Assignment 1  
ECE358 Winter 2012  
Due Date: March 13th, Noon  
Place: SF Basement, Box 14

For all of the problems below, you will only get full credit for algorithms that are efficient – i.e. optimal, or close to optimal. For all of the algorithms below, you are expected to:

• Give an efficient algorithm.
• Argue (briefly) that your algorithm is correct.
• Give a simple analysis of its running time.

**Problem 1**
Consider the String Generation problem defined as follows. Input: A list of “generator” strings \{s_1, s_2, \ldots, s_k\} and a “target” string t over some fixed alphabet \Sigma.

Output: A list of indices \(i_1, i_2, \ldots, i_r\) such that \(t = s_{i_1} \cdot s_{i_2} \cdots s_{i_r}\), if such a list exists; the special value \(\emptyset\) otherwise. For example, for input \(s_1 = \text{bab}, s_2 = \text{aba}, s_3 = \text{babb}, s_4 = \text{a}\), \(t = \text{babbaba}\) the output could be \(i_1 = 1, i_2 = 1, i_3 = 4\) or \(i_1 = 3, i_2 = 2\) because \(t\) can be written as \(t = s_1 \cdot s_2 \cdot s_4\) but also as \(t = s_3 \cdot s_2\); for input \(s_1 = \text{bab}, s_2 = \text{aba}, s_3 = \text{babb}, s_4 = \text{a}\), \(t = \text{aab}\) the output would be \(\emptyset\) because \(t\) cannot be written as a combination of the s’s. By convention, we say that \(t = \emptyset\) (the empty string) can be written as a combination of 0 generator strings.

Design a Dynamic Programming algorithm to solve the String Generation problem

In your answer, please use the following notation:

• \(|s|\) represents the length of string s (by convention, \(|\emptyset| = 0\))
• \(t_i\) represents the \(i^{th}\) symbol of t and \(t_{i..j}\) represents the substring of t from the \(i^{th}\) symbol to the \(j^{th}\) symbol, inclusively (indices start at 1, i.e., \(t = t_{1..|t|}\))

**Problem 2**
DPV 4.21

**Problem 3**
DPV 6.20
Problem 4
In HW1 we considered the problem of making change for n cents using as few coins as possible from the set \{c_1, c_2, \ldots, c_k\}.

A. Design a Dynamic programming algorithm to compute the smallest number of coins that allow you to make change for n. If it is impossible to make change using the given coin set, you should report this. The running time should be $O(nk)$.

B. Design an algorithm that will decide if it is possible to make change using at most one coin of each denomination. The algorithm should run in $O(nk^2)$ time.

C. Are these algorithms polynomial time? Briefly explain why or why not. State any assumptions.

Problem 5
Consider the all-pairs shortest path algorithm described on pp. 172-173 of DPV. The algorithm, as given requires $O(|V|^3)$ space and memory, and only saves the length of the shortest path between two nodes, not the path itself. In class we discussed how to reduce the memory requirement to $O(|V|^2)$ for computing the length, but again, not storing the actual paths.

Design an $O(|V|^3)$ time and $O(|V|^2)$ memory algorithm that can reconstruct the actual paths. More precisely, you algorithm should build a table, at most size $O(|V|^2)$, from which it should be possible, in linear time, to reconstruct the actual shortest path between any two nodes (not just the length of this path).