The following algorithm implements multiplication using addition, doubling and halving. For numbers represented in binary, doubling and halving are fast operations.

// Return mn.
// Precondition: m, n are integers, m ≥ 0.
MULT(m, n)
x := m
y := n
z := 0
// Loop invariant: z = mn - xy
while x ≠ 0
 if x is odd
 z := z + y
 x := x div 2
 y := 2y
// z = mn when done, since x = 0
return z

Let’s show that an iteration of the loop preserves the loop invariant: that if z = mn - xy at the beginning of an iteration then it’s still true at the end of that iteration.

We need to be careful about our use of variables. The values of x, y and z actually vary during an iteration. Put another way: the symbol “x” refers to different values in different places. This is not how we’ve been using variables in our reasoning.

For example, in ∀x ∈ D, p(x) → q(x) the three “x”’s refer to the same value. Imagine how much more difficult our reasoning would be if p had side-effects and changed the value of x before q used it! Would the contrapositive still be equivalent?! (By the way, this is one reason that good programming should keep the amount of varying variables to a minimum).

We handle this by naming the values before and after the iteration: let x’, y’ and z’ be the values of the variables x, y and z at the start of an iteration, and let x'', y'' and z'' be their values after that iteration.

Now we prove that

\[z' = mn - x'y' \rightarrow z'' = mn - x''y''. \]
Proof:

Suppose \(z' = mn - x'y' \).

Case: \(x' \) is odd.

Then the if body is executed, so \(z'' = z' + y' \).
Since \(x' \) is odd, \(x' \) div 2 = \((x' - 1) / 2\), so \(x'' = (x' - 1) / 2 \).
And \(y'' = 2y'' \).

So

\[
\begin{align*}
mn - x''y'' &= mn - ((x' - 1) / 2) \times 2y' \\
&= mn - (x' - 1) y'
&= mn - x'y' + y'
&= z' + y'
&= z''.
\end{align*}
\]

Case: \(x' \) is even.

[Left as an exercise: easier than the first case]

Since \(x' \) is odd or \(x' \) is even, in all cases \(z'' = mn - x''y'' \).
Therefore \(z' = mn - x'y' \rightarrow z'' = mn - x''y'' \).