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Abstract

We consider a variation of the classical problem of finding prices which guarantee equi-
librium in linear markets consisting of divisible goods and agents with money. Specifically,
we consider on-line algorithms for this problem in which goods are considered on-line, and
each good is assigned an irrevocable price. Since exact equilibria will not be found in
such a setting, we appeal to the concept of approximate equilibrium defined in previous
studies of the problem, to characterize the quality of our solutions. We consider both
deterministic and randomized algorithms for finding approximate equilibria. We prove a
tight bound on the performance of deterministic algorithms, and show that under cer-
tain natural conditions, randomized algorithms lead to market prices which are closer to
equilibrium.

1 Introduction

The existence of equilibria in markets is a central problem in mathematical economics, and
has attracted enormous interest since the pioneering work of Walras [10] and Fisher [3]. The
problem is the following. Consider a market which consists of buyers, each with a certain
amount of money, and divisible goods of a certain amount each. The desirability of goods to
each of the buyers is expressed by the utility functions of the buyers. The goal is to assign
prices to goods such that the buyers can buy their individually optimal bundle of goods in
terms of the utility they get and there is no surplus of goods, i.e, the market clears. The
theorem of Arrow and Debreu [1] established the existence of equilibrium prices in a very
general setting. The proof is nonconstructive, yet recently polynomial-time algorithms for
the case of linear utility functions have been presented. These algorithms assume complete
knowledge of the entire market meaning that the utility functions of all goods are known
beforehand. This might be the case in a static market, but it does not reflect the situation in
a dynamic market, in which little, if anything, is known about goods that will appear in the
market in the future.

This work focuses on the performance of on-line algorithms for computing or predicting
equilibrium prices. The online algorithm assigns prices incrementally trying to approximate
the actual equilibrium prices that correspond to the actual offline market problem. Prices are
assigned without complete knowledge of the market and cannot change. In a more general
setting we can formulate the restriction on re-assigning prices by associating a change in a
previously assigned price of a good with a cost which measures how undesirable such a change
would be. The online setting addressed in this work captures the special case where this cost
is infinite and therefore any price assignment is irrevocable. In other words, the assigned price
is advertised and must be honoured as advertised even after other products appear on the
∗This work was done while the author was at the Deprtment of Computer Science, the University of Toronto.
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market. Also, when a good appears, it comes with a survey that specifies how much various
customers desire it, i.e. with a complete apecification of its utilities to all agents.

As we mentioned, in our setting the algorithm assigns prices trying to approximate the
price equilibrium that we would get in an offline setting. It quickly becomes obvious that in
the setting described above, the exact equilibrium are not generally computable. Hence we
appeal to the concept of an approximate equilibrium as introduced by Deng, Papadimitriou
and Safra [5] (precise definitions are given in Section 2). Prices set by online algorithms
will not necessarily correspond to an exact market equilibrium, but we may still be looking
for the best possible approximation, which is an approximate equilibrium. The two main
parameters of an approximate equilibrium are market clearence and optimizing the pay-off
for each agent (personal optimal bundle). We distinguish between two types of approximate
market clearance: we can require that every good is cleared to a certain extent, or we can
require that on average the goods clear. The former definition associates each good with a
distinct seller and is the one adopted in the study of (off-line) equilibria, while the latter
captures a setting in which there is only one seller that is satisfied when goods are cleared on
average.

Our model is quite different from previous auction-type algorithms [2] for market clearence,
based on online matching algorithms. Those models enforce the extra restriction that a price
and an allocation or sale must be done online in an irrevocable way. Our model only requires
that the price is set and advertised, while the allocation of goods, or the sales can be done at
the end when all prices have been set. This gives a characterization of the best approximation
of equilibrium prices in a different market setting, and our results indicate that it is much
more difficult to get good equilibrium approximations.

Previous Work. The Arrow-Debreu theorem [1] states that in general divisible markets,
equilibrium prices always exist. The theorem applies in the general setting in which each agent
(buyer) has an initial endowment of goods, which she can then trade to acquire other goods,
but it also applies to markets in which the agents have money with which they buy goods
(and hence there is a clear distinction between sellers and buyers). Such markets are called
Fisher markets [3, 6], and they are focus of this paper.

