
First-Order Query Rewriting for Inconsistent
Databases

Ariel D. Fuxman and Renée J. Miller

Department of Computer Science
University of Toronto

{afuxman, miller}@cs.toronto.edu

Abstract. We consider the problem of retrieving consistent answers
over databases that might be inconsistent with respect to some given
integrity constraints. In particular, we concentrate on sets of constraints
that consist of key dependencies. Most of the existing work has focused
on identifying intractable cases of this problem. In contrast, in this paper
we give an algorithm that computes the consistent answers for a large
and practical class of conjunctive queries. Given a query q, the algorithm
returns a first-order query Q (called a query rewriting) such that for ev-
ery (potentially inconsistent) database I, the consistent answers for q
can be obtained by evaluating Q directly on I.

1 Introduction

Consistent query answering is the problem of retrieving “consistent” answers
over databases that might be inconsistent with respect to some given integrity
constraints. Applications that have motivated the study of this problem include
data integration and data exchange. In data integration, the goal is to provide
“a uniform interface to multiple autonomous data sources” [Hal01]. In data ex-
change, “data structured under one (source) schema must be restructured and
translated into an instance of a different (target) schema” [FKMP03]. In both
contexts, it is often the case that the source data does not satisfy the integrity
constraints of the global or target schema. The traditional approach to deal
with this situation involves “cleaning” the source instance in order to remove
data that violates the target constraints. However, data cleaning is supported
by semi-automatic tools at best, and it is necessarily a human-labor intensive
process. An alternative approach would be to exchange an inconsistent instance,
and employ the techniques of consistent query answering to resolve inconsisten-
cies at query time. Of course, this approach becomes viable only if efficient tools
for consistent query answering are available. In this paper, we present a number
of results that are a step in this direction.

In addition to these long-standing problems, the trend toward autonomous
computing is making the need to manage inconsistent data more acute. In au-
tonomous environments, we can no longer assume that data are married with a
single set of constraints that define their semantics. As constraints are used in an
increasing number of roles (from modelling the query capabilities of a system, to
defining mappings between independent sources), there is an increasing number

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 335–349, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

336 A.D. Fuxman, R.J. Miller

of applications in which data must be used with a set of independently designed
constraints. In such applications, a static approach where consistency (with re-
spect to a fixed set of constraints) is enforced by cleaning the database may
not be appropriate. Rather, a dynamic approach in which data is not changed,
but consistency is taken into account at query time, permits the constraints to
evolve independently from the data.

The input to the consistent query answering problem is: a schema R, a set
Σ of integrity constraints, and a database instance I over R. The database I
might be inconsistent, in the sense that it might violate some of the constraints
of Σ. In this work, we draw upon the concept of repairs, defined by Arenas et al.
[ABC99], to give semantics to the problem. A repair I of I is an instance of R
such that I satisfies the integrity constraints of Σ, and I differs minimally from
I (where minimality is defined with respect to the symmetric difference between
I and I). Under this definition, repairs need not be unique. Intuitively, each
repair corresponds to one possible way of “cleaning” the inconsistent database.

The notion of repairs is used to give semantics to consistent query answering
in the following way. Given an instance I, a tuple t is said to be a consistent
answer for q on I if I |= q[t], for every repair I of I. This concept is similar to
that of certain answers used in the context of data integration [AD98], but for
consistent answers the set of possible worlds are the repairs of the inconsistent
database, rather than the legal instances of a global database.

In this work, we focus on sets of integrity constraints that consist of key
dependencies. The most commonly used constraints in database systems are
keys and foreign keys. Of these, keys pose a particular challenge since instances
that are inconsistent with respect to a set of key dependencies admit an expo-
nential number of repairs in the worst case. This potentially large number of
repairs leads to the question of whether it is possible to compute consistent an-
swers efficiently. The answer to this question is known to be negative in general
[CM04, CLR03a]. However, this does not necessarily preclude the existence of
classes of queries for which the problem is easier to compute. Hence, we consider
the following question: for what queries is the problem of computing consistent
answers in polynomial time (in data complexity)?

In general, given a query q, it does not suffice to evaluate q directly on a (pos-
sibly inconsistent) instance I in order to get the consistent answers. Therefore,
a related question is: does there exist some other query Q such that for every
instance I, the consistent answers for q can be obtained by just evaluating Q on
I? If Q is a first-order query, we say that q is first-order rewritable. Since first-
order queries can be written in SQL, if the query is first-order rewritable, then
its consistent answers can be retrieved (at query time) using existing commercial
database technology. Given the desirability of such an approach, we consider the
question of identifying classes of queries that are first-order rewritable.

Summary of results The main contribution of this paper is an algorithm
that produces a first-order query rewriting for the problem of computing consis-
tent answers. The algorithm, which is presented in Section 3, runs in polynomial
time in the size of the query. We prove the correctness of the algorithm for a

First-Order Query Rewriting for Inconsistent Databases 337

large class of conjunctive queries. The class is defined in terms of the join graph
of the query. The join graph is a directed graph such that: its vertices are the
literals of the query; and it has an arc for each join in the query that involves
some variable that is at the position of a non-key attribute. Our algorithm works
for conjunctive queries without repeated relation symbols (but with any number
of literals and variables) whose join graph is a forest. The class contains most
queries that usually arise in practice. For example, 20 out of 22 queries in TPC-H
[TPC03], the industry standard for decision support systems, are in this class.

