Gossip algorithms for solving Laplacian systems

Anastasios Zouzias
University of Toronto

joint work with Nikolaos Freris (EPFL)

Based on:
1. Fast Distributed Smoothing for Clock Synchronization (CDC ‘12)
2. Randomized Extended Kaczmarz for Solving Least-Squares (Arxiv, May ‘12)
I. Problems: Solving Laplacian & edge-vertex systems
II. Motivation: Clock Synchronization over WSNs
III. Randomized Gossip Model & Averaging Problem
IV. Gossip Solvers via Randomized (Extended) Kaczmarz
I. Problems: Solving Laplacian & edge-vertex systems

II. Motivation: Clock Synchronization over WSNs

III. Randomized Gossip Model & Averaging Problem

IV. Gossip Solvers via Randomized (Extended) Kaczmarz
Distributed solver: Laplacian system

Model of computation
- Each node is aware of its neighbors; exchanges packets with them only
- Static network; no communication errors; ignore numerical issues
- Synchronous, asynchronous & Gossip

Problem 1
Input: Each node i gets b_i
Goal: Each node i computes i^{th} coordinate of $x_{LS} := L^\dagger b$
Distributed solver: edge-vertex system

Edge-vertex System

\[
\begin{align*}
G &= (V,E): n \text{ nodes, } m \text{ edges} \\
\text{Problem II} & \quad \text{Input: Each edge } (i,j) \text{ gets } y(i,j) \\
\text{Goal: Each node } i \text{ computes } i^{th} \text{ coordinate of } x_{LS} = B^\dagger y
\end{align*}
\]

edge-vertex incident matrix of G:

\[
B_{ek} := \begin{cases}
-1, & \text{if } k = i; \\
1, & \text{if } k = j; \\
0, & \text{otherwise.}
\end{cases}
\]

Normal equation of \(Bx = y\) is Laplacian system (\(L = B^T B\))
Outline

I. Problems: Solving Laplacian & edge-vertex Systems

II. Motivation: Clock Synchronization over WSNs

III. Randomized Gossip Model & Averaging Problem

IV. Gossip Solvers via Randomized (Extended) Kaczmarz
Case Study: Clock Synchronization over WSNs

Assumptions

- Each node has clock; same speed
 \(o_v(t) = t + o_v, \quad o_v \in \mathbb{R} \)
- Node \(v \) does not know \(o_v \)
Nodes can approx. relative offsets \(o_{uv} = o_v - o_u \) for every \(u \in \text{Neigh}(v) \)

Clock Synchronization Problem

Input: Estimates \(\hat{o}_{uv} = o_{uv} + \mathcal{N}(0, 1) \) for all \((u, v) \in E \)

Goal: Compute offsets \((\tilde{o}_u)_{u \in V} \) that min. \(\max_{u,v} \mathbb{E}|\tilde{o}_{uv} - o_{uv}|^2 \) over all pairs of nodes
Tree-based Approach

Idea: Build a spanning tree

Path $u \sim v : \text{diam}(G)$

Every edge: normal error

$$\hat{o}_{uv} = \sum_{(u',v') \in P} \hat{o}_{u'v'}$$

Sync error between u & v
grows like $\approx O(\sqrt{\text{diam}(G)})$

In general, no hope for better accuracy

...but wireless networks are "well-connected"
Modeling Wireless Networks

...as Random Geometric Graphs

- n nodes uniform over square

- Connectivity $[GK00]$: $r = \mathcal{O}\left(\sqrt{\log n/n}\right)$

- Diameter: $\mathcal{O}\left(\sqrt{n/\log n}\right)$

- Tree-based approach: error $\tilde{O}(n^{1/4})$

Q: Can we do better on Random Geometric Graphs?

Yes! Spatial Smoothing $[KEES03,GK06]$
Observation: Every loop in G: sum of relative offsets equals zero

Idea: Incorporate the loop constraints

How?
Encode constraints in linear system:

$$Bx = 0$$

Relative offset of (i, j)
Properties of Least-Squares

Gaussian error: compute LS solution of $Bx = \hat{o}$

Thm[KEES03] Replace each edge by unit resistor. Then error variance between any pair of nodes u and v is:

$$E|\tilde{\delta}_{uv} - o_{uv}|^2 \sim R_{\text{eff}}(u, v)$$

Effective resistances of RGG bounded by $O(1)$ [GK06]

Tree-based vs Smoothing
$O(n^{1/4})$ vs $O(1)$

Q: How to compute the LS solution?
The Model Matters...