Computing market equilibria has been a long-standing problem in economics [9] but it was
only recently that it was approached from the point of view of algorithmic solutions with strict
guarantees. Deng, Papadimitriou and Safra [5] introduced the concept of an approximate
equilibrium: essentially, one seeks an allocation of goods which approximately clears the
market and for which every agent is approximately maximally happy. Deng et al considered the
problem of approximating equilibria in endowment markets with linear utility functions (linear
markets). They showed that, for indivisible goods, the problem is NP-hard to approximate
within 1/3, and it is NP-hard even when the number of agents is two. In contrast, for the
case where the number of agents is fixed, they provided a (1 + ε)-approximation. For divisible
goods they showed an exact (polynomial-time) algorithm provided that the number of goods,
or the number of agents, is bounded.

For linear Fisher markets with divisible goods, Devanur, Papadimitriou, Saberi and Vazi-
rani [4] presented a polynomial-time exact algorithm based on the primal-dual schema. Jain,
Mahdian and Saberi [8] used the algorithm of [4] to provide a FPTAS in the more general
setting of endowment markets. This algorithm was recently improved to a strongly polynomial
algorithm by Devanur and Vazirani [6]. More work on market equilibria was presented in [7]
on the spending constraint model.

Our results. We provide upper and lower bounds on the deviation-from-equilibrium of
an algorithm for the problem with respect to the two definitions of clearance. Here, the
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deviation-from-equilibrium is defined as the smallest k for which the prices are (1 − 1/k)-
equilibrium prices (the precise definition of this measure and its rational is given in Section 2).
For deterministic algorithms we show a (tight) bound of Θ(min{

√
m,n}) for both individual

and global clearance (n and m are the number of agents and goods respectively). We then
turn our attention to the application of randomization in the context of this problem; this
is motivated by the observation that an algorithm with access to random bits could possibly
avoid (on an average case) bad prices for the whole sequence of goods. We show a randomized
algorithm that acheives a better deviation-from-equilibrium that its deterministic counterpart,
when clearence is required ”on the average”. Specifcally, we show how to get deviation-from-
equilibrium O(min{m1/3

√
logm,n}) albeit for a somewhat restricted, but still fairly broad

and natural family of inputs. Furthermore, we provide a lower bound of Ω(min{m1/3,
√
n}).

For the case of individual clearance we show that randomization does not actually help, as we
show a lower bound of Ω(min{

√
m,n}) to the deviation-from-equilibrium under this criterion.

2 Problem Definition and Preliminaries

A market consists of a set A of n agents and a set G of m divisible goods. Each good is
characterized of its size bj . Agent i possesses a certain amount of money ei ∈ R+, which she
can use to buy goods in G. A bundle of goods for agent i is a vector xi ∈ Rm such that xij ≤ bj .
A feasible allocation (or simply allocation) x is a collection of n bundles x1, . . . , xn (one for
each agent), such that, for every j,

∑n
i=1 xij ≤ bj . The utility function of i is a function

ui : Rm → R; in particular, ui(xi) specifies the utility of agent i for bundle xi (informally, it
represents the happiness of i if she buys a quantity xij ≤ bj of good j). Throughout this paper,
we assume linear utility functions, that is ui(xi) =

∑m
j=1 uijxij , for non-negative constants uij .

We call uij the utility of j for i.
Suppose that good j is assigned a price pj ∈ R

+. Since agent i wants to maximize
her utility, the optimal bundle for i is the bundle x̃i which is the solution to the following
maximization program:

maximize ui(xi)

subject to
m∑
j=1

pjxij ≤ ei. (1)

