
</tr>
</tbody>
</table>

A Revised Example

<table>
<thead>
<tr>
<th>Manager</th>
<th>Project</th>
<th>Branch</th>
<th>Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Mars</td>
<td>Chicago</td>
<td>1</td>
</tr>
<tr>
<td>Green</td>
<td>Jupiter</td>
<td>Birmingham</td>
<td>1</td>
</tr>
<tr>
<td>Green</td>
<td>Mars</td>
<td>Birmingham</td>
<td>1</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Saturn</td>
<td>Birmingham</td>
<td>2</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Venus</td>
<td>Birmingham</td>
<td>2</td>
</tr>
</tbody>
</table>

Functional dependencies:
- **Manager → Branch,Division** -- each manager works at one branch and manages one division;
- **Branch,Division → Manager** -- for each branch and division there is a single manager;
- **Project,Branch → Division,Manager** -- for each branch, a project is allocated to a single division and has a sole manager responsible.
BCNF Normalization (Partial)

Given: $R = (R; F)$ where $R = ABCDEGHK$ and $F = \{ABH \rightarrow C, A \rightarrow DE, BGH \rightarrow K, K \rightarrow ADH, BH \rightarrow GE\}$

Step 1: Find a FD that violates BCNF
Note $ABH \rightarrow C$, $(ABH)^+ \text{ includes all attributes (BH is a key) } A \rightarrow DE$ violates BCNF since A is not a superkey $(A^+ = ADE)$

Step 2: Split R into:
$R_1 = (ADE; F_1 = \{A \rightarrow DE\})$
$R_2 = (ABCGHK; F_2 = \{ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G\})$

Note 1: R_1 is in BCNF
Note 2: Decomposition is lossless since A is a key of R_1.
Note 3: FDs $K \rightarrow D$ and $BH \rightarrow E$ are not in F_1 or F_2.
But both can be derived from $F_1 \cup F_2$
(E.g., $K \rightarrow A$ and $A \rightarrow D$ implies $K \rightarrow D$)
Hence, decomposition is dependency preserving.

BCNF Decomposition Algorithm

Input: $R = (R; F)$

$Decomp := R$ while there is $S = (S; F') \in Decomp \text{ and } S \text{ not in BCNF }$ do
Find $X \rightarrow Y \in F'$ that violates BCNF // X isn’t a superkey in S
Replace S in $Decomp$ with $S_1 = (XY; F_1)$, $S_2 = (S \setminus (Y \setminus X); F_2)$
// F_1 = all FDs of F' involving only attributes of XY
// F_2 = all FDs of F' involving only attributes of $S \setminus (Y \setminus X)$
end
return $Decomp$
A Good Decomposition

<table>
<thead>
<tr>
<th>Manager</th>
<th>Branch</th>
<th>Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Chicago</td>
<td>1</td>
</tr>
<tr>
<td>Green</td>
<td>Birmingham</td>
<td>1</td>
</tr>
<tr>
<td>Hoskins</td>
<td>Birmingham</td>
<td>2</td>
</tr>
</tbody>
</table>

- Note: The first relation has a second key \{Branch, Division\}.
- The decomposition is in 3NF but not in BCNF; moreover, it is lossless and dependencies are preserved.
- This example demonstrates that BCNF may be too strong a condition to impose on a relational schema.

Database Design and Normalization

- The theory of normalization can be used as a basis for quality control operations on schemas, during both conceptual and logical design.
- Analysis of the relations obtained during the logical design phase can identify places where the conceptual design was inaccurate: such a validation of the design is usually relatively easy.
- Normalization can also be used during conceptual design for quality control of each element of a conceptual schema (entity or relationship).
Analysis of an Entity

- The functional dependency
 \[\text{SupplierCode} \rightarrow \text{Supplier,Address} \]
 holds here: all properties of a supplier are identified by its \text{SupplierCode}.
- The entity violates 3NF since this dependency has a left-hand-side that does not contain the identifier and a right-hand-side made up of attributes that are not part of the key.

Decomposing Product

- \text{Supplier} is (or should be) an independent entity, with its own attributes (code, surname and address)
- If \text{Product} and \text{Supplier} are distinct entities, they should be linked through a relationship.
- Since there is a functional dependency from \text{Code} to \text{SupplierCode}, we are sure that each product has at most one supplier (maximum cardinality 1).
- Since there is no dependency from \text{SupplierCode} to \text{Code}, we have an unrestricted maximum cardinality (N) for \text{Supplier} in the relationship.
Decomposing Product

This decomposition satisfies fundamental properties:

✓ It is a lossless decomposition, because of one-to-many relationship that allows us to reconstruct the values of the attributes of the original entity;

✓ Moreover, it preserves dependencies because each dependency is embedded in one of the entities or can be reconstructed from them.

Analysis of a Relationship

Now we show how to analyze n-ary relationships for n≥3, in order to determine whether they should be decomposed.

Consider
Some Functional Dependencies

- **Student** → **DegreeProgramme** (each student is enrolled in one degree programme)
- **Student** → **Professor** (each student writes a thesis under the supervision of a single professor)
- **Professor** → **Department** (each professor is associated with a single department and the students under her supervision are students in that department)

- The (unique) key of the relationship is **Student** (given a student, the degree programme, the professor and the department are identified uniquely)

- The third FD causes a violation of 3NF.

Decomposing Thesis

- The following is a decomposition of **Thesis** where the two decomposed relationships are both in 3NF (also in BCNF)
More Observations...

- The relationship Thesis is in 3NF, because its key is made up of the Student entity, and its dependencies all have this entity on the left hand side.
- However, not all students write theses, therefore not all students have supervisors.
- From a normal form point of view, this is not a problem.
- However, our conceptual schema should reflect the fact that being in a degree programme and having a supervisor are independent facts.

Another Decomposition

```
+-----------------+     +-----------------+     +-----------------+
| PROFESSOR       |     | THESIS           |     | STUDENT          |
|-----------------+     +-----------------+     +-----------------+
| (1,1)           |     | (0,1)            |     | (1,1)            |
| AFFILIATION     |     | AFFILIATION      |     | AFFILIATION      |
| (0,N)           |     +-----------------+     | (0,N)           |
| DEPARTMENT      |     | DEPARTMENT       |     | DEPARTMENT       |
| DEGREE PROGRAM  |     | DEGREE PROGRAM   |     | DEGREE PROGRAM   |
```