In Section 4, we present a class of queries for which the conditions of appli-
cability of the algorithm (which can be verified in polynomial time in the size of
the query) are necessary and sufficient. That is, we show a class such that the
problem of computing the consistent answers is coNP-complete for every query
of the class whose join graph is not a forest. Notice that this type of result is
much stronger than the usual approach taken in the consistent query answering
literature, which consists of showing intractability of a class by exhibiting at
least one query for which the problem is intractable. As a corollary of our result,
we get a dichotomy for this class of queries: given a query q, either the problem
of computing the consistent answers for q is first-order rewritable (and thus it is
in PTIME), or it is a coNP-complete problem.

2 Formal Framework

A schema R is a finite collection of relation symbols, each of which has an
associated arity. A set of integrity constraints Σ consists of sentences in some
logical formalism over R. An instance I over R is a function that associates
to each relation symbol R of R a relation I(R). Given a tuple t occurring in
relation I(R), we denote by R(t) the association between t and R. An instance
I is consistent with respect to a set of integrity constraints Σ if I satisfies Σ in
the standard model-theoretic sense, that is I |= Σ.

We adopt a semantics for consistent query answering that was originally intro-
duced by Arenas et al. [ABC99], and relies upon the concept of repairs. A repair is
an instance that satisfies the integrity constraints, and which has a minimal dis-
tance to the inconsistent database. The distance between two database instances
I and I ′ is defined as their symmetric difference, i.e., ∆(I, I ′) = (I−I ′)∪(I ′−I).
The formal definition of repair is the following.

Definition 1 (Repair [ABC99]). Let I be an instance. We say that an in-
stance I is a repair of I with respect to Σ if: 1

– I |= Σ, and
– there is no instance I ′ such that I ′ |= Σ and ∆(I, I ′) ⊂ ∆(I, I) (i.e., ∆(I, I)

is minimal under set inclusion in the class of instances that satisfy Σ).

Example 1. Let R be a schema with one relation symbol R. Assume that R has
two attributes: E (Employee) and S (Salary), and that the only constraint in Σ

1 Whenever Σ is clear from the context, we will just say that I is a repair of I.

338 A.D. Fuxman, R.J. Miller

is that the attribute E is the key of R. Let I = {R(John, 1000), R(John, 2000),
R(Mary, 3000)}. We can see that I is inconsistent with respect to Σ. There are
two repairs: I1 = {(John, 1000), (Mary, 3000)} and I2 = {(John, 2000),
(Mary, 3000)}. We use the term “repair”, as opposed to “minimal repair”, be-
cause it is standard in the literature [ABC99]. However, notice that, by definition,
all repairs have a minimal distance to the inconsistent database. For example,
{(John, 2000)} and {(Mary, 3000)} are not repairs because their distance with
respect to I is not minimal under set inclusion. The minimality condition for
the repairs is crucial in the definition. Otherwise, the empty set would trivially
be a repair of every instance.

The semantics for query answering is given in terms of consistent answers
[ABC99], which we define next.

Definition 2 (Consistent answer [ABC99]). Let R be a schema. Let Σ be
a set of integrity constraints. Let I be an instance over R (possibly inconsistent
with respect to Σ). Let q be a query over R. We say that a tuple t is a consistent
answer with respect to Σ if I |= q[t], for every repair I of I with respect to Σ.
We denote this as t ∈ consistentΣ(q, I).

Example 1 (continued). Let q1(e) = ∃s : R(e, s). The consistent answers for q1 on
I are the tuples (John) and (Mary). Let q2(e, s) = R(e, s). The only consistent
answer for q2 on I is (Mary, 3000). Notice that the tuples (John, 1000) and
(John, 2000) are not consistent answers. The reason is that neither of them are
present in both repairs. Intuitively, this reflects the fact that John’s salaries are
inconsistent data.

For convenience, we will use the following notation for the consistent answers
to Boolean queries.

Definition 3. Let R be a schema. Let Σ be a set of integrity constraints. Let I
be an instance over R. Let q be a Boolean query over R. We say that
consistentΣ(q, I) = true if for every repair I of I with respect to Σ, I |= q.
We say that consistentΣ(q, I) = false if there exists at least one repair I of
I with respect to Σ such that I �|= q.

Notice the asymmetry between the case for consistentΣ(q, I) = true and
consistentΣ(q, I) = false. While, for the former, every repair must satisfy
the query, for the latter it suffices to have just one (non-satisfying) repair.
This is not intrinsic to Boolean queries: by Definition 2, it is also the case that
t �∈ consistentΣ(q, I) if there exists at least one repair I such that I �|= q[t].

