Context-aware Resource Sharing for People-centric Sensing

Jorge Vallejos1, Matthias Stevens1,2, Ellie D’Hondt1, Nicolas Maisonneuve3, Wolfgang De Meuter1, Theo D’Hondt1, Luc Steels2,3

1Software Languages Lab, VUB
2Artificial Intelligence Lab, VUB
3Sony Computer Science Lab Paris
Motivation

Research into new communication paradigms that empower communities to raise awareness of environmental issues and support community action
Motivation

Research into new communication paradigms that empower communities to raise awareness of environmental issues and support community action

- Ever more popular and cheaper smartphones
- User-generated content
- Growing interest for environmental issues
People-centric Sensing

• **Higher granularity**: use of mobile technology (as opposed to fixed infrastructure)

• **People-centric exposure**: People actively involved in the pollution monitoring process

• **Added semantics**: Data qualification for improved quality and quantity
NoiseTube [Maisonneuve et al, 09]

Hands-on project for monitoring and mapping noise pollution

- Realtime loudness algorithm: mobile phones as noise sensors
- GPS-based Location
- Tagging interface to add context information to the data (e.g. time, noise source, annoyance level)
NoiseTube [Maisonneuve et al, 09]

Realtime visualisation on mobile phones (e.g. risk level) and web-based visualisation

Implemented in Java (J2ME CLDC/MIDP), mainly tested on Nokia N95 8GB smart phone. Data submission to server over GPRS/3G
Sensing constrained to local (mobile phone's) resources
Sensing constrained to local (mobile phone’s) resources

Use of environmental resources
Context-aware Resource Sharing

Sensing constrained to local (mobile phone’s) resources

Use of environmental resources

Context-aware resource sharing for people-centric sensing
Context-aware Resource Sharing

- Zero infrastructure
- Volatile connections
- Resource diversity

Use of environmental resources
Programming Languages for Context-aware Systems

- Decentralised service discovery
- Non-blocking communication to deal with network failures
- Context-dependent behavioural adaptations
Programming Languages for Context-aware Systems

- Decentralised service discovery
- Non-blocking communication to deal with network failures
- Context-dependent behavioural adaptations

OO scripting language
Runs on J2ME/CLDC phones

Lisp dialect
Use LispWorks
MetroSense [Campbell et al, 09]

General purpose architecture for public sensing

- **Network symbiosis**: Sensor networks can use existing network resources e.g. communication, routing, security

- **Asymmetric design**: Take advantage of resource available at other nodes

- **Scoped interactions**
Why new languages?

- To minimize accidental complexity
Why new languages?

- To minimize accidental complexity

Essential complexity is inherent and unavoidable, accidental complexity is caused by the approach chosen to solve the problem.

Case Study

• Currently working on a case study in Brussels Region [D’Hondt, 09]

• Generalisation of NoiseTube for studying atmospheric pollution and urban microclimates
NoiseTube

Community memories for sustainable urban living

AmbientTalk

Lambic

MetroSense