where

\[a_{ij} = \sum_{k=1}^{\infty} x_k^{i+j-2} \]

and \(x_1, x_2, \ldots, x_m \) are distinct with \(n < m - 1 \). Suppose \(A \) is singular and that \(c \neq 0 \) is such that \(c^T A c = 0 \). Show that the \(n \)-th degree polynomial whose coefficients are the coordinates of \(c \) has more than \(n \) roots, and use this to establish a contradiction.

8.2 Orthogonal Polynomials and Least Squares Approximation

The previous section considered the problem of least squares approximation to fit a collection of data. The other approximation problem mentioned in the introduction concerns the approximation of functions.

Suppose \(f \in C[a, b] \) and that a polynomial \(P_n(x) \) of degree at most \(n \) is required that will minimize the error

\[\int_a^b [f(x) - P_n(x)]^2 \, dx. \]

To determine a least squares approximating polynomial, that is, a polynomial to minimize this expression, let

\[P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = \sum_{k=0}^{n} a_k x^k, \]

and define, as shown in Figure 8.5,

\[E(a_0, a_1, \ldots, a_n) = \int_a^b \left(f(x) - \sum_{k=0}^{n} a_k x^k \right)^2 \, dx. \]
The problem is to find real coefficients a_0, a_1, \ldots, a_n that will minimize E. A necessary condition for the numbers a_0, a_1, \ldots, a_n to minimize E is that

$$\frac{\partial E}{\partial a_j} = 0 \quad \text{for each } j = 0, 1, \ldots, n.$$

Since

$$E = \int_a^b [f(x)]^2 \, dx - 2 \sum_{k=0}^n a_k \int_a^b x^k f(x) \, dx + \int_a^b \left(\sum_{k=0}^n a_k x^k \right)^2 \, dx,$$

we have

$$\frac{\partial E}{\partial a_j} = -2 \int_a^b x^j f(x) \, dx + 2 \sum_{k=0}^n a_k \int_a^b x^{j+k} \, dx.$$

Hence to find $P_n(x)$ the $(n + 1)$ linear normal equations

$$(8.6) \quad \sum_{k=0}^n a_k \int_a^b x^{j+k} \, dx = \int_a^b x^j f(x) \, dx, \quad \text{for each } j = 0, 1, \ldots, n,$$

must be solved for the $(n + 1)$ unknowns a_j. It can be shown that the normal equations always have a unique solution provided $f \in C[a, b]$. (See Exercise 15.)

Example 1

Find the least squares approximating polynomial of degree two for the function $f(x) = \sin \pi x$ on the interval $[0, 1]$. The normal equations for $P_2(x) = a_2 x^2 + a_1 x + a_0$ are

$$a_0 \int_0^1 1 \, dx + a_1 \int_0^1 x \, dx + a_2 \int_0^1 x^2 \, dx = \int_0^1 \sin \pi x \, dx,$$

$$a_0 \int_0^1 x \, dx + a_1 \int_0^1 x^2 \, dx + a_2 \int_0^1 x^3 \, dx = \int_0^1 x \sin \pi x \, dx,$$

$$a_0 \int_0^1 x^2 \, dx + a_1 \int_0^1 x^3 \, dx + a_2 \int_0^1 x^4 \, dx = \int_0^1 x^2 \sin \pi x \, dx.$$

Performing the integration yields

$$a_0 + \frac{1}{2} a_1 + \frac{1}{3} a_2 = \frac{2}{\pi}, \quad \frac{1}{2} a_0 + \frac{1}{3} a_1 + \frac{1}{4} a_2 = \frac{1}{\pi}, \quad \frac{1}{3} a_0 + \frac{1}{4} a_1 + \frac{1}{5} a_2 = \frac{\pi}{4}.$$

These three equations in three unknowns can be solved to obtain

$$a_0 = \frac{12\pi^2 - 120}{\pi^3} = -0.050465 \quad \text{and} \quad a_1 = \frac{-720 - 60\pi^2}{\pi^3} = 4.16,$$
8.2 \textbf{Orthogonal Polynomials and Least Squares Approximation}

Consequently, the least squares polynomial approximation of degree two for \(f(x) = \sin \pi x \) on \([0, 1]\) is \(P_2(x) = -4.12251x^2 + 4.12251x - 0.050465 \). (See Figure 8.6.)

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure8.6.png}
\caption{Graph of \(f(x) = \sin \pi x \) and \(P_2(x) \)}
\end{figure}

Example 1 illustrates the difficulty in obtaining a least squares polynomial approximation. An \((n + 1) \times (n + 1)\) linear system must be solved for the coefficients \(a_0, \ldots, a_n \) of \(P_n(x) \). The coefficients in the linear system are of the form

\[
\int_a^b x^{j+k} dx = \frac{b^{j+k+1} - a^{j+k+1}}{j+k+1},
\]

a linear system that does not have an easily computed numerical solution. The matrix in the linear system is known as a \textbf{Hilbert matrix}. This ill-conditioned matrix is a classic example for demonstrating roundoff error difficulties. (See Exercise 6 of Section 7.4.) Another disadvantage is similar to the situation that occurred when the Lagrange polynomials were first introduced in Section 3.1. The calculations that were performed in obtaining the best \(n \)-th degree polynomial, \(P_n(x) \), do not lessen the amount of work required to obtain \(P_{n+1}(x) \), the polynomial of next higher degree.

A different technique to obtain least squares approximations will now be considered. This turns out to be computationally efficient, and once \(P_n(x) \) is known, it is easy to determine \(P_{n+1}(x) \). To facilitate the discussion, we need some new concepts.

\section{Section 8.1}

The set of functions \(\{\phi_0, \ldots, \phi_n\} \) is said to be \textbf{linearly independent} on \([a, b]\) if, whenever

\[
c_0\phi_0(x) + c_1\phi_1(x) + \cdots + c_n\phi_n(x) = 0, \quad \text{for all } x \in [a, b],
\]

then \(c_0 = c_1 = \cdots = c_n = 0 \).

Otherwise the set of functions is said to be \textbf{linearly dependent}.