We will denote the problem of computing consistent answers as
CONSISTENT(q,Σ), and define it as follows.
Definition 4. Let R be a schema. Let q be a query over R. Let Σ be a set of
integrity constraints. The consistent query answering problem CONSISTENT(q,Σ)
is the following: given an instance I over R, and tuple t, is it the case that
t ∈ consistentΣ(q, I)?

We will design an algorithm that computes consistent answers directly from
the inconsistent database, without explicitly building the repairs. In fact, given

First-Order Query Rewriting for Inconsistent Databases 339

a query q, the algorithm will return a first-order query Q such that, for every
instance I, the consistent answers for q can be obtained by just evaluating Q on
I. We call Q a first-order query rewriting, and define it next.

Definition 5 (first-order query rewriting). Let R be a schema. Let Σ be a
set of integrity constraints. Let q be a query over R. We say that the problem
CONSISTENT(q,Σ) is first-order rewritable if there is a first-order query Q such
that I |= Q[t] iff t ∈ consistentΣ(q, I), for every instance I over R. We also
say that Q is a first-order rewriting of the problem CONSISTENT(q,Σ). 2

Notice that if CONSISTENT(q,Σ) is first-order rewritable, then it is tractable.
This is because the data complexity of first-order logic is in PTIME (actually, in
AC0). Thus, it can be tested in polynomial time whether I |= Q[t]. Besides this,
an approach based on query rewriting is attractive because first-order queries can
be written in SQL. Therefore, if the query is first-order rewritable, the consistent
answers can be retrieved using existing database technology.

Throughout the paper, we will assume that the set Σ of integrity constraints
consists of at most one key dependency per relation of the schema. To facilitate
specifying the set of constraints each time that we give a query, we will underline
the positions in each literal that correspond to key attributes. Furthermore,
by convention, the key attributes will be given first. For example, the query
q = ∃x, y, z : R1(x, y) ∧ R2(y, z) indicates that literals R1 and R2 represent
binary relations whose first attribute is the key. We will use bold letters (e.g., x,
y) to denote vectors of variables or constants from a query or tuple. In addition,
when we give a tuple, we will underline the values that appear at the position
of key attributes. For instance, for a tuple R(c,d), we will say that c is a key
value, and d is a non-key value. Using this notation, the key constraints of Σ
that are relevant to the query are denoted directly in the query expression.

The results in this paper concern (classes of) conjunctive queries. We will
adopt the convention of using x to denote variables and constants that appear
at the position of key attributes, and y for variables and constants that appear
at the position of non-key attributes. Thus, conjunctive queries will be of the
form:

q(w1, . . . , wm) = ∃z1, . . . , zl : R1(x1,y1), ..., Rn(xn,yn)

where w1, . . . , wm, z1, . . . , zl are all the variables that appear in the literals of
q. We will say that w1, . . . , wm are the free variables of q. Notice that even though
there are no equality symbols in q, their effect is achieved by having variables
that appear in q more than once. The queries may also contain constants, which
we will denote with bold letters from the beginning of the alphabet (e.g., a and
b). We will say that there is a join on a variable w if w appears in two literals
Ri(xi,yi) and Rj(xj ,yj) such that i �= j. If w occurs in yi and yj , we say that
there is a non-key join on w.

2 On occasion, we will simply say that q is first-order rewritable, and that Q is a
first-order rewriting of q.

340 A.D. Fuxman, R.J. Miller

Throughout the paper, we will focus on the class of conjunctive queries with-
out repeated relation symbols. A conjunctive query without repeated relation
symbols is a conjunctive query such that every relation symbol of the schema
appears in q at most once. Notice that, in spite of this restriction, the query can
still have any arbitrary number of literals and relation symbols, and there are
no constraints on the occurrence of variables in the query.

3 A query rewriting algorithm

3.1 A Class of Tractable Queries

The problem of computing consistent answers for conjunctive queries over data-
bases that might violate a set of key constraints is known to be coNP-complete
in general [CM04, CLR03a]. This is the case even for queries with no repeated
relation symbols, which is the focus of this section. However, this does not neces-
sarily preclude the existence of classes of queries for which the problem is easier
to compute. In fact, in this section we characterize a large and practical class
of conjunctive queries for which the problem of computing consistent answers is
indeed tractable. Even more so, we show that all queries in this class are first-
order rewritable, and we give a polynomial-time algorithm that computes the
first-order rewriting.

Before presenting the tractable class, let us consider the following queries for
which the problem of computing consistent answers is coNP-complete, as will be
shown in Section 4.

– q1 = ∃x, x′, y : R1(x, y) ∧ R2(x′, y)
– q2 = ∃x, y, z : R1(z, x, y) ∧ R2(y, x)
– q3 = ∃x, y, z, w : R1(x, y) ∧ R2(z, w) ∧ R3(y, w)

The queries presented above are rare in practice. The first consists of a join
between non-key attributes; the second involves a cycle; and the third, a join
with part, but not the entire key of a relation. We use these queries to provide
insight into when a query is intractable. In particular, we will show in Section 4
a class of queries for which the presence of cycles and non-key joins are in fact
necessary conditions for intractability. Notice that such conditions are concerned
with the joins in the query where at least one non-key variable is involved. In
order to define such conditions precisely, we will state them in terms of what we
call the join graph of the query.