Use coordinate descent: \[
\frac{\partial}{\partial x_u} \|Bx - o\|^2 = 0
\]

Synchronous Jacobi

\[\hat{o}_v = 0, \quad \forall v \in V\]

For \(k = 1, 2, \ldots\)

\[\tilde{o}_v^{(k+1)} \leftarrow \frac{1}{d_v} \sum_{u \in \text{Neigh}(v)} \left(\tilde{o}_u^{(k)} + \hat{o}_{uv} \right)\]

Thm[GK06]: After \(k \geq \frac{4m^2}{\beta^2} \ln(\|x^*\|/\varepsilon)\) rounds, it holds that

\[\|x^{(k)} - x^*\|_2 \leq \varepsilon\]

where \(\beta\) is the min-cut value

Asynchronous Jacobi

Each node \(v \in V\) regularly:

- estimates relative offsets with nghbrs
- broadcasts its current offset \(\hat{o}_v\)
- updates its estimate:

\[\tilde{o}_v \leftarrow \frac{1}{d_v} \sum_{u \in \text{Neigh}(v)} \left(\tilde{o}_u + \hat{o}_{uv} \right)\]

It converges[BT89]
The Model Matters...

Randomized Gossip Model
(a.k.a. asynchronous time model)

[BT89, BGPS06]

Each node u (randomly) activates itself w.p. p_u & performs local computation.

Synchronous Model

$\hat{\delta}_v = 0, \quad \forall v \in V$

For $k = 1, 2, \ldots$

$$\hat{\delta}_v^{(k+1)} \leftarrow \frac{1}{d_v} \sum_{u \in \text{Neigh}(v)} \left(\hat{\delta}_u^{(k)} + \hat{\delta}_{uv} \right)$$

Thm[GK06]: After $k \geq \frac{4m^2}{\beta^2} \ln(\|x^*\|/\epsilon)$ rounds, it holds that

$$\|x^{(k)} - x^*\|_2 \leq \epsilon$$

where β is the min-cut value

Asynchronous Model

Each node $v \in V$ regularly:

- estimates relative offsets with nghbrs
- broadcasts its current offset $\hat{\delta}_v$
- updates its estimate:

$$\hat{\delta}_v \leftarrow \frac{1}{d_v} \sum_{u \in \text{Neigh}(v)} (\hat{\delta}_u + \hat{\delta}_{uv})$$

It converges[BT89]
Outline

I. Problems: Solving Laplacian & edge-vertex systems

II. Motivation: Clock Synchronization over WSNs

III. Randomized Gossip Model & Averaging Problem

IV. Gossip Solvers via Randomized (Extended) Kaczmarz
Distributed Averaging:

Input: Every node \(u \) gets \(w_u \)

Goal: Every node want access to global average

Gossip averaging algorithm

1. Every node \(u \) activates uniformly at random
2. Picks random neighbor \(v \) and averages their current values \(w_u, w_v \)

[BGPS06] proved that \(\mathcal{O}(\frac{n}{\lambda_2(G)} \log(n/\varepsilon)) \) rounds are sufficient whp

Special cases, complete graph [KSSV00,KDG03,KDN+06]

How many rounds required to approx. within \(\varepsilon \)?

Basic primitive for other functions

Averaging can solve Problems I and II

[BDFSV10,XBL05,XBL06]
Gossip Model

Assumptions

• Each node u has independent Poisson time process: rate γ_u
• Each node activates when its arrival occurs
• Equivalently*: single global Poisson process: rate $\sum_{u \in V} \gamma_u$
• Arrivals correspond to rounds

Claim: Non-uniform sampling of nodes is feasible with zero communication under gossip model (given γ_u‘s)

Goal: Design and analyze gossip algorithms for Problem I and II

*minimum of ind. Poisson is equivalent to single Poisson with sum of their rates
Outline

I. Problems: Solving Laplacian & edge-vertex systems
II. Motivation: Clock Synchronization over WSNs
III. Randomized Gossip Model & Averaging Problem
IV. Gossip Solvers via Randomized (Extended) Kaczmarz
Kaczmarz Method

Initialize: \(x^{(0)} = 0 \)

