Lecture 7: The Feasibility Study

- What is a feasibility study?
 - What to study and conclude?
- Types of feasibility
 - Technical
 - Economic
 - Schedule
 - Operational
- Quantifying benefits and costs
 - Payback analysis
 - Net Present Value Analysis
 - Return on Investment Analysis
- Comparing alternatives

Content of a feasibility study

- Things to be studied in the feasibility study:
 - The present organizational system
 - Stakeholders, users, policies, functions, objectives, ...
 - Problems with the present system
 - inconsistencies, inadequacies in functionality, performance, ...
 - Goals and other requirements for the new system
 - Which problem(s) need to be solved?
 - What would the stakeholders like to achieve?
 - Constraints
 - including nonfunctional requirements on the system (preliminary pass)
 - Possible alternatives
 - "Sticking with the current system" is always an alternative
 - Different business processes for solving the problems
 - Different levels/types of computerization for the solutions
 - Advantages and disadvantages of the alternatives
- Things to conclude:
 - Feasibility of the project
 - The preferred alternative.

Why a feasibility study?

- Objectives of a feasibility study:
 - To find out if a system development project can be done:
 - ...is it possible?
 - ...is it justified?
 - To suggest possible alternative solutions.
 - To provide management with enough information to know:
 - Whether the project can be done
 - Whether the final product will benefit its intended users
 - What the alternatives are (so that a selection can be made in subsequent phases)
 - Whether there is a preferred alternative
- A feasibility study is a management-oriented activity
 - After a feasibility study, management makes a "go/no-go" decision.
 - Need to examine the problem in the context of broader business strategy

Exploring Feasibility

- The "PIECES" framework
 - Useful for identifying operational problems to be solved, and their urgency
 - Performance
 - Is current throughput and response time adequate?
 - Information
 - Do end users and managers get timely, pertinent, accurate and useful formatted information?
 - Economy
 - Are services provided by the current system cost-effective?
 - Control
 - Are there effective controls to protect against fraud and to guarantee information accuracy and security?
 - Efficiency
 - Does current system make good use of resources: people, time, flow of forms, ...
 - Services
 - Are current services reliable? Are they flexible and expandable?
 - See the course website for a more specific list of PIECES questions
Four Types of feasibility

- **Technical feasibility**
 - Is the project possible with current technology?
 - How much technical risk is there?
 - Does the technology exist at all?
 - Is it available locally?
 - Can it be obtained?
 - Will it be compatible with other systems?

- **Economic feasibility**
 - Is the proposed technology or solution practical?
 - What benefits will result from the system?
 - Both tangible and intangible benefits
 - Quantity there?
 - What are the development and operational costs?
 - Are the benefits worth the costs?

- **Operational feasibility**
 - Is it possible to build a solution in time to be useful?
 - Any constraints on the schedule?
 - Can these constraints be met?

- **Schedule feasibility**
 - Is the project possible with current available technology?
 - How much technical risk is there?
 - Does the technology exist at all?
 - Is it available locally?
 - Can it be obtained?
 - Will it be compatible with other systems?

- **Cost-benefit analysis**
 - Purpose - answer questions such as:
 - Is the project justified (i.e. will benefits outweigh costs)?
 - Can the project be done, given current cost constraints?
 - What is the minimal cost to attain a certain system?
 - Which alternative offers the best return on investment?
 - Examples of things to consider:
 - Hardware/software selection
 - How to convince management to develop the new system
 - Selection among alternative financing arrangements (rent/lease/purchase)
 - Difficulties
 - Benefits and costs can both be intangible, hidden and/or hard to estimate
 - Ranking multi-criteria alternatives

Economic feasibility

- Can the bottom line be quantified yet?
 - Very early in the project:
 - A judgement of whether solving the problem is worthwhile.
 - Once specific requirements and solutions have been identified:
 - ...the costs and benefits of each alternative can be calculated

Benefits and Costs

- **Tangible Benefits**
 - Readily quantified as $ values
 - Examples:
 - Increased sales
 - Cost/error reductions
 - Increased throughput/efficiency
 - Increased margin on sales
 - More effective use of staff time

- **Intangible benefits**
 - Difficult to quantify
 - But very important!
 - Business analysts help estimate $ values
 - Examples:
 - Increased flexibility of operation
 - Better customer relations
 - Improved staff morale

- **Development costs (OTO)**
 - Development and purchasing costs:
 - Cost of development team
 - Consultant fees
 - Software (buy or build?)
 - Facility costs (office, communications, power, ...)