Definition 6 (join graph). Let q be a conjunctive query. The join graph G of
q is a directed graph such that:

– the vertices of G are the literals of q;
– there is an arc from Ri to Rj if i �= j and there is some variable w such that

w occurs at the position of a non-key attribute in Ri and w occurs in Rj;
– there is a self-loop at Ri (i.e., an arc from Ri to Ri) if there is some variable

w such that w occurs at the position of a non-key attribute of Ri, and w
occurs at least twice in Ri.

First-Order Query Rewriting for Inconsistent Databases 341

As we can see in Figure 1, the join graphs of q1 and q2 have a cycle. The
join graph of q3 does not have a cycle, but it is not a tree because the node for
relation R3 has two incoming arcs. Therefore, we will focus on queries whose
join graph is a tree (or a forest). For example, the join graph of the following
query is a tree. The graph is shown in Figure 1.

q4 = ∃x, y, z, w : R1(x, y) ∧ R2(y, z) ∧ R3(z, w) ∧ R4(y,a)

R 1

R 2
R

R

 2

 3

y

x

y

w

R 2

y

y

q
 1

q q
 2 3

q
 4

R 1 R 1

R 1

R

R

R 2

 3

 4

y y

z

Fig. 1. Join graphs

An additional condition that we will impose on the query is that the joins
from non-key to key attributes involve the entire key of a relation. We will call
such joins full. For example, all the non-key to key joins of query q4 are full.
On the other hand, in the query q = ∃x, y, z, w : R1(x, y) ∧ R2(z, y, w) the join
between R1 and R2 is not full since it does not involve the entire key of R2.

Definition 7. Let q be a conjunctive query. Let Ri(xi,yi) and Rj(xj ,yj) be a
pair of literals of q. We say that there is a full non-key to key join from Ri to
Rj if every variable of xj appears in yi.

Considering queries with only full non-key to key joins, the class Ctree that
we define next consists of the queries whose join graph is a forest.

Definition 8. Let q be conjunctive query without repeated relation symbols. Let
G be the join graph of q. We say that q ∈ Ctree if G is a forest (i.e., every
connected component of G is a tree) and every non-key to key join of q is full.

A fundamental observation about Ctree is that it is a very common, practical
class of queries. Arguably, the most used form of joins are from a set of non-key
attributes of one relation (which may be a foreign key)3 to the key of another
relation (which may be a primary key). Furthermore, such joins typically in-
volve the entire primary key of the relation (and, hence, they are full joins in
our terms). Finally, cycles are rarely present in the queries used in practice.
Admittedly, the restriction not to have repeated relation symbols does rule out
some common queries (those in which the same relation appears twice in the
FROM clause of an SQL query). Still, many queries used in practice do not have

3 Notice that in this work we are not dealing with the problem of inconsistency with
respect to foreign keys, but with respect to key dependencies.

342 A.D. Fuxman, R.J. Miller

repeated relation symbols. As an empirical observation, we point out that 20 out
of 22 queries in the TPC-H standard [TPC03] are in class Ctree. 4

3.2 Algorithm
The following examples highlight some of the intuition underlying our query
rewriting algorithm.

Example 2. Let q = ∃x : R1(x,a). First of all, notice that q itself is not a query
rewriting of CONSISTENT(q,Σ). Consider the instance I1 = {R1(c1, a), R1(c1, b)}.
It is easy to see that I1 |= q. However, consistentΣ(q, I1) = false because the
repair I = {R1(c1, b)} is such that I �|= q. Now, consider I2 = {R1(c1, a), R1(c1, b),
R1(c2, a)}. It is easy to see that consistentΣ(q, I2) = true. This is because there
is a key value in R1 (c2 in this case) that appears with a as its non-key value,
and does not appear with any other constant a′ such that a′ �= a. This can be
checked with a formula Qconsist = ∀y′ : R1(x, y′) → y′ = a. In fact, we will
show that a query rewriting Q for q can be obtained as the conjunction of q and
Qconsist:

Q = ∃x : R1(x,a) ∧ ∀y′ : R1(x, y′) → y′ = a

Example 3. Let q = ∃x, y, z : R1(x, y) ∧ R2(y, z). As in the previous example,
q itself is not a query rewriting of CONSISTENT(q,Σ). For, consider the instance
I1 = {R1(c1, d1), R1(c1, d2), R2(d1, e1)}. It is easy to see that I1 |= q. However,
consistentΣ(q, I1) = false because the repair I = {R1(c1, d2), R2(d1, e1)} is
such that I �|= q. Now, consider I2 = {R1(c1, d1), R1(c1, d2), R2(d1, e1), R2(d2, e2)}.
It is easy to see that consistentΣ(q, I2) = true. This is because every non-key
value that appears together with c1 in some tuple (in this case, d1 and d2)
joins with a tuple of R2. This can be checked with a formula Qconsist = ∀y′ :
R1(x, y′) → ∃z′ : R2(y′, z′). We will soon show that a query rewriting Q for q
can be obtained as the conjunction of q and Qconsist, as follows:

