CSC 373 Lecture 18

- Some simple reductions
- NP sets and NP completeness
- Reducing search/optimization to corresponding decisions problems
- Building a tree of NP complete problems
Some relatively easy transformations

• Vertex cover transforms to independent set and conversely, independent set transforms to vertex cover. Independent set and clique transform to each other.

• Note: these are NP complete problems and all such problems can theoretically be reduced to each other. But here the reduction in both directions is immediate.

• SAT to 3-SAT (Clearly here the converse holds.)

• 3-SAT to IS (independent set). Why noteworthy?
NP Sets (decision problems)

• What do these sets (say SAT and CLIQUE) have in common? They both can be easily “verified” by a succinct “certificate”.

• For example, suppose I am “all powerful” (or perhaps just as good, suppose I am just a very lucky at guessing).

• Then if I want to prove that F is in SAT, I show you a satisfying truth assignment (call it \(\tau \)) and then you (or an efficient algorithm) can easily verify that \(F \) is satisfied by \(\tau \). \(\tau \) is the succinct certificate.

• Similarly if I want to convince you that \((G,k)\) is in CLIQUE, then I show you a subset of \(k \) nodes \(V' \) and you verify that \(V' \) is a clique in \(G \).
The definition of an NP set

- Let L be a set (i.e. a subset of strings over some finite alphabet). Then L is in \textbf{NP} if there exists a polynomial time predicate (i.e. 0-1 valued function) $R(x,y)$ and polynomial q such that $x \in L$ iff there exists a y: $|y| \leq q(|x|)$ and $R(x,y)$ is true (i.e. $R(x,y) = 1$). That is, every x in L has a succinct certificate y (where the poly q defines “succinct”) that allows for efficiently verifying that $x \in L$ (where poly time R defines efficient verification).
All the problems studied to date have corresponding NP decision problems

• (Job) Interval scheduling decision problem: For a set S of weighted intervals (resp. jobs for the JISP problem), and bound W, does there exist a subset of intervals (jobs) with profit at least S.

• The knapsack decision problem: For a set of items, size bound W and value bound V, does there exist a subset of items with total size at most W and value at least V.

• For sets in polynomial time (i.e. in P) no certificate is needed. Clearly P is a subset of NP.
NP Complete Sets

• Let \leq be a poly time reducibility (or poly time transformation). We will say that a set (decision problem) L is **NP hard** if for every L' in NP, $L' \leq L$. Hence if L is NP hard but is also in P, then $P = NP$.

• L is **NP complete** if L is in NP and NP hard. Hence $P = NP$ iff there is any NP complete problem that is in P.

• Why do we religiously believe that P is not equal to NP? Because there are thousands of NP complete problems that have been thought about independently before and after the concept was defined and no one has been able to find a polynomial time algorithm for them. Moreover, the best algorithms for these natural NP problems are all exponential time (i.e. c^n for some $c > 1$).
The tree of NP completeness

• How do we show that a set L is NP complete? Usually (but not always) it is relatively easy to show that L is in NP. Usually it is the NP hardness that can sometime be quite non trivial to show. In fact, one might wonder how we show that any set L is NP hard since it requires showing something about every L' in NP. But suppose we do have one set L which is NP complete. Then if we find another L^* in NP such that $L \leq L^*$ then L^* is also NP complete by the transitivity of \leq. So starting with some NP complete L we can start to evolve a tree of NP complete problems.