Informally, the optimal bundle for agent i maximizes the utility i can make without taking
into consideration the presence of other agents. Can we set prices so that we can find an
allocation that consists of bundles that are close to optimal, for all users? Clearly, if prices are
high enough then this requirement is met, as there are no conflicts between different buyers
demanding more than the supply. However, we also wish to achieve market clearance, in the
sense that there is no surplus or deficiency of goods. The concept of a market equilibrium
aims to strike a balance between these two conflicting goals. More formally, an ε-approximate
equilibrium (0 ≤ ε ≤ 1), or ε-equilibrium for brevity, is a price vector p ∈ Rm+ such that there
exists an allocation x = {x1, . . . , xn} with the following two properties:

1. For all i, ui(xi) ≥ (1− ε)ui(x̃i). x̃i is the solution to the maximization program (1).

2. The market approximately clears. Let cj = 1
bj

∑n
i=1 xij , namely the fraction of good j

that was bought. In individual clearance we require that minj cj ≥ 1− ε, in other words
we consider the worst case clearance of the goods. Alternatively, we can look at a more
relaxed definition and require that the average of the cj-s is at least 1− ε. We call this
type of clearance global clearance.
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A 0-equilibrium is simply called an equilibrium. We call the price vector relative to which
one can find an allocation that leads to an ε-equilibrium an ε-equilibrium price.

Without loss of generality, in linear markets and for both variants of clearance, we can
normalize the size of each good to 1 unit by scaling the utilities appropriately. We notice that
subject to this normalization global clearance simply states that the total number of units
bought is at least (1− ε)m.

The setting of the market equilibrium problem assumes that all information is available
to an algorithm for the problem. In this paper we consider the on-line version of the market
equilibrium problem. More specifically, we assume that goods arrive on-line. Every time a
good j appears, the utilities uij are revealed, for all i ∈ [n]. The on-line algorithm must assign
an irrevocable price to each good at the time of its appearance, that is the price of goods
cannot be modified throughout the algorithm’s execution1.

We motivate our definition of a deviation-from-equilibrium of an on-line algorithm. When
considering approximation algorithms for a maximization problem which achieves a value v
while the optimal value is τ , we either say the approximation ratio is k = τ/v or, when
v approaches τ , e.g. in the case of a PTAS, we rather consider that minimal ε for which
v ≥ (1− ε)τ . A similar situation arises here. We define the deviation-from-equilibrium of an
on-line algorithm as the smallest k for which the prices set by the algorithm are (1 − 1/k)-
equilibrium prices.

Additional definitions. A good j is called uniform if for every two agents i, i′, uij = ui′j .
A set of goods is called monotone if for every two goods j, j′ and every two agents i, i′, we
have uij ≤ uij′ ⇒ ui′j ≤ ui′j′ . The definition asserts that the ordering of monotone goods by
utility is the same for every agent. The aspect ratio of the market is defined as maxi,j,j′

uij
uij′

.
The good j that maximizes the ratio uij/pj is called the best good for agent i.

3 Deterministic Algorithms

Theorem 3.1 There exists a deterministic on-line algorithm for the problem with deviation-
from-equilibrium O(min{

√
m,n}), for individual (and therefore also for global) clearance. Fur-

thermore, this bound is tight.

Proof:
Upper bound. We consider individual clearance, which clearly implies global clearance with
the same guarantees. First, we provide some intuition behind the assignment of prices. If the
price of each good is set as high as E (recall that E is the total money of all agents), then
clearly there is an allocation in which every agent gets as much utility as from its optimal
bundle; however at most one unit of good is allocated, and we are far from market clearance.
On the other extreme, if the prices are very low, e.g., E/m, then all goods can be allocated,
however there will be contention between agents for goods that are important to a large subset
of agents. We reconcile the two extremes by assigning prices as follows: the price of the j-th
good, for all j ≤ n2 is set to E√

j
. For more details see the appendix.

Lower Bound. The adversary will present to n agents, each having a unit amount of money,
a sequence of m uniform goods; that is, for every good j and agent i, uij = uj . The intuition
behind the adversarial input is that when the algorithm considers a good of very high utility

1Alternatively, one could assume a model in which agents appear on-line, each revealing how much utility
she can make from each good. Such a model would make sense only if the price of every good is set before any
allocation (even for the very first agent) takes place. However, if prices are set, the problem is trivial to solve
for linear markets, by using linear programming.
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for all agents, then it has to set a high price to it, otherwise there will be heavy contention
between agents. By providing a sequence of “progressively better” goods, in terms of their
utility, the adversary will force the algorithm to assign high prices to every good, which implies
poor market clearance. For more details see the appendix.