Repeat:
Set \(i_k = k \mod m + 1 \)

\[
\begin{align*}
\mathbf{x}^{(k+1)} &= \mathbf{x}^{(k)} + \frac{y_{i_k} - \langle A(i_k), \mathbf{x}^{(k)} \rangle}{\|A(i_k)\|^2} A(i_k) \\
k &= k + 1
\end{align*}
\]

(Assumption: \(\mathbf{A} \mathbf{x} = \mathbf{y} \) has solution)

It convergences [K37]

Huge literature; many extensions; rediscovered many times
Randomized Kaczmarz Method

Initialize: $x^{(0)} = 0$

Repeat:
- Pick $i_k \in [m]$ w.p. $p_i \propto \|A^{(i)}\|^2$
- $x^{(k+1)} = x^{(k)} + \frac{y_{i_k} - \langle A^{(i_k)}, x^{(k)} \rangle}{\|A^{(i_k)}\|^2} A^{(i_k)}$
- $k = k + 1$

(Assumption: $Ax=y$ has solution)

Exponential convergence

$\mathbb{E} \left\| x^{(k)} - x^* \right\|^2 \leq \left(1 - \frac{1}{\kappa_F^2(A)} \right)^k \|x^*\|^2$

where $\kappa_F^2(A) := \frac{\|A\|_F^2}{\sigma_{\text{min}}^2(A)}$
Let’s apply RK on Problems I and II
RK Laplacian Solver

Laplacian System

\[\begin{bmatrix} L \end{bmatrix} \begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} b \end{bmatrix} \]

Randomized Kaczmarz (RK) [SV06]

Initialize: \(x^{(0)} = 0 \)

Repeat:
- Pick \(i_k \in [n] \) w.p. \(p_i \propto \| L^{(i)} \|^2 \)
- \(x^{(k+1)} = x^{(k)} + \frac{b_{i_k} - \langle L^{(i_k)}, x^{(k)} \rangle}{\| L^{(i_k)} \|^2} L^{(i_k)} \)
- \(k = k + 1 \)

RK analysis & diag. preconditioning: \(\tilde{O}(n/\lambda^2(G)) \) rounds whp

Gossip Laplacian Solver

Each node \(u: x_u = 0 \)

Repeat:
- Node \(u \) activates w.p. \(d_u^2 + d_1 \)
- broadcasts \(\theta = x_u - \frac{1}{1 + d_u} \sum_{\ell \in N_u} x_\ell \)
- sets \(x_u \leftarrow x_u + \frac{\theta - b_u/d_u}{1 + d_u} \)
- \(x_v \leftarrow x_v + \frac{\theta - b_u/d_u}{1 + d_u} \)

(Assumption: \(Lx = b \) has solution)
RK Edge-vertex Solver

Consistency assumption (limitation of RK)

How to handle the general case?

Randomized Kaczmarz (RK)

Initialize: $x^{(0)} = 0$

Repeat:

Pick $e = (i, j) \in E$ uniformly

$e = (i, j) \in E$

$B = \begin{bmatrix} 1 & -1 \\
\end{bmatrix}$

$m \times n$

$\begin{bmatrix} x \\
\end{bmatrix}$

$\begin{bmatrix} B \\
\end{bmatrix}$

y

$x^{(k+1)} = x^{(k)} + \frac{y_e - \langle B(e), x^{(k)} \rangle}{2} B(e)$

$k = k + 1$

RK analysis & diag. preconditioning:

$\tilde{O}(n/\lambda_2(G))$ rounds whp

Node u activates w.p. d_u & selects random neighbor v

- sends x_u & receives x_v
- Performs: $x_u \leftarrow (x_u + x_v + y_{(u,v)})/2$

Similarly for node v

(Assumption: $Bx = y$ has solution)
Randomized Kaczmarz (RK) [SV06]

Initialize: $\mathbf{x}^{(0)} = 0$

Repeat:
1. Pick $i_k \in [m]$ w.p. $p_i \propto \|A^{(i)}\|^2$
2. $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \frac{y_{i_k} + w_{i_k} - \langle A^{(i_k)}, \mathbf{x}^{(k)} \rangle}{\|A^{(i_k)}\|^2}A^{(i_k)}$
3. $k = k + 1$

(Assumption: $A\mathbf{x} = \mathbf{y}$ has solution)

RK is robust to noise [Needell09]

$\mathbb{E} \left\| \mathbf{x}^{(k)} - \mathbf{x}_{LS} \right\|^2 \leq \left(1 - \frac{1}{\kappa_F^2(A)}\right)^k \|\mathbf{x}_{LS}\|^2 + \frac{\|\mathbf{w}\|^2}{\sigma_{\min}^2(A)}$

