CSC2420: Lecture 8

• Today's agenda:
 • Comment on randomness and complexity theory
 • Summary of last lecture discussion of recent work on combinatorial algorithms for MaxSat.
 • Submodular Max sat
 • Random walks and k-SAT
The why of randomization

• As mentioned last class, there are some problem settings (simulation, cryptography, sublinear time algorithms) where randomization is necessary. Beyond that:
• We have been using randomization to improve the approximation ratio (so far just for Max-Sat).
• We have also seen the conceptual power of randomization even when a given alg can be derandomized.
• In complexity theory the big question is how much can randomization lower the complexity of a problem. For decision problems, there are three polynomial time randomized classes ZPP (zero-sided), RP (1-sided) and BPP (2-sided) error. The big question (and conjecture?) is BPP = P?
Some problems not known to be poly time but known to be in randomized poly time (see Wigderson slides).

- The symbolic determinant problem.
- Solving a quadratic equation in $\mathbb{Z}_p[x]$ for a large prime p.
- Given n, find a prime in $[2^n, 2^{n+1}]$.
- Estimating volume of a convex body given by a set of linear inequalities.
What are the limits to such combinatorial algorithms for MaxSat?

• Apparent contradictions: The Slack algorithm is a randomized online algorithm achieving approx $\frac{3}{4}$.

• Azar, Gamzu, Roth (ESA 11) show that no randomized algorithm can obtain an approx ratio better than $2/3$.

• As observed in Azar et al, the negative result is for the weakest (priority) input model and the Slack algorithm is implemented in the middle model.

• Poloczek (ESA 11) shows that no deterministic priority algorithm (in the middle model) can achieve the randomized $\frac{3}{4}$ ratio. In a strong sense this show that (unlike the naïve randomized algorithm), the Slack algorithm cannot be derandomized.
Locals search for MaxSat

• I am not sure what is known about local search algorithms for (arbitrary) MaxSat; i.e. can a local search algorithm can achieve the bounds achieved by Johnson’s algorithm and recent extensions.

• For exact Max-k-Sat, Khanna, Motwani, Sudan and U. Vazirani (1994) consider the oblivious Hamming distance local search algorithm for weighted exact Max-k-Sat. Namely, given a current truth assignment tau, search a Hamming neighbourhood (of distance say r) for an improved solution. They show that for $r = 1$, the algorithm achieves a $k/(k+1)$ fraction of the total weight and that this is the locality gap even when $r = o(n)$; in particular this is $2/3$ for exact Max-2-Sat whereas we can achieve $3/4$ for the more general MaxSat by the randomized Slack algorithm.

• However, they also show that a non-oblivious Hamming distance 1 algorithm achieves the Johnson $(2^k-1)/2^k$ bound for exact Max-k-Sat. What is the best deterministic or randomized local search algorithm (combinatorial algorithm) for MaxSat?
Submodular MaxSat

• The main result in Azar et al is that the monotone submodular MaxSat problem can be approximated with ratio 2/3 (in the weakest model).

• Submodular MaxSat is equivalent to maximizing a submodular function subject to a binary partition matroid. In the one direction we need, think of the universe U as being $\{a_1, b_1, \ldots, a_n, b_n\}$ where each pair $\{a_i, b_i\}$ is a block of the partition and a_i (resp. b_i) corresponds to setting x_i true (resp. false). We then think of the submodular function g (on sets of clauses) as a function f on the subset S of U chosen (subject to choosing at most one element from each pair). Namely, any such subset S determines a set $t(S)$ of satisfied clauses and then $f = g(t(S))$. It is easy to see that g monotone submodular implies f is also.
The Submodular MaxSat algorithm

• The algorithm is a randomized version of the natural (local) greedy algorithm for maximizing a submodular function subject to a partition matroid.

• Namely, let $f_S(a) = f(S+a) - f(a)$ denote the marginal gain when adding a to S. Since we will only be adding one of a_t and b_t, we can choose which to use proportional to their gain.

• Since this will turn out to be an online algorithm, we won’t care about how ordering of the pairs $\{(a_t, b_t)\}$
The algorithm

- Algorithm 1. Proportional Select
- Input: A monotone submodular function \(f : 2^X \rightarrow \mathbb{R}_+ \) and a binary partition matroid \(M \)
- Output: A set \(S \subseteq X \) approximating the maximum of \(f \) under constraint \(M \)
- 1: \(S_0 \leftarrow \emptyset \)
- 2: for \(t \leftarrow 1 \) to \(n \) do
- 3: \(w_t \leftarrow f_{S_{t-1}}(a_t) + f_{S_{t-1}}(b_t) \)
- 4: \(p_{at} \leftarrow f_{S_{t-1}}(a_t)/w_t \)
- 5: \(p_{bt} \leftarrow f_{S_{t-1}}(b_t)/w_t \)
- 6: Pick \(s_t \) at random from \(\{a_t, b_t\} \) with respective probabilities \((p_{at}, p_{bt}) \)
- 7: \(S_t \leftarrow S_{t-1} \cup \{s_t\} \)
- 8: end for
Approx bound for Proportional Select

• Let S be the algorithm solution. Then $E[f(s)] \geq (2/3) \text{OPT}$. (For the value oracle input model, there is an offline information-theoretic inapproximation of $\frac{3}{4}$ due to Mirrokni, Schapira and Vondrak.)

• Sketch of proof: We consider the best extension possible OPT_i of the solution S_i at end of the ith iteration. The goal is to show that (in expectation) the loss L_i in the value of OPT_i is bounded by half of the gain in $f(S_{i-1})$; that is, we have the lemma: $E[L_i] = \text{OPT}_{i-1} - \text{OPT}_i \leq (1/2) E[f(S_{i-1}) + s_i] - f(S_{i-1})]$.
Proof of appox ratio continued

• Sum _i L _i = OPT _0 – OPT _n = OPT – f(S) which combined with the lemma yields the desired result.

