CSC 378 Lecture 5

June 14, 2001

For another reference, see chapter 12 of the textbook (CLR).

1 Direct Addressing

Recall that a dictionary is an ADT that supports the following operations on a set of elements with well-ordered key-values: INSERT, DELETE, SEARCH. If we know the key-values are integers from 1 to K, for instance, then there is a simple and fast way to represent a dictionary: just allocate an array of size K and store an element with key i in the ith cell of the array.

This data structure is called direct addressing and supports all three of the important operations in worst-case time $\Theta(1)$. There is a major problem with direct addressing, though. If the key-values are not bounded by a reasonable number, the array will be huge! Remember that the amount of space that a program requires is another measure of its complexity. Space, like time, is often a limited resource in computing.

Example 1: A good application of direct addressing is the problem of reading a textfile and keeping track of the frequencies of each letter (one might need to do this for a compression algorithm such as Huffman coding). There are only 256 ASCII characters, so we could use an array of 256 cells, where the ith cell will hold the count of the number of occurrences of the ith ASCII character in our textfile.

Example 2: A bad application of direct addressing is the problem of reading a datafile (essentially a list of 32-bit integers) and keeping track of the frequencies of each number. The array would have to be of size 2^{32}, which is pretty big!

2 Hashing

A good observation about example 2 or about any situation where the range of key-values is large, is that a lot of these might not occur very much, or maybe even not at all. If this is the case, then we are wasting space by allocating an array with a cell for every single key-value.

Instead, we can build a hash table: if the key-values of our elements come from a universe (or set) U, we can allocate a table (or an array) of size m (where $m < |U|$), and use a function $h : U \rightarrow \{0, \ldots, m-1\}$ to decide where to store a given element (that is, an element with key-value x gets stored in position $h(x)$ of the hash table). The function h is called a hash function.

2.1 Chaining

If $m < |U|$, then there must be $k_1, k_2 \in U$ such that $k_1 \neq k_2$ and yet $h(k_1) = h(k_2)$. This is called a collision; there are several ways to resolve it. One is to store a linked list at each entry in the hash
table, so that an element with key k_1 and an element with key k_2 can both be stored at position $h(k_1) = h(k_2)$ (see figure). This is called chaining.

Assuming we an compute h in constant time, then the **INSERT** operation will take time $\Theta(1)$, since, given an element a, we just compute $i = h(key(a))$ and insert a at the head of the linked list in position i of the hash table. **DELETE** also takes $\Theta(1)$ if the list is doubly-linked (given a pointer to the element that should be deleted).

The complexity of **SEARCH(S,k)** is a little more complicated. If $|U| > m(n - 1)$, then any given hash function will put at least n key-values in some entry of the hash table. So, the **worst case** is when every entry of the table has no elements except for one entry which has n elements and we have to search to the end of that list to find k (see figure). This takes time $\Theta(n)$ (not so good).

For the **average case**, the sample space is U (more precisely, the set of elements that have key-values from U). Whatever the probability distribution on U, we assume that our hash function h obeys a property called **simple uniform hashing**. This means that if A_i is the event (subset of U) \{ $k \in U \mid h(k) = i$ \}, then

$$
\Pr(A_i) = \sum_{k \in A_i} \Pr(k) = 1/m.
$$

In other words, each entry in the hash table is used just as much as any other. So the expected number of elements in any entry is n/m. We will call this the load factor, denoted by a.

To calculate the average-case running time, let T be a random variable which counts the number of elements checked when searching for key k. Let L_i be the length of the list at entry i in the hash
table. Then the average-case running time is:

\[E(T) = \sum_{k \in U} \Pr(k)T(k) \]
\[= \sum_{i=0}^{m-1} \sum_{k \in A_i} \Pr(k)T(k) \]
\[\leq \sum_{i=0}^{m-1} \Pr(A_i)L_i \]
\[= 1/m \sum_{i=0}^{m-1} L_i \]
\[= n/m \]
\[= a \]

So the average-case running time of \texttt{SEARCH} under simple uniform hashing with chaining is \(O(a) \). We generally consider \(a \) to be constant since we can make \(m \) bigger when we know that \(n \) will be large. When this is the case, \texttt{SEARCH} takes time \(O(1) \) on average.