1. I claim that there is no integer \(n \geq 0 \) such that \(n^2 \) is even and \(n \) is odd. Fill in the outline below to prove I'm right. Notice that my proof structure requires you to find some contradiction — something that has to be true yet has to be false, which is impossible.

Assume that there is an integer \(n \geq 0 \) such that \(n^2 \) is even and \(n \) is odd.

Since \(n \) is odd, it must be true that \(n = 2k + 1 \), for some integer \(k \).

So \(n^2 = (2k + 1)(2k + 1) \)
\[= 4k^2 + 4k + 1 \]
\[= 2(2k^2 + 2k) + 1 \]

So \(n^2 \) is one greater than an integer multiple of 2, which means it is odd.

But we \(n^2 \) is even, by our assumption.

We have a contradiction, so our assumption cannot be valid.

So there is no integer \(n \geq 0 \) such that \(n^2 \) is even and \(n \) is odd.

2. Fill in the outline below to prove that \(n^2 + n \) is even, for any integer \(n \).

Let \(n \) by any integer.

\(n \) must be either even or odd.

Case 1: Assume \(n \) is even.

Then \(n = 2k \) for some integer \(k \).

So \(n^2 + n = 4k^2 + 2k \)
\[= 2(2k^2 + k) \]

So \(n^2 + n \) is an integer multiple of 2, which means it is even.

Case 2: Assume \(n \) is odd.

Then \(n = 2k + 1 \) for some integer \(k \).

So \(n^2 + n = (2k + 1)^2 + (2k + 1) \)
\[= 4k^2 + 4k + 1 + 2k + 1 \]
\[= 4k^2 + 6k + 2 \]
\[= 2(2k^2 + 3k + 1) \]

So \(n^2 + n \) is an integer multiple of 2, which means it is even.

So \(n^2 + n \) is even (regardless of whether \(n \) is even or odd).

So for any integer \(n \), \(n^2 + n \) is even.
3. Fill in the outline below to prove that for any integer \(n \), if \(n \) is not a multiple of 3, \(n^2 \) must be one greater than a multiple of 3. Note that inside the assumption, you may use any valid reasoning strategy that leads to the desired conclusion: \(n^2 = 3p + 1 \), for some integer \(p \).

Let \(n \) be any integer.

Assume that \(n \) is not a multiple of 3.

So either \(n = 3k + 1 \) or \(n = 3k + 2 \), for some integer \(k \).

Case 1: \(n = 3k + 1 \)

So \(n^2 = (3k + 1)(3k + 1) \)
\[= 9k^2 + 6k + 1 \]
\[= 3(3k^2 + 2k) + 1 \]

So \(n^2 = 3p + 1 \), for some integer \(p \).

Case 2: \(n = 3k + 2 \)

So \(n^2 = (3k + 2)(3k + 2) \)
\[= 9k^2 + 12k + 4 \]
\[= 3(3k^2 + 4k + 1) + 1 \]

So \(n^2 = 3p + 1 \), for some integer \(p \).

Therefore \(n^2 = 3p + 1 \), for some integer \(p \) (regardless of whether \(n = 3k + 1 \) or \(n = 3k + 2 \)).

Therefore \(n^2 \) is one greater than a multiple of 3.

So if \(n \) is not a multiple of 3, \(n^2 \) is one greater than a multiple of 3.

So for any integer \(n \), if \(n \) is not a multiple of 3, \(n^2 \) is one greater than a multiple of 3.