Week 10: Database Design

Database Design
From an ER Schema to a Relational One
Restructuring an ER schema
Performance Analysis
Analysis of Redundancies, Removing Generalizations
Translation into a Relational Schema

Designing a Database Schema

Hierarchical

- **Part**
 - name
 - (1,1)

- **Supplier**
 - (1,N)
 - supplies

- **Customer**
 - (1,1)

Network

- **Part**
 - name

Relational

- **Orders**
 - (1,N)

- **Part(Name, Description, Part#)**
- **Supplier(Name, Addr)**
- **Customer(Name, Addr)**
- **Supplies(Name, Part#, Date)**
- **Orders(Name, Part#)**
(Relational) Database Design

- Given a conceptual schema (ER, but could also be a UML), generate a logical (relational) schema.
- This is not just a simple translation from one model to another for two main reasons:
 - not all the constructs of the Entity-Relationship model can be translated naturally into the relational model;
 - the schema must be restructured in such a way as to make the execution of the projected operations as efficient as possible.
- The topic is covered in Section 3.5 of the textbook.
Logical Design Steps

- It is helpful to divide the design into two steps:
 - **Restructuring of the Entity-Relationship schema**, based on criteria for the optimization of the schema and the simplification of the following step;
 - **Translation into the logical model**, based on the features of the logical model (in our case, the relational model).

Performance Analysis

- An ER schema is restructured to optimize:
 - **Cost of an operation** (evaluated in terms of the number of occurrences of entities and relationships that are visited during the execution of an operation);
 - **Storage requirements** (evaluated in terms of number of bytes necessary to store the data described by the schema).
- In order to study these parameters, we need to know:
 - Projected volume of data;
 - Projected operation characteristics.
Cost Model

- The cost of an operation is measured in terms of the number of disk accesses required. A disk access is, generally, orders of magnitude more expensive than in-memory accesses, or CPU operations.

- For a coarse estimate of cost, we assume that:
 - a Read operation (for one entity or relationship) requires 1 disk access;
 - A Write operation (for one entity or relationship) requires 2 disk accesses (read from disk, change, write back to disk).

- There are many other cost models depending on use and type of DB:
 - Warehouse (OLAP - On-Line Analysis Processing)
 - Operational DB (OLTP - On-Line Transaction Processing)
Typical Operations

- Operation 1: Assign an employee to a project.
- Operation 2: Find an employee record, including her department, and the projects she works for.
- Operation 3: Find records of employees for a department.
- Operation 4: For each branch, retrieve its departments, and for each department, retrieve the last names of their managers, and the list of their employees.
- Need operations and their volume/frequency

Workload Design

- During initial design and requirements analysis
 - Estimate operations and frequency
 - Gross estimates at best
- After database is operational
 - Tools record actual workload characteristics
Analysis of Redundancies

- A redundancy in a conceptual schema corresponds to a piece of information that can be derived (that is, obtained through a series of retrieval operations) from other data in the database.

- An Entity-Relationship schema may contain various forms of redundancy.
Examples of Redundancies

Deciding About Redundancies

- The presence of a redundancy in a database may be
 - an advantage: a reduction in the number of accesses necessary to obtain the derived information;
 - a disadvantage: because of larger storage requirements, (but, usually at negligible cost) and the necessity to carry out additional operations in order to keep the derived data consistent.

- The decision to maintain or eliminate a redundancy is made by comparing the cost of operations that involve the redundant information and the storage needed, in the case of presence or absence of redundancy.
Cost Comparison: An Example

In this schema the attribute \textit{NumberOfInhabitants} is redundant.

Removing Generalizations

- The relational model does not allow direct representation of generalizations that may be present in an E-R diagram.
- For example, here is an ER schema with generalizations:
Possible Restructurings

Option 1

Option 2

Note!

Option 3

...Two More...

Option 4 (combination)
General Rules For Removing Generalization

- Option 1 is convenient when the operations involve the occurrences and the attributes of E_0, E_1 and E_2 more or less in the same way.
- Option 2 is possible only if the generalization satisfies the coverage constraint (i.e., every instance of E_0 is either an instance of E_1 or E_2) and is useful when there are operations that apply only to occurrences of E_1 or E_2.
- Option 3 is useful when the generalization is not coverage-compliant and the operations refer to either occurrences and attributes of E_1 (E_2) or of E_0, and therefore make distinctions between child and parent entities.
- Available options can be combined (see option 4)

Partitioning and Merging of Entities and Relationships

- Entities and relationships of an E-R schema can be partitioned or merged to improve the efficiency of operations, using the following principle:

 Accesses are reduced by separating attributes of the same concept that are accessed by different operations and by merging attributes of different concepts that are accessed by the same operations.

