1 World, Camera, Image, and Pixel Coordinates.

In class we showed that the perspective projection of a scene point \vec{X}_c is:

$$\vec{x} = \frac{f}{X_{c,3}} \vec{X}_c.$$ \hspace{1cm} (1)

Here $\vec{X}_c = (X_{c,1}, X_{c,2}, X_{c,3})^T$ are camera-centered coordinates, with the camera’s nodal point at the origin, the optical axis is on the $X_{c,3}$-axis, the image plane is perpendicular to the optical axis, and the optical axis pierces the image plane at the point $\vec{x} = (0, 0, f)^T$. Also, notice the image point $\vec{x} = (x_1, x_2, f)^T$ is a 3-vector in this camera centered frame.

Typically image coordinates are written in terms of pixels. A particular pixel can be denoted by (q_1, q_2) with q_1 the column and q_2 the row in the sampled image. Here we take $(q_1, q_2) = (1, 1)$ to be the top left corner of the image. It is again convenient to express these pixel coordinates in terms of the 3-vector $\vec{q} = (q_1, q_2, 1)^T$. The transformation from the camera centered image coordinates, \vec{x}, to pixel coordinates, \vec{q}, can then be expressed as

$$\vec{q} = M_{in} \vec{x}$$ \hspace{1cm} (2)

where M_{in} is the 3×3 matrix

$$M_{in} = \begin{pmatrix} 1/s_1 & 0 & o_1/f \\ 0 & 1/s_2 & o_2/f \\ 0 & 0 & 1/f \end{pmatrix}. \hspace{1cm} (3)$$

Here (o_1, o_2) are the pixel coordinates for the point the optical axis pierces the image plane (i.e. the ‘center’ of the image), and s_1, s_2 specify the pixel spacing in the x and y directions. The constants o_i, s_i for $i = 1, 2$, and f are called the intrinsic camera parameters.

Let $\vec{X}_w = (X_{w,1}, X_{w,2}, X_{w,3})^T$ denote a world-based coordinate frame. In general, the coordinate transformation from \vec{X}_w to the camera centered coordinates, \vec{X}_c, takes the form

$$\vec{X}_c = M_{ex} \begin{pmatrix} \vec{X}_w \\ 1 \end{pmatrix}, \hspace{1cm} (4)$$

where M_{ex} is the 3×4 matrix

$$M_{ex} = \begin{pmatrix} R & -R\vec{d} \end{pmatrix}. \hspace{1cm} (5)$$

Here R is the 3×3 rotation matrix specifying the relative rotation between the camera and world coordinate frames, and $\vec{d} = (d_1, d_2, d_3)^T$ specifies the location of the camera’s nodal point in world coordinates. The 3D position and orientation of the camera, as specified by R and \vec{d}, are called the extrinsic camera parameters.
Combining the mappings M_{int} and M_{ext} we find from the above analysis that a world point \tilde{X}_w is imaged to pixel $\tilde{q} = (q_1, q_2, 1)^T$ when

$$\beta \tilde{q} = M_{int} M_{ext} \begin{pmatrix} \tilde{X}_w \\ 1 \end{pmatrix}, \quad \beta = \frac{X_c}{f}. \quad (6)$$

Here β must be positive in order for the scene point at \tilde{X}_w to be in front of the camera’s nodal point.