1. Let $\text{ONE-THIRD-SUM} = \{b_1, \ldots, b_n | \exists S \subseteq \{1, \ldots, n\} : \sum_{i \in S} b_i = (\sum_{1 \leq j \leq n} b_j)/3\}$. Show that $\text{SUBSET-SUM} \leq_p \text{ONE-THIRD-SUM}$ by considering the transformation f defined by $(a_1, \ldots, a_m; t) \mapsto (a_1, \ldots, a_m, A, A + 3t)$ where $A = \sum_{1 \leq i \leq m} a_i$. We assume that all input parameters are positive integers. You must carefully show that $x \in \text{SUBSET-SUM}$ iff $f(x) \in \text{ONE-THIRD-SUM}$.
2. Let \(\text{FINITE} = \{< M > | \mathcal{L}(M) \text{ is a finite set}\} \). Show that neither \(\text{FINITE} \) nor its complement \(\overline{\text{FINITE}} \) is semi-decidable.

SOLUTION: This is very similar to the proof that \(\text{TOTAL} \) and its complement are not semi-decidable.

We first show \(\text{HB} \leq \text{FINITE} \). To simplify matters assume \(x = < M > \) for some \(M \). We show how to define \(M' \) such that \(M \) halts on blank tape if \(< M' > \in \text{FINITE} \). Then the transformation is the mapping \(f(< M >) = < M' > \). For any input \(W \), \(M' \) simulates \(M \) on blank tape. If \(M \) ever halts then \(M' \) accepts \(w \) and hence \(M' \) will accept infinitely many strings and hence \(< M' > \in \text{FINITE} \). If \(M \) does not halt on blank then \(M' \) accepts no strings and the empty set is certainly finite.

Now we show \(\text{HB} \leq \text{FINITE} \). Again, we simplify matters assume \(x = < M > \) for some \(M \). We now show how to define \(M'' \) such that \(M \) halts on blank tape iff \(< M'' > \in \text{FINITE} \). \(M'' \) on input \(w \) will simulate \(M \) on blank tape for \(|w| \) steps. If \(M \) on blank tape does not halt within \(|w| \) steps then \(M'' \) accepts \(w \) and otherwise it does not accept \(w \). Then it is easy to see that \(M'' \) will accept finitely many strings iff and \(M \) halts on blank tape since once \(w \) is long enough (longer than the number of steps needed for \(M \) to halt on blank tape), \(M'' \) will reject \(w \).