Converges to ball centered at LS solution
Robustness of RK: convergence into fixed ball

Idea:
‘Modify’ original system \(Ax = y \) s.t.
1) \(x_{LS} \) is preserved \(\checkmark \)
2) Modified system has LS error \(\approx 0 \) \(\checkmark \)

How?
\[
Ax = y \quad \rightarrow \quad Ax = y_{\mathcal{R}(A)}
\]

Problem
Given subspace as \(\text{colspan}(A) \), vector \(y \) and \(\varepsilon > 0 \)
Goal: Find \(z \) s.t. \(\| z - y_{\mathcal{R}(A)} \| \leq \varepsilon \)
Randomized Orthogonal Projection

Problem
Given subspace as $\text{colspan}(A)$, vector y and $\varepsilon > 0$

Goal: Find z s.t. $\|z - y_{R(A)}\| \leq \varepsilon$

randOP

Initialize: $z^{(0)} = y$

Repeat:
- Pick $j_k \in [n]$ w.p. $p_j \propto \|A(j)\|^2$
- $z^{(k+1)} = (I - \frac{A(j_k)A^T(j_k)}{\|A(j_k)\|^2})z^{(k)}$
- $k = k + 1$

Exponential convergence $[Z. Freris 12]$:
$$
E \left\| z^{(k)} - y_{R(A)} \right\| \leq \left(1 - \frac{1}{\kappa^2_F(A)} \right)^k \|y\|^2
$$

Orthogonality gives $y_{R(A)}$
Randomized Extended Kaczmarz for LS

$RK + \text{randOP} =$
Randomized Extended Kaczmarz

Randomized Extended Kaczmarz

Initialize: $x^{(0)} = 0, z^{(0)} = y$

Repeat:
1. Pick $i_k \in [m]$ w.p. $p_i \propto \|A^{(i)}\|^2$
2. Pick $j_k \in [n]$ w.p. $p^{(j)} \propto \|A^{(j)}\|^2$
3. $z^{(k+1)} = (I - P_{j_k})z^{(k)}$
4. $x^{(k+1)} = x^{(k)} + \frac{y_{i_k} - z_{i_k}^{(k)}}{\|A^{(i_k)}\|^2} A^{(i_k)}$
5. $k = k + 1$

Exponential convergence [Z. Freris12]

$$
\mathbb{E} \left\| x^{(k)} - x_{LS} \right\|^2 \leq \left(1 - \frac{1}{\kappa_F^2(A)} \right)^{\frac{k}{2}} \left(\left\| x_{LS} \right\|^2 + \frac{2 \|b\|^2}{\sigma_{\text{min}}(A)} \right)
$$

Inspired by Extended Kaczmars method [Pop99]
Problem II Grand Finale

Randomized Extended Kaczmarz

Initialize: $x^{(0)} = 0; z^{(0)} = y$

Repeat:

Pick node j_k w.p. d_{j_k}

$z^{(k+1)} = (I - P_{j_k})z^{(k)}$

Pick $e = (i, j) \in E$ uniformly

$x^{(k+1)} = x^{(k)} + \frac{y_e - z_e^{(k)} - \langle B(e), x^{(k)} \rangle}{2} B(e)$

$k = k + 1$

Same rate of convergence

Gossip Edge-Vertex Solver

Every node u: $x_u = 0$, $z_{(u,v)} = y_{(u,v)}$ in N_u

Repeat:

Node u activates w.p. d_u & selects random neighbor v

- Sends x_u & receives x_v

- Performs:

\[
 x_u \leftarrow (x_u + x_v + y_{(u,v)} - z_{(u,v)})/2
\]

Similarly node v

- Update weights on edges adjacent to u; broadcast to neighbors
Laplacian System

\[L \mathbf{x} = \mathbf{b} \]

Two solutions:
1. Use REK as before
2. Use RK & gossip averaging to project \(\mathbf{b} \) onto \(\mathbf{1}^\perp \), \(\mathbf{b}' = \mathbf{b} - b_{\text{avg}} \mathbf{1} \)
Summary

- Gossip model of computation
- Randomized Iterative Solvers: RK & REK
- Interplay between randomized solvers & gossip algorithms

Topics not covered:
- Randomized coordinate descent [LL08,Nest10]
- Termination, numerical issues; communication errors, etc
Thank you