1. As in the problem set, consider the unit profit job scheduling problem where the i^{th} job has release time r_i, processing time p_i and deadline d_i. All parameters are positive integers. A schedule is a mapping $\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, max_d d_j\} \cup \{\infty\}$. That is, σ schedules job j to start at time $\sigma(j)$ if $\sigma(j) \neq \infty$ and does not schedule jobs with $\sigma(j) = \infty$. A feasible schedule σ satisfies the properties:
 1) $\sigma(j) \neq \infty$ and $\sigma(k) \neq \infty$ and $j \neq k$ implies $[\sigma(j), \sigma(j) + p_j] \cap [\sigma(k), \sigma(k) + p_k] = \emptyset$
 2) $\sigma(j) \neq \infty$ implies $r_j \leq \sigma(j)$
 3) $\sigma(j) \neq \infty$ implies $\sigma(j) + p_j \leq d_j$.

Define the SPT greedy algorithm for job scheduling on one processor as follows: The algorithm first sorts the jobs so that $p_1 \leq p_2 \ldots \leq p_n$. In each iteration i, if the algorithm can schedule the i^{th} job, it schedules it as early as possible consistent with jobs already scheduled.

The objective is to maximize the number of jobs scheduled in a feasible schedule σ.

(a) Show that there is some input I for which $|OPT(I)| \geq 3 \cdot |SPT(I)|$ where $|A(I)|$ denotes the number of jobs scheduled by A. [10 points]

Let $J_1 = (3, 2, 9), J_2 = (1, 3, 4)$ and $J_3 = (4, 3, 7)$. That is, jobs 2 and 3 are intervals each having 3 units of processing time while job 1 has 2 units of processing time and can be scheduled anytime starting at time 3 and ending by time 9. SPT will schedule J_1 in the slot $[3, 5]$ thus preventing J_2 and J_3 from being scheduled. But an OPT schedule will schedule all three jobs with J_1 scheduled in slot $[7, 9]$.
(b) Show that SPT always achieves a 3-approximation of the optimal; that is, $orall I |OPT(I)| \leq 3 \cdot |SPT(I)|$.

Hint: Construct a 2-1 mapping $h : OPT(I) - SPT(I) \rightarrow SPT(I)$ where $OPT(I) - SPT(I) = \{j | j \in OPT(I) \text{ and } j \notin SPT(I)\}$. [15 points]

The mapping h is defined as follows: a job $j \in OPT(I) - SPT(I)$ gets mapped to the leftmost job in $SPT(I)$ with which it intersects. We need to show

- h is defined for every $j \in OPT(I) - SPT(I)$. This follows since j must intersect some job in $SPT(I)$ or else it would have been scheduled by SPT.
- h is a 2-1 mapping; that is, for every $k \in SPT(I)$ there are at most two jobs i and $j \in OPT(I) - SPT(I)$ such that $h(i) = h(j) = k$. Suppose i and j are both mapped to k. Since i and j are not scheduled by SPT, and intersect $k \in SPT(I)$, it must be that $p_i \geq p_k$ and $p_j \geq p_k$ by the SPT rule. This implies that one of these jobs, say i, must overlap the scheduling of job k and start to the left of where k starts while the other job j must intersect k and finish to the right of where k finishes. This insures that any other job in $OPT(I) - SPT(I)$ must start after k starts and finish before k finishes and hence have a shorter processing time than k which means that it would have been scheduled before k by SPT.

2. Consider (as in the problem set) the following multiple copy knapsack problem. Given a set of \(n \) items with positive weights \(w_1, \ldots, w_n \) and positive integer values or gains \(g_1, \ldots, g_n \) and a knapsack of capacity \(C \), construct a sequence \(S \) of non-negative integer multiplicities \(m_1, \ldots, m_n \) such that

- \(\sum_{1 \leq i \leq n} m_i \cdot w_i \leq C \) i.e. \(S \) is a feasible sequence
- The sequence \(S \) produces the maximum value \(g(S) \) for all feasible sequences where \(g(S) = \sum_{1 \leq i \leq n} m_i \cdot g_i \).

Outline a dynamic programming solution with complexity \(O(nG) \) for this problem where \(G \) is some known upper bound on the maximum profit achieveable by some feasible sequence \(S \). That is, you are told that \(S = < m_1, \ldots, m_n > \) and \(\sum_{1 \leq i \leq n} m_i \cdot w_i \leq C \) implies \(g(S) \leq G \).

(a) Define an appropriate semantic array \(A \) and show how to compute the optimal value from \(A \). [10 points]

Define \(A(g) = \min \{ w \mid \text{there is a sequence } S = < m_1, \ldots, m_n > \text{ with } \sum_{1 \leq i \leq n} m_i \cdot w_i \leq w \text{ and } g(S) \geq g \} \).

Then the optimal value is \(\max \{ g \mid A(g) \leq C \} \).

(b) Give an equivalent recursively defined computational array \(\tilde{A} \). [10 points]

\[
\tilde{A}(0) = 0 \\
\tilde{A}(g) = \min_i \{ \tilde{A}(g - \min \{ g, g_i \}) + w_i \} \text{ for } g > 0
\]

(c) Intuitively justify why \(A = \tilde{A} \) and briefly say how you would prove this equality. [5 points]

Intuitively, the recurrence is trying to find the last item that has been put into an optimal knapsack with value at least \(g \). If that is item \(i \), then it will require weight \(w_i \) for that item and we will need at least \(g - g_i \) profit amongst the remaining items. If \(g_i \geq g \), then we can obtain profit at least \(g \) just from item \(i \).

We would prove \(A(g) = \tilde{A}(g) \) for \(0 \leq g \leq G \) by induction on \(g \) with the base case being \(g = 0 \).