CSC2423 FINITE MODEL THEORY AND DESCRIPTIVE COMPLEXITY
Fall 2005
http://www.cs.toronto.edu/~libkin/csc2423/f03

General:
Class meets on Thursdays
BA 2135, 4–6pm

Instructor:
Leonid Libkin
libkin@cs.toronto.edu
PT388a
Office hours: by appointment

Prerequisites:
being familiar with the basic notions of first-order propositional and predicate logic (if you took an undergrad logic course, you should probably be fine);
basic knowledge of complexity theory (classes P, NP, PSPACE, LOGSPACE);
basic knowledge of language theory (regular languages, automata)

Text

How to buy it:
(UofT bookstore, Chapters and amazon.ca are overpriced: $73, $68, and $73!)
Instead:
amazon.com – US$47=CAD$55
Springer with author discount – US$37=CAD$44 plus shipping

Topics
Examples from database theory, language theory, complexity
First-order logic (FO), expressiveness, failure of classical techniques in the finite
Ehrenfeucht-Fraïssé games, winning strategies, locality
Ordered vs unordered settings, Gurevich’s and Grohe-Schwentick theorems
Complexity of FO
Extensions of FO: adding counting, locality; Adding second-order quantification, monadic second-order (MSO), connection with regular languages and automata
Coding Turing machines: Trakhtenbrot’s theorem (failure of completeness in the finite), and Fagin’s theorem (logical characterization of NP)
Fixed point logics, Immerman-Vardi theorem (capturing PTIME); other complexity classes (logspace, pspace)
Finite variable logic, pebble games
0-1 law for FO and finite variable logic, the random graph; randomness phenomena over finite structures
Finite structures embedded into infinite ones; connection with constraint databases; new techniques for expressive power
New directions, connections with formal methods and constraint satisfaction

Requirements
Easy problem sets
Assignment 1
Assignment 2
Each assignment consists of three sections: exercises, problems, and challenges. The first two are compulsory.

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>sit-in policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>section</td>
<td></td>
</tr>
<tr>
<td>exercises</td>
<td>not allowed</td>
</tr>
<tr>
<td>problems</td>
<td>allowed but not feel free</td>
</tr>
<tr>
<td>challenges</td>
<td>encouraged</td>
</tr>
</tbody>
</table>

Late Assignments
No late submission for exercises. The grading standards will be different for problems submitted late. No deadline for challenges.