- **Operational costs (on-going)**
 - System maintenance:
 - Hardware (repairs, lease, supplies, ...)
 - Software (licences and contracts),
 - Facilities
 - Personnel:
 - For operating (data entry, backups, ...)
 - For support (user support, hardware and software maintenance, supplies, ...)
 - On-going training costs
Example: costs for small Client-Server project

Personnel:
1. 2 System Analysts (400 hours/ea $35.00/hr) $28,000
2. 4 Programmer/Analysts (250 hours/ea $25.00/hr) $25,000
3. 1 GUI Designer (200 hours/ea $35.00/hr) $7,000
4. 1 Telecommunications Specialist (50 hours/ea $45.00/hr) $2,250
5. 1 System Architect (100 hours/ea $45.00/hr) $4,500
6. 1 Database Specialist (15 hours/ea $40.00/hr) $600
7. 1 System Librarian (250 hours/ea $10.00/hr) $2,500

Expenses:
1. 4 Smalltalk training registration ($3500.00/student) $14,000

New Hardware & Software:
1. 1 Development Server (Pentium Pro class) $18,700
2. 1 Server Software (operating system, misc.) $1,500
3. 1 DBMS server software $7,500
4. 7 DBMS Client software ($950.00 per client) $6,650

Total Development Costs: $118,200

PROJECTED ANNUAL OPERATING COSTS

Personnel:
1. 1 Programmer/Analysts (125 hours/ea $25.00/hr) $3,125
2. 1 System Librarian (20 hours/ea $10.00/hr) $200

Expenses:
1. 1 Maintenance Agreement for Pentium Pro Server $995
2. 1 Maintenance Agreement for Server DBMS software $525
3. Preprinted forms (15,000/year @ .22/form) $3,300

Total Projected Annual Costs: $11,270

Calculating Present Value

- A dollar today is worth more than a dollar tomorrow...
 - Your analysis should be normalized to "current year" dollar values.

- The discount rate
 - Measures opportunity cost:
 - Money invested in this project means money not available for other things
 - Benefits expected in future years are more prone to risk
 - "This number is company- and industry-specific."
 - "What is the average annual return for investments in this industry?"

- Present Value:
 - The "current year" dollar value for costs/benefits n years into the future
 - for a given discount rate i
 - \[\text{Present Value}(n) = \frac{1}{(1 + i)^n} \]
 - E.g. if the discount rate is 12%, then
 - \[\text{Present Value}(1) = \frac{1}{(1 + 0.12)^1} = 0.893 \]
 - \[\text{Present Value}(2) = \frac{1}{(1 + 0.12)^2} = 0.797 \]

Net Present Value

- Measures the total value of the investment
 - with all figures adjusted to present dollar values
 - \[\text{NPV} = \text{Cumulative PV of all benefits} - \text{Cumulative PV of all costs} \]

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash Flow</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$(100,000)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$(4,000)</td>
<td>$(9,590)</td>
</tr>
<tr>
<td>2</td>
<td>$2,050</td>
<td>$(7,597)</td>
</tr>
<tr>
<td>3</td>
<td>$2,050</td>
<td>$(5,191)</td>
</tr>
<tr>
<td>4</td>
<td>$5,000</td>
<td>$(2,191)</td>
</tr>
</tbody>
</table>

Net Costs+Benefits

- Accrued Cost (initial + incremental) \times Accrued Benefit

Net Costs+Benefits

- $100,000
- $(81,243)
- $(67,195)
- $(33,564)
- $(11,580)
Computing the payback period

- Can compute the break-even point:
 - When does lifetime benefits overtake lifetime costs?
 - Determine the fraction of a year when payback actually occurs:
 - \(\text{endYear amount} / \text{beginningYear amount} \)

For our last example, \(51,611 / (70,501 + 51,611) = 0.42 \)
Therefore, the payback period is 3.42 years

Payback Analysis for Client-Server System Alternative

- Cashflow description: Year 1, Year 2, Year 3, Year 4, Year 5, Year 6
- Operating costs: \(-12,000\), \(-11,000\), \(-10,000\), \(-9,000\), \(-8,000\), \(-7,000\)
- Revenue forecast from the software: \(7,000\), \(8,000\), \(9,000\), \(10,000\), \(11,000\), \(12,000\)
- Time adjusted costs (discounted to present): \(12,054\), \(13,146\), \(14,327\), \(15,692\), \(17,235\), \(19,000\)
- Cumulative lifetime net adjusted costs: \(4,063,000\), \(4,154,000\), \(4,246,000\), \(4,340,000\), \(4,435,000\), \(4,532,000\)
- Payback Analysis:
 - Payback point is at year 3.42

Return on Investment (ROI) analysis

- For comparing overall profitability
 - Which alternative is the best investment?
 - ROI measures the ratio of the value of an investment to its cost.