Q = ∃x, y, z : R1(x, y) ∧ R2(y, z) ∧ ∀y′ : (R1(x, y′) → ∃z′ : R2(y′, z′))

We now proceed to present RewriteConsistent, our query rewriting algo-
rithm. For convenience, it is split into three modules, which are shown in Figures
2, 3, and 4. Given a query q such that q ∈ Ctree, and a set of key constraints
Σ, RewriteConsistent(q,Σ) returns a first-order rewriting Q for the prob-
lem of obtaining the consistent answers for q with respect to Σ. The algorithm
RewriteConsistent is shown in Figure 2. The first-order rewriting Q that it re-
turns is obtained as the conjunction of the input query q, and a new query called
Qconsist. The query Qconsist is used to ensure that q is satisfied in every repair
(and, hence, consistentΣ(q, I) = true). It is important to notice that Qconsist

will be applied directly to the inconsistent database (i.e., we will never generate

4 This is considering the Select-Project-Join structure of the queries, not additional
features such as aggregation or arithmetical operators. The reason that two of the
queries are outside the class is just because they have repeated relation symbols.

First-Order Query Rewriting for Inconsistent Databases 343

the repairs). The query Qconsist is obtained by recursion on the tree structure
of each of the components of the join graph of q (recall that since q ∈ Ctree, the
join graph is a forest). The recursive algorithm is called RewriteTree, and is
shown in Figure 3.

In the query Qconsist, some of the variables of q are renamed. Let us illustrate
this with the query q = ∃x, y, z : R1(x, y) ∧ R2(y, z) from Example 3. In this
case, Qconsist = ∀y′ : R1(x, y′) → ∃z′ : R2(y′, z′). Notice that the variable y of q
is renamed to y′ in Qconsist. In order to keep track of the renaming during the
execution of the algorithm, we use a substitution δ for the variables of q.

The variables that will be renamed in Qconsist by the substitution δ are those
that are involved in some join from a non-key to a key position. Notice that
these are the joins that create arcs in the join graph. The renamed variables are
universally quantified in Qconsist. The intuition behind this is that the renamed
variable denotes a non-key position in a literal and, as we illustrated in Example
3, the query must be satisfied by all the non-key values of a given key.

In the algorithm RewriteConsistent, the substitution δ is initialized to be
just the identity on the variables that do not appear in non-key positions of any
literal. These are the variables in the set IdentityV ars of the algorithm. During
the recursive execution of RewriteTree(Ti, Σ, δ), the literal R(x,y) at the root
of Ti is selected, and the variables of y are renamed to newly-created variables
from a vector y∗. The substitution δ is used here to record such renamings.

At each step, RewriteTree produces a rewriting Qlocal for the literal R(x,y)
at the root of the tree. This rewriting is done independently of the rest of the
query, and produced by the algorithm RewriteLocal. We show this algorithm
in Figure 4. The query Qlocal deals with the constants that appear in y in the
same way as we illustrated in Example 2.

Notice that we have presented the algorithm only for Boolean queries, but
this is just for notational simplicity. In order to apply the algorithm to queries
with free variables, it suffices to treat the free variables as if they were constants
(using the algorithm RewriteLocal). For example, consider the query q(y) =
∃x : R1(x, y). Notice that the only difference with the query of Example 2 is
that the constant a is replaced by the free variable y. The query rewriting for q
is the following:

Q(y) = ∃x : R1(x, y) ∧ ∀y′ : R1(x, y′) → y′ = y

The next example illustrates the application of the algorithm.
Example 4. Let q be the query q4 introduced in Section 3.1.

q = ∃x, y, z, w : R1(x, y) ∧ R2(y, z) ∧ R3(z, w) ∧ R4(y,a)

The join graph T of q is shown in Figure 1. In this case, T consists of one
connected component, which is a tree. Let T2 be the subtree of T that consists
of the nodes for literals R2 and R3. Let T3 be a tree that consists of exactly one
node, for literal R3. Let T4 be a tree that consists of exactly one node, for literal
R4. The first-order query rewriting Q of q is obtained by applying the algorithm
RewriteConsistent(q,Σ) as follows.