The upper bound of Theorem 3.1 is tight, provided that the aspect ratio of the market is
sufficiently high. What if the aspect ratio is bounded? The following theorem builds upon the
idea behind the lower-bound proof of Theorem 3.1. The intuition here is that goods in the
sequence become progressively better, but only as much as possible given the bound on α.

Theorem 3.2 The deviation-from-equilibrium of every deterministic algorithm for a market
with aspect ratio α > 1 is in Ω(min{nb,

√
mb}), where b = βm(β−1)

βm+1−1
, and β = α

1
m .

Proof: We will consider global clearance; the lower bound then carries over to individual
clearance. As in the proof of Theorem 3.1 the adversary will present to n agents, each having
a unit amount of money, a sequence of m uniform goods (we will denote by uj the utility of
the j-th good in the sequence, with u1 = 1). Every time the algorithm assigns a “low” price
to good j < m, then good j + 1 is is such that uj+1 = β · uj (hence if all j first goods were
assigned low prices, then uj+1 = βj). Otherwise, the adversary presents m− j goods, each of
(low) utility βj−m, and terminates the game. We will assume (without loss of generality) that
the algorithm knows m in advance, and that the deviation-from-equilibrium of the algorithm,
say k, for k ≥ 1 is a function of m, n, e and α only.

Consider good j in the sequence, assuming that no good in [j], with l ≤ m − 1 has
received a low price. We claim that if the price pj is “low” this provides a lower bound to the
deviation-from-equilibrium k by the following relaton.

βj ·min{1, 1
pj
} < k · (

∑j
l=1 β

l + (m− j)βj−m

n
). (2)

To see this, note that in such a case, the adversary will terminate the game by providing m−j
goods of utility βj−m. Then, for every allocation of the m goods to agents, there exists one
agent, say i, who will receive utility at most (

∑j
l=1 β

l + (m− j)βj−m)/n. On the other hand,
the optimal bundle for i yields utility at least equal to the LHS of (2). Taking into account
the fact that βj∑j

l=1
βl+(m−j)βj−m

≥ βm∑m

l=1
βl

= b, we conclude that, for the algorithm to have

deviation-from-equilibrium k, the price pj must not be low, namely it must be such that

nmin{1, 1
pj
} · b ≤ k, (3)

If pj ≤ 1, (3) gives k ≥ nb. Otherwise, (3) implies that pj ≥ n
k b, for all j ∈ [m − 1]. Hence

at most (Ek)/(bn) + 1 = k/b+ 1 goods can be allocated to agents, and since we require that
the algorithm has deviation-from-equilibrium k, it must be that m

k/b+1 ≤ k, thus k ∈ Ω(
√
mb).

Summarizing, k ∈ Ω(min{nb,
√
mb}).

Theorem 3.2 demonstrates that when α is exponential on m, then the algorithm used in
the proof of Theorem 3.1 is asymptotically optimal.

It is worth mentioning that for the special case where all goods are identical (and hence
the only information not known to the on-line algorithm is the number of goods), a variant of
this approach can be employed to show that no deterministic algorithm has deviation-from-
equilibrium better than a certain constant bigger than 1. We omit the details.
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4 Randomized Algorithms

A randomized on-line algorithm is an algorithm which assigns irrevocable prices to goods
according to a certain probability distribution. We start by stating precisely the definition
of deviation-from-equilibrium of such an algorithm. Consider an allocation of goods after the
prices have been set. Let Fi denote the random variable which is the utility agent i can make
from this allocation. Let also Gi denote the random variable that corresponds to the utility
of the optimal bundle for agent i. Last, define Hj to be the random variable which denotes
how much of good j was bought, and H =

∑
j Hj . Then, KG = max{maxiGi/Fi,m/H}

and KI = max{maxiGi/Fi,maxj 1/Hj} are the random variables that denote the global and
individual clearance respectively. Let kG = E[KG] and kI = E[KI ] be the corresponding
expectations of these variables and they are the ones we consider. We start with a negative
result.