ROI is calculated as follows:

\[\text{ROI} = \frac{\text{Estimated lifetime benefits} - \text{Estimated lifetime costs}}{\text{Estimated lifetime costs}} \]

- For our example:
 - ROI = \((795,440 - 488,692) / 488,692 = 62.76\%\)
 - or \(\text{ROI} = 306,748 / 488,692 = 62.76\%\)

Solution with the highest ROI is the best alternative
- But need to know payback period too to get the full picture
- E.g. A lower ROI with earlier payback may be preferable in some circumstances

Schedule Feasibility

- How long will it take to get the technical expertise?
 - We may have the technology, but that doesn’t mean we have the skills required to properly apply that technology.
 - May need to hire new people
 - Or re-train existing systems staff
 - Whether hiring or training, it will impact the schedule.

Assess the schedule risk:
- Given our technical expertise, are the project deadlines reasonable?
 - If there are specific deadlines, are they mandatory or desirable?
 - If the deadlines are not mandatory, the analyst can propose several alternative schedules.

What are the real constraints on project deadlines?
- If the project overruns, what are the consequences?
 - Deliver a properly functioning information system two months late...
 - or deliver an error-prone, useless information system on time?
 - Missed schedules are bad, but inadequate systems are worse!
Operational Feasibility

How do end-users and managers feel about...
- the problem you identified?
- the alternative solutions you are exploring?

You must evaluate:
- Not just whether a system can work,
- but also whether a system will work.

Any solution might meet with resistance:
- Does management support the project?
- How do the end users feel about their role in the new system?
- Which users or managers may resist (or not use) the system?
 - People tend to resist change.
 - Can this problem be overcome? If so, how?
- How will the working environment of the end users change?
- Can or will end users and management adapt to the change?

Comparing Alternatives

How do we compare alternatives?
- When there are multiple selection criteria?
- When none of the alternatives is superior across the board?

Use a Feasibility Analysis Matrix
- The columns correspond to the candidate solutions;
- The rows correspond to the feasibility criteria;
- The cells contain the feasibility assessment notes for each candidate;
 e.g., for operational feasibility, candidates can be ranked 1, 2, 3, etc.
- A final ranking or score is recorded in the last row.

Other evaluation criteria to include in the matrix
- quality of output
- ease of use
- vendor support
- cost of maintenance
- load on system

Feasibility Study Contents

1. Purpose & scope of the study
 - Objectives (of the study)
 - who commissioned it & who did it,
 - process used for the study,
 - how long did it take, ...
2. Description of present situation
 - organizational setting, current system(s),
 - Related factors and constraints.
3. Problems and requirements
 - What’s wrong with the present situation?
 - What changes are needed?
4. Objectives of the new system
 - Goals and relationships between them
5. Possible alternatives
 - including ‘do nothing’.
6. Criteria for comparison
 - definition of the criteria
7. Analysis of alternatives
 - description of each alternative
 - evaluation with respect to criteria
 - cost/benefit analysis and special implications.
8. Recommendations
 - what is recommended and implications
 - what to do next;
 - e.g., may recommend an interim solution and a permanent solution
9. Appendices
 - to include any supporting material.

Example matrix

<table>
<thead>
<tr>
<th>Candidate 1 Name</th>
<th>Candidate 2 Name</th>
<th>Candidate 3 Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Operational Feasibility</td>
<td>Technical Feasibility</td>
</tr>
<tr>
<td>Schedule Feasibility</td>
<td>Economic Feasibility</td>
<td>Ranking</td>
</tr>
</tbody>
</table>
Feasibility Criteria

<table>
<thead>
<tr>
<th>Operational Feasibility</th>
<th>Technical Feasibility</th>
<th>Economic Feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Feasibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Feasibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost to develop:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximately $350,000.</td>
<td>Approximately $400,000.</td>
<td>Approximately $420,000.</td>
</tr>
<tr>
<td>Payback period (discounted):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximately 4.5 years.</td>
<td>Approximately 3.5 years.</td>
<td>Approximately 3.3 years.</td>
</tr>
<tr>
<td>Net present value:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximately $216,000.</td>
<td>Approximately $306,748.</td>
<td>Approximately $325,500.</td>
</tr>
<tr>
<td>Detailed calculations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>See Attachment A.</td>
<td>See Attachment A.</td>
<td>See Attachment A.</td>
</tr>
<tr>
<td>Schedule Feasibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An assessment of how long the solution will take to design and implement:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 3 months.</td>
<td>9-12 months</td>
<td>9 months</td>
</tr>
<tr>
<td>Ranking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>65.5</td>
<td>92</td>
</tr>
</tbody>
</table>