• The lemma is proven using the following:
 – If the algorithm chooses the s _i (say b _i) not in OPT _{i-1}, then using submodularity:
 OPT _{i-1} – OPT _i \leq f(S _i) – f(S _{i-1} + a _i)
 – Combing this with the probabilistic choice of s _i shows:
 E[L _i | S _{i-1}] \leq m(i-1,a _i)m(i,b _i)/m(i-1,a _i) + m(i-1,b _i)
 where m(i-1,s _i) is the marginal gain adding s _i to S _{i-1}
 – The prob. choice of s _i also shows E[m(i-1,s _i) | S _{i-1}] = (m(i-1,a _i))^2 + (m(i-1,b _i))^2/m(i-1,a _i) + m(i-1,b _i)
 – The expected los to gain ratio is then the ratio which is
 \leq m(i-1,a _i)m(i,b _i)/ (m(i-1,a _i))^2 + (m(i-1,b _i))^2 \leq 1/2
Random walk algorithm for 2-Sat

- As mentioned before, there is a deterministic polynomial time algorithm for 2-Sat. (The idea is to view each clause \((x \lor y)\) in \(F\) as two directed edges \((x',y)\) and \((y',x)\) in a graph \(G_F\) whose nodes are all possible literals \(x\) and \(x'\). Then the formula is satisfiable iff there does not exist a variable \(x\) such that there are paths \(x\) to \(x'\) and \(x'\) to \(x\) in \(G_F\).

- There is also a randomized algorithm (Papadimitriou 1991) based on a random walk on the line graph with nodes \(0,1,...,n\). We view being on node \(i\) as being Hamming distance \(i\) from some fixed satisfying assignment \(\tau\) if such an assignment exists (i.e. \(F\) is satisfiable).

- The expected time to hit node 0 is at most \(n^2\).
Hitting times, commute times and cover times for uniform random walks

• Here is a quick summary of what we need to know about Markov chains and random walks.

• Finite Markov Chain $M = (X,P)$ Concepts
 – $P_{ij} = \Pr[i \rightarrow j] = \Pr[X_{t+1} = j | X_t = i]$ indep of history
 – h_{ij} = expected hitting time to reach state j from i.
 – c_{ij} = expected commute time $= h_{ij} + h_{ji}$
 – $q^t = (q^t_1, ..., q^t_n)$ is state distribution at time t
 – q is a stationary distribution if $qP = q$
 – Theorem: Any finite, irreducible, aperiodic Markov chain M has 1) a unique stationary distribution q and 2) for all states X_i, $h_{ii} = 1/q_i$ (i.e. finite)
Uniform random walk as Markov chain (Aleliunas, Karp, Lipton, Lovasz, Rackoff)

• Let $G = (V,E)$ be connected undirected graph; define $P_{\{uv\}} = 1/d_u$ if (u,v) in E; o.w. 0 ($d_u = \text{deg}(u)$)

• If G is not bipartite then it satisfies conditions for unique stationary distribution. (Bipartite case can be dealt with by considering 2 step process.)

• Let $C_u(G)$ denote cover time = expected time to have visited all nodes starting at u and let $C(G)$ be $\max_u C_u(G)$ be the worst case cover time.

• $c_{\{u,v\}} \leq 2m$ and $C(G) \leq 2m(n-1)$; $n = |V|, m = |E|$
Schoening’s k-Sat algorithm

• In 1999, Schoening gave a very simple (and that is a good thing) randomized local search algorithm for k-Sat that provides a substantial improvement in the running time (over say the naïve 2^n exhaustive search) and this is still almost the fastest algorithm known. This algorithm was recently “fully derandomized” in 2011 by Moser and Scheder. The algorithm is similar to the 2-Sat algorithm with the difference being that one does not allow the random walk to go on too long before trying another random starting assignment. The result is a one-sided error alg running in time $O^*[\left(2(1-/1k)\right)^n]$ e.g. $O^*[\left(4/3\right)^n]$ for 3-SAT. O^* ignores poly(n) factors
The k-Sat algorithm ($k > 2$)

• Choose a random assignment tau
 Repeat 3n times \% $n =$ number of variables
 If tau satisfies F then stop and accept
 Else Let C be an arbitrary unsatisfied clause
 Randomly pick and flip one of the literals in C

• Claim: If F is satisfiable then the above succeeds
 with probability p at least $[(1/2) (k/k-1)]^n$. It
 follows that if we repeat the above process for t
 trials, then the probability that we fail to find a
 satisfying assignment is at most $(1-p)^t < e^{\{-pt\}}$.
 Setting $t = c/p$, this a very small failure prob.
Estimating success probability p

- Let τ^* be some satisfying assignment and like the 2-Sat algorithm, the analysis is about finding τ^* and it can be that the algorithm succeeds well before that in finding a different satisfying assignment. The initial random assignment picks an assignment that is Hamming distance away from τ^* with probability \((n \text{ choose } j) 2^{-n}\).

- Now conditioned on the random assignment being distance j, a simple argument shows that the probability q_j of reaching τ^* is at least \((1/k)^j\). A little more care is needed to show that p is at least \([1/(k-1)]^j\).
Finishing the analysis

• The more careful analysis considers the possibility that in reaching τ^* the random walk takes i steps in the wrong direction so then needs $j+2i$ steps in the right direction and we consider this possibility for all $i \leq j$ (and hence the reason for bounding the walk to $3n$ steps). It can then be show that q_{j} is at least $\left[1/(k-1)\right]^j$.

• Putting this together with the probability that the starting assignment is j away from τ^* yields the desired probability.