Theorem 4.1 The deviation-from-equilibrium of every randomized on-line algorithm for mar-
kets with global clearance Ω(min{m

1
3
√
n}). For markets with individual clearance it is Ω(min{

√
m,n}).

Proof: Using Yao’s principle, we present a distribution on inputs on which every de-
terministic algorithm has high expected deviation-from-equilibrium . Let Ij be the input
u1 << u2 << . . . << uj and uj+1, . . . , um = 0. Take input Ij for j < m with probability 1

2m
and Im with probability 1

2 + 1
2m . Let p1, p2, . . . , pm be the algorithm answers to Im. There is

a subtle point to note here: since Ij and Im are consistent for the first j goods, it must be
the case that prices set by the algorithm for the input Ij are with agreement to those set for
the input Im, namely p1, . . . , pj . Arguments similar to the ones in 3.2 show that considering
agent j, at the event of input Ij we have the bound KG,KI ≥ n · min{1, 1/pj}, and at the
event of inout Im we have (from clearance constriants) that KG ≥ m/l where l is the maximal
number of goods totaling to at most n. So

kG = E[KG] ≥ max

{
n

2m

∑
i

min{1, 1/pj},
m

2l

}
.

We apply the first part of Lemma 4.2 to conclude kG ≥ 1
2 min{

√
n,m

1
3 }.

Considering KI , we notice that if the individual clearance is at most K, a quantity of 1/K
of each good must be purchased by the agents. This means that 1

K ·
∑
i pi ≤ E = n, and

therefore we get

kI = E[KI ] ≥ max

{
n

2m

∑
i

min{1, 1/pj},
∑
i pi

2n

}
.

By the second part of Lemma 4.2 we get kI = Ω(min{
√
m,n}).

Lemma 4.2 Let n,m be positive integer numbers, pi be nonnegative reals, and l = l(p1, . . . , pm;n)
is the maximal l such that the sum of the l smallest pi does not exceed n. Then

max

{
n

m
·
∑
i

min{1, 1/pi},
m

l

}
≥ min{

√
n,m

1
3 },

and also

max

{
n

2m

∑
i

min{1, 1/pj},
∑
i pi

2n

}
= Ω{m1/2, n}.
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Proof: Let S = {j : pj < 1} and L be the set if indices of the l smallest pi-s (cutting ties
arbitrarily). Further, let B = L \ S, s = |S| and b = |b|. Clearly l = s+ b. Now,∑

i∈B
min{1, 1/pi} =

∑
i∈B

1/pi = b ·
∑
i∈B 1/pi
b

≥ b · b∑
i∈B pi

≥ b2/n.

The first inequality above is the Arithmetic-Harmonic-Mean inequality. So∑
i

min{1, 1/pi} ≥
∑
i∈S

min{1, 1/pi}+
∑
i∈B

min{1, 1/pi} ≥ s+ b2/n

and we get

max

{
n

m
·
∑
i

min{1, 1/pi},
m

l

}
≥ max

{
n

m
· (s+ b2/n),

m

s+ b

}
.

It is now enough to show that for every choice of nonnegative b and s the inequality
max

{
n
m · (s+ b2/n), m

s+b

}
≥ min{m

1
3 ,
√
n} holds. First assume s = 0. Here we need to

optimize max{b2/m,m/b} which is clearly at least m
1
3 . We now turn to the case s > 0. We

will use the simple inequality max
{
n
m · (s+ b2/n), m

s+b

}
≥ 1

2

(
n
m · (s+ b2/n) + m

s+b

)
, and will

now lower bound the latter expression. Assume b is fixed and we need to find that value of
s minimizing the expression. Easy calculus shows that s = m/

√
n − b is that value. We can

safely assume m/
√
n − b > 0 otherwise s = 0 would be the best choice which is a case we

already covered. Substituting for s we get
n

m
· (s+ b2/n) +

m

s+ b
≥ n

m
· (m/

√
n− b+ b2/n) +

√
n.