344 A.D. Fuxman, R.J. Miller

Algorithm RewriteConsistent(q, Σ)
Let G be the join graph of q
Let T1, . . . , Tm be the connected components of G
Let IdentityV ars = {x : there is a literal R(x, y) in q such that x occurs in x,

and for every literal R′(x′, y′) in q, x does not occur in y′}
Let δ be the identity substitution for the variables of IdentityV ars

for i := 1 to m do
Let Qi = RewriteTree(Ti, Σ, δ)

end for
Let Qconsist =

∧
i=1...m

Qi

Let Q = q ∧ Qconsist

return Q

Fig. 2. Query rewriting algorithm

Q = RewriteConsistent(q, Σ) = q ∧ Qconsist

Qconsist(x) = RewriteTree(T, Σ, 〈x/x〉) = ∀y′ : R1(x, y′) → (Q2 ∧ Q4)
Q2(y

′) = RewriteTree(T2, Σ, 〈x/x, y/y′〉) = ∃z′ : R2(y
′, z′) ∧ ∀z′ : R2(y

′, z′) → Q3

Q3(z
′) = RewriteTree(T3, Σ, 〈x/x, y/y′, z/z′〉) = ∃w′ : R3(z

′, w′)
Q4(y

′) = RewriteTree(T4, Σ, 〈x/x, y/y′〉) = ∃u′ : R4(y
′, u′) ∧ ∀u′ : (R4(y

′, u′) → u′=a)

3.3 Correctness Proof

For the correctness proof, we will refer to the query associated to a join graph.
The query qG for a join graph G is a conjunctive query such that the literals of
qG are the literals that appear in the nodes of G; all the variables of qG that
occur at a non-key position in a literal of qG are existentially quantified; and the
rest of the variables of qG are free. Notice that if a variable of qG is the cause of
the existence of an arc in the join graph G (e.g., variables y and z from Example
4), then the variable is existentially-quantified in qG.

Definition 9. Let G be a join graph. Let R1(x1,y1), . . . , Rn(xn,yn) be the liter-
als that appear in the nodes of G. Let W = {w : w is a variable that appears in
yj, for some j such that 1 ≤ j ≤ n}. Let w be the variables of W . Let z be the
variables of R1, . . . , Rn that are not in W . We say that qG is the query for G if
qG is of the following form:

qG(z) = ∃w : R1(x1,y1) ∧ . . . ∧ Rn(xn,yn)

The correctness proof of RewriteTree is by induction on the size of the input
tree, and relies on the following lemma.

Lemma 1. Let T be a join graph such that T is a tree. Let qT be the query for
T , as in Definition 9. Let δ be a substitution for the free variables of qT . Let Q
be the first-order query returned by RewriteTree(T,Σ, δ).

Let I be an instance. Let νq be a valuation for the free variables of qT such
that I |= qT [νq]. Let νQ be a valuation for the free variables of Q such that

First-Order Query Rewriting for Inconsistent Databases 345

Algorithm RewriteTree(T, Σ, δ)
Let R(x, y) be the literal at the root node of T
Let x∗ = x[δ]
Let l be the arity of y
Let y∗ = y′

1, . . . , y
′
l, where y′

1, . . . , y
′
l are newly created variables

if T consists of exactly one node then
Let Qlocal = RewriteLocal(R, x∗, y, y∗, Σ, δ)
return Qlocal

end if
Let Tlocal be a tree that consists of exactly one node with literal R
Let Qlocal = RewriteTree(Tlocal, Σ, δ)
Let R1, . . . , Rm be the children of R in T
Let δ′ = δ∪{y/y′ : there exists p such that y and y′ are variables that occur at

position p in y and y∗, respectively}
for i := 1 to m do

Let Ti be the subtree of T rooted at Ri

Let Qi = RewriteTree(Ti, Σ, δ′)
end for
Let Qsubtrees =

∧
i=1...m

Qi

Let Q = Qlocal ∧ ∀y∗ : (R(x∗, y∗) → Qsubtrees)
return Q

Fig. 3. Recursive algorithm on the tree structure of the join graph

νQ(w) = νq(w) if δ(w) = w. Then, I |= Q[νQ] iff I |= qT [δ][νQ] for every repair
I of I.

From the previous lemma, we obtain the main result of the section proving
that the rewriting algorithm is correct for all queries in Ctree.

Theorem 1. Let R be a schema. Let Σ be a set of integrity constraints, consist-
ing of one key dependency per relation of R. Let q be a conjunctive query over
R such that q ∈ Ctree. Let t be a tuple. Let Q be the first-order query returned
by RewriteConsistent(q,Σ).

Then, for every instance I over R, I |= Q[t] iff t ∈ consistentΣ(q, I).

4 A Dichotomy Result

In the previous section, we presented a query rewriting algorithm which works
on queries with full joins whose join graph is a forest. Clearly, this is a sufficient
condition for a query to be first-order rewritable. In this section, we address the
following question: for which class of queries is it also a necessary condition? In
particular, we show a class of queries such that the problem of computing the
consistent answers is coNP-complete for every query of the class which does not
satisfy the conditions of our query rewriting algorithm. Notice that this estab-
lishes a dichotomy between first-order rewritability and coNP-completeness, and

346 A.D. Fuxman, R.J. Miller

Algorithm RewriteLocal(R, x∗, y, y∗, Σ, δ)

if there is at least one constant in y then
Let l be the arity of y
for i := 1 to l do

Let y′ be the variable that appears at position i of y∗

if there is a constant c at position i of y then
Let Ei be the equality y′ = c

end if
end for
EqualityPos = {i : there is a constant a position i in y}
Let Qconst =

