CSC 263 Homework 4

Due August 10, 2004

1. (15 points) Let $G = (V, E)$ be an undirected graph that is connected. Assume that we have run BFS on G starting at some vertex s.

 (a) Show that the following set of edges constitutes a spanning tree of G:

 $$T = \{ \{v, p[v]\} \mid v \in V \}.$$

 (b) Let each edge $e = \{u, v\} \in E$ have the following weight:

 $$w(e) = d[u] + d[v].$$

 Is T a minimum cost spanning tree for G, w? Prove it.

2. (15 points)

 (a) Describe how to implement DECREASE-PRIORITY (v, k) on a heap.

 (b) Prove that any heap on n nodes has at most $\lceil n/2^h + 1 \rceil$ nodes of height h.

3. (20 points)

 (a) Give the pseudocode for an algorithm that takes an array A of n natural numbers and outputs them in (increasing) sorted order using the priority queue ADT.

 (b) What is the best worst-case running time (in O-notation) you can achieve for this algorithm if you implement the priority queue using a heap? Explain.

 (c) Give the pseudocode for an algorithm that takes an array A of n natural numbers and outputs the median number using the priority queue ADT.

 (d) What is the best worst-case running time (in O-notation) you can achieve for this algorithm if you implement the priority queue using a heap? Explain.

 (e) Assume you have a function $\text{FindMedian}(A, n)$ that implements part (c) in the amount of time in part (d). Using this function as a black box (that is, just calling it without modifying its content) show how to improve the worst-case running time of Quicksort. How fast does it become (in O-notation)? Explain.