Now we optimize over b and get that b = n/2 is the minimizing value for the last expression.
By the same argument we may assume here that n/2 ≤ m/

√
n. We substitute b for n/2 and

get
n

m
· (m/

√
n− b+ b2/n) +

√
n = 2

√
n− 1

4
n2/m ≥

√
n.

For the second part of the lemma, Using the same definition S = {j : pj < 1} we get∑
i

min{1, 1/pi} =
∑
i∈S

min{1, 1/pi}+
∑
i/∈S

min{1, 1/pi} ≥ s+
∑
i/∈S

1/pi ≥

≥ s+
(m− s)2∑

i/∈S pi
= s+

(m− s)2

P
,

where s = |S| and P =
∑
i/∈S pi. Now

k ≥ 1
2

max

{
n

m

∑
i

min{1, 1/pj},
∑
i pi
n

}
≥ 1

4

(
n

m

∑
i

min{1, 1/pj}+
∑
i pi
n

)
≥

1
4

(
n

m
(s+ (m− s)2/P ) +

P

n

)
= Ω{m1/2, n}.

The last quantity is easily verified by checking separately for s < m/2 and for s ≥ m/2.

Can we get a better upper bound by using randomization? The following result shows
that for monotone goods the answer is positive. It should be noted that the adversarial
input of both our deterministic and randomized lower bounds complies to the condition of
monotonicity.

7



Theorem 4.3 For markets with monotone goods and global clearance, there exists a random-
ized on-line algorithm with deviation-from-equilibrium O(min{m1/3

√
logm,n}).

Proof: We first show how to get a O(min{m1/3 logm,n}) first. Let j̃ denote 2dlog je. The
algorithm assigns prices to goods according to the following probability distribution. For every
good j ≤ n3

pj =

{
E/j̃2/3 with probability 1/j̃1/3

E/j̃1/3 otherwise

We call a good j cheap when it receives price E/j̃2/3 and expensive otherwise 2. Next, we set
the prices of all goods j > n3, if any, to be arbitrarily low; we call such goods free goods.

First, we want to show that with this setting the market approximately clears. Suppose
first that m ≤ n3. Consider the set of goods B = {j : j̃ ≥ m/4} and let Bc be the cheap
goods in B. Clearly |B| ≥ m/2 and that E[|Bc|] ≥ |B|/(2m)

1
3 = Ω(m2/3). Further, Chernoff

bound guarantees that P[|Bc| ≤ 1
2E[|Bc|] = exp(−Ω(m2/3)). Look at the following strategy.

It is easy to see that agents can allocate 1/4 of their money to buy Ω(m1/3) goods j for
which m/8 ≤ j̃ < m/4, as the prices for these goods is at most O(E/m1/3). Another 1/4 is
used to buy as many goods in Bc. Since prices there are O(E/m2/3) we can buy as many as
min{|Bc|,m2/3} such goods. We get that the number of goods that can be bought g is Ω(m2/3)
with probability 1 − exp(−Ω(m2/3)) and Ω(m1/3) otherwise which gives E[m/g] = Ω(m1/3).
In the case where m > n3 the agents can still achieve an expected ratio of n3· 1

3 = n on the
first n3 by exactly the same argument, and then buy all m − n3 free goods at arbitrary low
cost which can only improve the ratio. Hence, we only need to be concerned about finding an
allocation that yields high utility to each agent. Since each agent spent at most half of her
money for the allocations above and since constant factors do not affect our bounds, we may
assume for simplicity that these allocations did not cost money at all.

Clearly, if n < m1/3 we are done, since agents can always achieve at least 1/n of their
optimal bundle. We now get to the interesting part of the theorem where m ≤ n3. Notice that
we can think of the goods as organized in bunches by their j̃ value. Namely the bunches are
of size 1, 2, 4, . . . (with the exception of the last one which may be smaller). In the allocation
we will describe, every agent will spend at most a fraction of 1/w of her money, for some
w > 1 to a good that has price E/w. Whenever all agents comply to this restriction there
is no deficiency of the goods, or informally, there is no contention between agents about any
good, and we can consider the allocation of each agent individually.