∧
i∈EqualityPos

Ei

if δ is the identity substitution on all variables of x then
Let Qlocal = ∀y∗ : (R(x∗, y∗) → Qconst)

else
Let Qlocal = ∃y∗ : R(x∗, y∗) ∧ ∀y∗ : (R(x∗, y∗) → Qconst)

end if
end if
if there are no constants in y then

if δ is the identity substitution on all variables of x then
Let Qlocal be an empty string

else
Let Qlocal = ∃y∗ : R(x∗, y∗)

end if
end if
return Qlocal

Fig. 4. Query rewriting for given literal

is therefore much stronger than the complexity results present in the consistent
query answering literature [CM04, CLR03a]. In the literature, a class C is said
to be coNP-hard if there is at least one query q ∈ C such that CONSISTENT(q,Σ)
is a coNP-hard problem. Under such a definition, it suffices to exhibit just one
intractable query in order to conclude that the entire class is coNP-complete.
In contrast, in this section we will present a class of queries such that for every
query q in the class, CONSISTENT(q,Σ) is coNP-complete.

As a first step towards proving a dichotomy for the class of conjunctive
queries, we will focus on a subclass for which we can establish such a result.
We call this subclass C∗, and define it in Definition 10. In the definition, we give
three conditions that are meant to rule out of the class the only cases of the
dichotomy that we leave open. We illustrate the conditions as follows. Consider
the query q5 = ∃x, y : R1(x, y) ∧ R2(x, y). The join graph of this query is not a
forest; yet, it is not difficult to find a rewriting for it. What is particular about
q5 is the fact that its two literals have the same key. We rule out this case with
the first condition of Definition 10. Now, consider the query q6 = ∃x : R1(x, x).
Although it is easy to find a rewriting for this query, its join graph contains a
self-loop. We rule out the queries whose join graph is a self-loop with the second

First-Order Query Rewriting for Inconsistent Databases 347

condition of Definition 10. Finally, our query rewriting algorithm assumes that
queries have full non-key to key joins. For the moment, the case in which such
joins are partial, but the join graph is still a forest, remains open. Therefore, we
rule this case out of C∗ with the third condition of the definition.

Definition 10. We say that a conjunctive query q without repeated relation
symbols is in class C∗ if:
– for every literal R(x,y) of q, there is some variable x such that x occurs in

x, and x does not appear in any literal R′ of q such that R′ �= R, and
– the join graph of q has no self-loops.
– if the join graph of q is a forest, then every non-key to key join of q is full.

We will consider a class, called Chard, of all queries of C∗ whose join graph is
not a forest. We prove that the problem of computing the consistent answers for
every query of Chard is coNP-complete as follows. In Lemma 2, we prove that,
given a query q such that q ∈ Chard, the problem of obtaining the consistent an-
swers for q can be reduced from the problem of obtaining the consistent answers
for one of three particular query families. Queries q1, q2, and q3 shown in Figure
1 are in fact examples of these three query families. In Lemma 3, we prove that
the problem CONSISTENT(q,Σ) is coNP-complete for each such query.

Definition 11. We say that a query q is in class Chard if q ∈ C∗ and q �∈ Ctree.

Lemma 2. Let q be a query such that q ∈ Chard. Then, there is a polynomial-
time reduction from CONSISTENT(q′, Σ′) to CONSISTENT(q,Σ), where q′ is one of
the following queries:

–
∃w1, . . . , wm+1 : S1(wm+1, wm, w1) ∧ S2(w1, w2) ∧ S3(w2, w3) ∧ . . .

∧Sm(wm−1, wm)
– ∃x, x′, y : S1(x, y) ∧ S2(x′, y)
– ∃x, x′, w1, w2 : S1(x,w1) ∧ S2(x′, w2) ∧ S3(w1, w2)

Lemma 3. The problem CONSISTENT(q,Σ) is coNP-complete for the following
queries:

–
∃w1, . . . , wm+1 : S1(wm+1, wm, w1) ∧ S2(w1, w2) ∧ S3(w2, w3) ∧ . . .

∧Sm(wm−1, wm)
– ∃x, x′, y : S1(x, y) ∧ S2(x′, y)
– ∃x, x′, w1, w2 : S1(x,w1) ∧ S2(x′, w2) ∧ S3(w1, w2)

Theorem 2. Let q be a query such that q ∈ Chard. Then, CONSISTENT(q,Σ) is
coNP-complete in data complexity.

In general, by Ladner’s Theorem [Lad75], there are classes of coNP problems
for which there is no dichotomy between P and coNP-complete problems. How-
ever, this is not the case for the class of queries that is the focus of this section.
In fact, as a corollary of Theorems 1 and 2, we get a dichotomy between member-
ship in P and coNP-completeness. Notice that, given a query q such that q ∈ C∗,
it can be decided in polynomial time on which side of the dichotomy the query q

348 A.D. Fuxman, R.J. Miller

falls. Under a complexity-theoretic assumption, we also get a dichotomy between
first-order rewritability and coNP-completeness. An alternative approach, which
we leave as future work, would be to avoid complexity-theoretic assumptions,
and appeal to games arguments in order to prove first-order inexpressibility.