- The same criteria with those discussed for redundancies are valid in making a decision about this type of restructuring.
Example of Partitioning

Recall this is a weak entity

Deletion of Multi-Valued Attribute
Merging Entities

Two candidate keys

Partitioning of a Relationship

Suppose that composition represents current and past compositions of a team

Are these equivalent?
Selecting a Primary Key

- Every relation must have a unique primary key.
- The criteria for this decision are as follows:
 - Attributes with null values cannot form primary keys;
 - One/few attributes is preferable to many attributes;
 - Internal key preferable to external ones (weak entity);
 - A key that is used by many operations to access the instances of an entity is preferable to others.
- At this stage, if none of the candidate keys satisfies the above requirements, it may be best to introduce a new attribute (e.g., social)

Translation into a Logical Schema

- The second step of logical design consists of a translation between different data models.
- Starting from an E-R schema, an equivalent relational schema is constructed. By “equivalent”, we mean a schema capable of representing the same information.
- We will deal with the translation problem systematically, beginning with the fundamental case, that of entities linked by many-to-many relationships.
Many-to-Many Relationships

Employee(Number, Surname, Salary)
Project(Code, Name, Budget)
Participation(Number, Code, StartDate)

Many-to-Many Recursive Relationships

Product(Code, Name, Cost)
Composition(Part, SubPart, Quantity)
Ternary Relationships

- **Supplier**(`SupplierID, SupplierName`)
- **Product**(`Code, Type`)
- **Department**(`Name, Telephone`)
- **Supply**(`Supplier, Product, Department, Quantity`

One-to-Many Relationships

- **Player**(`Surname, DateOfBirth, Position`)
- **Team**(`Name, Town, TeamColours`)
- **Contract**(`PlayerSurname, PlayerDateOfBirth, Team, Salary`)

 OR

- **Player**(`Surname, DateOfBirth, Position, TeamName, Salary`)
- **Team**(`Name, Town, TeamColours`)

CSC343 – Introduction to Databases
Database Design – 29

CSC343 – Introduction to Databases
Database Design – 30
Weak Entities

Student(RegistrationNumber, University, Surname, EnrolmentYear)
University(Name, Town, Address)

One-to-One Relationships

Head(Number, Name, Salary, Department, StartDate)
Department(Name, Telephone, Branch)
OR
Head(Number, Name, Salary, StartDate)
Department(Name, Telephone, HeadNumber, Branch)
Optional One-to-One Relationships

Employee(Number, Name, Salary)
Department(Name, Telephone, Branch, Head, StartDate)

Or, if both entities are optional
Employee(Number, Name, Salary)
Department(Name, Telephone, Branch)
Management(Head, Department, StartDate)

A Sample ER Schema
Entities with Internal Identifiers

1-1 and Optional 1-1 Relationships

1-1 or optional 1-1 relationships can lead to messy transformations
Weak Entities

Many-to-Many Relationships
Homework - Fill in a Translation

Summary of Transformation Rules

<table>
<thead>
<tr>
<th>Type</th>
<th>Initial schema</th>
<th>Possible translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary many-to-many relationship</td>
<td>E_1 (AE_{11}, AE_{12}, R (AR_{1}), AE_{21}, AE_{22})</td>
<td>E_1 (AE_{11}, AE_{12}), E_2 (AE_{21}, AE_{22}), R (AR_{1})</td>
</tr>
<tr>
<td>Ternary many-to-many relationship</td>
<td>E_1 (AE_{11}, AE_{12}, AE_{13}, R (AR_{1}), AE_{21}, AE_{22})</td>
<td>E_1 (AE_{11}, AE_{12}, AE_{13}), E_2 (AE_{21}, AE_{22}), E_3 (AE_{13}, AE_{32}), R (AR_{1})</td>
</tr>
<tr>
<td>One-to-many relationship with mandatory participation</td>
<td>E_1 (AE_{11}, AE_{12}, R (AR_{1}), AE_{21}, AE_{22})</td>
<td>E_1 (AE_{11}, AE_{12}, AE_{21}, AE_{22}), E_2 (AE_{21}, AE_{22})</td>
</tr>
</tbody>
</table>
More Rules...

<table>
<thead>
<tr>
<th>Type</th>
<th>Initial schema</th>
<th>Possible translation</th>
</tr>
</thead>
</table>
| **One-to-many relationship with optional participation** | ![Diagram](image1) | $E_1(A_{E11}, A_{E12})$
$E_2(A_{E2}, A_{E22})$
$R(A_{E11}, A_{E21}, A_R)$
Alternatively:
$E_1(A_{E11}, A_{E12}, A^{+}_{E21}, A^{+}_{R})$
$E_2(A_{E2}, A_{E22})$ |
| **Relationship with external identifiers** | ![Diagram](image2) | $E_1(A_{E11}, A_{E12})$
$E_2(A_{E2}, A_{E22})$
$R(A_{E11}, A_{E21}, A_R)$
Alternatively:
$E_1(A_{E11}, A_{E12}, A^{+}_{E21}, A^{+}_{R})$
$E_2(A_{E2}, A_{E22})$ |
The Training Company Revisited

<table>
<thead>
<tr>
<th>Type</th>
<th>Initial schema</th>
<th>Possible translation</th>
</tr>
</thead>
</table>
| One-to-one relationship with optional participation for both entities | \[
\begin{align*}
E_1 & \rightarrow A_{E11} A_{E12} \\
E_2 & \rightarrow A_{E21} A_{E22} \\
R & \rightarrow A_R
\end{align*}
\] | \[
\begin{align*}
E_1(A_{E11}, A_{E12}) \\
E_2(A_{E21}, A_{E22}, A_{E11}, A_R) \\
\text{Alternatively:} \\
E_1(A_{E11}, A_{E12}) \\
E_2(A_{E21}, A_{E22})
\end{align*}
\]
Logical Design Using CASE Tools

- The logical design phase is partially supported by database design tools:
 - the translation to the relational model is carried out by such tools semi-automatically;
 - the restructuring step is difficult to automate and CASE tools provide little or no support for it.
- Most commercial CASE tools will generate automatically SQL code for the creation of the database.
- Some tools allow direct connection with a DBMS and can construct the corresponding database automatically.
- \[\textit{CASE} = \text{Computer-Aided Software Engineering} \]