Let ji be any of the best goods for agent i; recall that these are the good maximizing the
ratio utility per price. In the event where ji is an expensive good, its price is at least E/m1/3.
In this case agent i will spend ei/m1/3 on buying ji and so she receives at least 1/m1/3 of her
optimal utility. Otherwise ji is a cheap good. We now introduce some additional notation.
Let ui be the utility of ji, bi the bunch containing ji and Ci are the goods in bunch bi with
utility at least ui. Finally, let ti = min{|Ci|, Ti}, Si be the size of bunch bi and Ti = S

1/3
i .

Agent i spends ei/Ti on each of ti goods from Ci. Therefore the quantity of goods in Ci which
agent i gets is exactly ti · ei/TiE/Ti

= eiti/E, and since the goods in Ci have at least utility ui we
get a total utility of at least uieiti/E. On the other hand, an upper bound to the optimal
utility for agent i is uiei

E/T 2
i

Letting Ki be the ratio between the utility from optimal bundle and
2Note that by this definition there are cheap goods that cost more than expensive ones..
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utility from allocation for i we get

Ki ≤
T 2
i eiui
eiuiti

= T 2
i /ti. (4)

At this point, we show that instead of considering the n different random variables Ki we
can look at logm very related variables: For each bunch b let us choose an ordering that is
consistent with the utilities for all agents. In other words if j and j′ are goods in bunch b and
uij > uij′ then good j appears before j′ in the ordering. Such ordering is possible thanks to
the monotonicity of goods. Let rb be the minimal ordinal of a cheap good according to the
ordering. As usual Sb is the size bunch b and Tb = S

1/3
b . Finally, let νb = min{rb, Tb}. It is

now easy to see that if bi = b then νb ≤ ti. Defining Lb = max{Ki : bi = b} we now get that

Lb ≤ max
{i|bi=b}

T 2
i /ti ≤ T 2

b /νb.

The maximum ratio of optimal utility over utility through allocation over all agents is now

max{m1/3,max
i
Ki} = max{m1/3,max

b
Lb} ≤ m1/3 +

∑
b

Lb.

and so E[K] ≤ m1/3 +
∑
b E[T 2

b /νb].

Lemma 4.4 Let S = {1, 2, . . . , s} and pick elements in S independently with probability q =
1/T where T ≤ s. Let r be the minimal number picked or s if none exists. Also, let ν =
min{r, T}. Then E[1/ν] = log T/T .

Proof: As long as r ≤ T , it is distributed geometrically with parameter q. Now

E[1/ν] = P[r ≤ T ] · E[1/ν|r ≤ T ] + P[r > T ] · E[1/ν|r > T ] ≤
T∑
r=1

q(1− q)r

r
+ 1/T ≤

≤ qH(T ) + 1/T ≤ O(log T/T ).

Applying the lemma we get that E[1/νb] = O(log Tb/Tb). Summing up we have

E[K] ≤ m1/3 +
∑
b

E[T 2
b /νb] ≤ m1/3 +

∑
b

O(Tb log Tb) = O(m1/3 logm).

To get the desired O(m1/3
√

logm) bound we notice the imbalance between the two criteria for

the equilibrium. We can multiply the prices of cheap goods by a factor of
√

log j̃. Obviously
the clearance does not deteriorates by more than a factor of

√
logm. On the other hand, we

get the improved upper bound for Lb for the second criterion, Lb ≤ T 2
b /(
√

logSbνb). From
this the improvement in the bound follows easily.

5 Discussion and Future Work

In this work we formulate and address the problem of on-line equilibria in linear Fisher markets
with divisible goods. A number of unresolved issues remain; these are not only of theoretical
interest, but they relate to situations which are expected to occur in practice. Among them
we first distinguish the following two: First, is it possible to show better (deterministic or
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randomized) upper bounds for markets with subexponential aspect ratio α? Ideally, we would
like to provide an on-line algorithm, which has no knowledge of the aspect ratio of the entire
sequence, and whose deviation-from-equilibrium is a function of α.