Corollary 1. Let q be a query such that q ∈ C∗. Then, CONSISTENT(q,Σ) is
either in P , or it is coNP-complete.
Corollary 2. Let q be a query such that q ∈ C∗. Assuming P �= coNP , the
problem CONSISTENT(q,Σ) is first-order rewritable iff q ∈ Ctree.

5 Related Work

The main difference between this work and others in the consistent query an-
swering literature is our focus on producing a first-order rewriting. Instead of
rewriting into first-order formulas, most work in the literature is based on rewrit-
ing into logic programs (e.g., [CLR03b] and [BB03]). Their focus is on obtaining
correct disjunctive logic programs for (usually large) classes of queries and con-
straints. However, given the high complexity of disjunctive logic programming,
none of these approaches focus on tractability issues.

There are two proposals in the consistent query answering literature that are
based on first-order query rewriting, but they apply to very restricted classes of
queries. Arenas et al. [ABC99] consider quantifier-free conjunctive queries (i.e.,
queries without existential quantifiers). Chomicki and Marcinkowski [CM04] pro-
pose a rewriting for simple conjunctive queries, which are queries where no vari-
ables are shared between literals (and therefore, there are no joins). We have
presented a query rewriting for a much larger, and practical, class of queries.

Chomicki and Marcinkowski [CM04] and Cal̀ı et al. [CLR03a] thoroughly
study the decidability and complexity of consistent query answering for several
classes of queries and integrity constraints. In order to show intractability of a
class, they take the usual approach of exhibiting one particular query of the class
for which the problem is intractable. To the best of our knowledge, ours is the
first dichotomy result in the area of consistent query answering.

The work on disjunctive databases [vdM98] is relevant in our context. In
particular, if Σ is a set of key dependencies, the set of all repairs of an inconsistent
database can be represented as a disjunctive database D in such a way that each
repair corresponds to a minimal model of D. However, there are no results in
the literature for first-order query rewriting over disjunctive databases. The only
tractability results in this context have been given for OR-databases [IvdMV95],
which are a restricted type of disjunctive databases. However, in general, given a
database I possibly inconsistent with respect to a set of key dependencies, there
may be no OR-database D such that all the models of D are repairs of I.

6 Conclusions and Future Work

We presented a query-rewriting algorithm for computing consistent answers. The
algorithm works on a large and practical class of conjunctive queries without

First-Order Query Rewriting for Inconsistent Databases 349

repeated relation symbols. We are currently extending the algorithm in order to
take into account queries with repeated relation symbols. Our algorithm works
on queries with full joins whose join graph is a forest. We showed a class of
queries C∗ in which this is in fact a necessary and sufficient condition for a query
to be first-order rewritable. For this class of queries, our algorithm covers all
queries which are first-order rewritable. We have mentioned that, outside the
class C∗, there are some queries whose join graph is not a forest, yet they are
first-order rewritable. We are working on an extension of the algorithm that
considers such queries.

In this work, we assumed that the set Σ of constraints that might be vio-
lated consists of key dependencies. It would be interesting to consider foreign
key dependencies as well. In this way, we would be covering the most common
constraints that are supported by commercial database systems.

Acknowledgments. We would like to thank Leonid Libkin, Marcelo Arenas,
Pablo Barcelo, and Ken Pu for their comments and feedback.

References

[ABC99] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in
inconsistent databases. In PODS, pages 68–79, 1999.

[AD98] S. Abiteboul and O. M. Duschka. Complexity of answering queries using
materialized views. In PODS, pages 254–263, 1998.

[BB03] L. Bravo and L. Bertossi. Logic programs for consistently querying data
integration systems. In IJCAI, pages 10–15, 2003.

[CLR03a] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability and complexity of
query answering over inconsistent and incomplete databases. In PODS,
pages 260–271, 2003.

[CLR03b] A. Cal̀ı, D. Lembo, and R. Rosati. Query rewriting and answering under
constraints in data integration systems. In IJCAI, pages 16–21, 2003.

[CM04] J. Chomicki and J. Marcinkowski. Minimal-change integrity maintenance
using tuple deletions. To appear in Information and Computation, 2004.

[FKMP03] R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics
and query answering. In ICDT, pages 207–224, 2003.

[Hal01] A. Halevy. Answering queries using views: A survey. VLDB Journal,
10(4):270–294, 2001.

[IvdMV95] T. Imielinski, R. van der Meyden, and K. Vadaparty. Complexity tai-
lored design: A new design methodology for databases with incomplete
information. J. Computer and System Sciences, 51(3):405–432, 1995.

[Lad75] R. E. Ladner. On the structure of polynomial time reducibility. J. of the
ACM, 22(1):155–171, 1975.

[TPC03] Transaction Processing Performance Council: TPC. TPC Benchmark H
(Decision Support). Standard Specification Revision 2.1.0, 2003.

[vdM98] R. van der Meyden. Logical approaches to incomplete information: A
survey. In Logics for Databases and Inf. Systems, pages 307–356. Kluwer,
1998.