Second, is it possible to remove the monotonicity condition from Theorem 4.3? The result
is meant to show that randomization is helpful when considering global clearance, but we would
like to extend it to capture more general markets. We believe that an elaborate probabilistic
argument will be needed to address this issue.

A different extension deals with markets with indivisible goods. We have some preliminary
results for this type of markets. It is worth noting that here one has to provide certain
restrictions on the sequence of the goods the adversary will provide, otherwise no on-line
algorithm may achieve bounded deviation-from-equilibrium . Note also that since an (exact)
equilibrium does not necessarily exist in this setting, we must relate to the best possible
(approximate) equilibrium that an off-line algorithm can achieve.

As argued in the introduction, our work is motivated by dynamic markets, where a cost
is associated with any change in the price of an existing good. Our on-line upper and lower
bounds address the case in which the cost is infinite. But what about other cost functions?
For instance, suppose that the cost to change a price is constant, and there is a strict bound
on the total cost due to price changes every time a good arrives. What is the best approximate
equilibrium we can guarantee in such a setting?
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6 Appendix

Proof: (of Theorem 3.1)
Proof details for the upper bound: For all j > n2, the price of good j is set to be

infinitesimally small; without loss of generality, we can assume it is zero. Suppose first that
m ≤ n2, then the allocation of goods to agent i is done in two phases. First, i uses a fraction
of 1/(4

√
m) ≤ 1/4 of her money toward her best good (that is she buys 1

4ei/(
√
mpj) ≤ 1

4
of that good. Note that the utility of i is at least 1/(4

√
m) times the utility of the optimal

bundle of i. In the second phase agents buy, collectively, a fraction of 1/(4
√
m) of each good

and it is easy to see that at most E/2 money is needed in this phase.
Details of the lower bound proof: We consider global clearance; the lower bound

then carries over to individual clearance. The game between the adversary and the algorithm
begins with the adversary presenting a good with u1 = 1, and proceeds as follows. Every
time the algorithm assigns a price to good j < m that is not “low” (the meaning of “low”
price will become clear shortly), then the j + 1 good is such that uj+1 � uj (more precisely,
uj+1 > n ·

∑j
l=1 ul). Otherwise, the adversary presents m − j goods, each of very low utility

(without loss of generality, we may assume the their utility is zero), and terminates the game.
For convenience, we may assume that the algorithm knows m in advance–this does not affect
the lower bound. We will also assume that the deviation-from-equilibrium of the algorithm,
say k, is a function of m, n, and e only.

Consider good j in the sequence, where none of the goods 1, . . . , j − 1 received low prices.
For every allocation of goods 1, . . . , j to agents, there is at least one agent, say i, who is
allocated at most a fraction of 1/n of good j. Therefore, i can receive utility at most 2uj

n
from goods in [j]. On the other hand, the optimal bundle (among goods 1, . . . , j only) for i
allocates as much of good j to i as her money can buy. Suppose that the price assigned to
good j by the algorithm is low, namely that

min{uj ,
e1

pj
uj} > k(2uj/n).

In this event, the adversary will terminate the game by providing m−j goods of zero utility, as
explained earlier, and it is easy to verify that the deviation-from-equilibrium of the algorithm
is worse than k. Therefore, pj must be chosen such that

min{uj ,
e1

pj
uj} ≤ k(2uj/n). (5)

If pj ≤ ei, then (5) implies that k ≥ n/2. Otherwise, (5) gives pj ≥ n/(2k) (recall that ei = 1
for all i).

When the game terminates, either pj ≥ n/(2k) for every good j < m or k ≥ n/2. Remains
to consider only the former case. Observe that, at such prices, at most E

n/(2k) +1 = 2k+1 units
of goods can be allocated to agents. For the algorithm to has a deviation-from-equilibrium of
k, we require that m

2k+1 ≤ k, hence k ≥
√
m/2− 1. Thus k ≥ min{n/3,

√
m/2− 1}.
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