Verification of Parameterized Concurrent Programs By Modular Reasoning about Data and Control

Zachary Kincaid Azadeh Farzan

University of Toronto

January 30, 2012

Goal

Compute numerical invariants (e.g. intervals, octagons, polyhedra) for parameterized concurrent programs.

Solution: annotation ι such that if some thread T's program counter is at v, then $\iota(v)$ holds over the globals & locals of T.

Goal

Compute numerical invariants (e.g. intervals, octagons, polyhedra) for parameterized concurrent programs.

Solution: annotation ι such that if some thread T's program counter is at v, then $\iota(v)$ holds over the globals & locals of T.

Our program model has:

- Unbounded concurrency: program is the parallel composition of n copies of some thread T, where n is a parameter
 - Invariants must be sound for all n

Goal

Compute numerical invariants (e.g. intervals, octagons, polyhedra) for parameterized concurrent programs.

Solution: annotation ι such that if some thread T's program counter is at v, then $\iota(v)$ holds over the globals & locals of T.

Our program model has:

- Unbounded concurrency: program is the parallel composition of n copies of some thread T, where n is a parameter
 - Invariants must be sound for all n
- Unbounded data domains

Goal

Compute numerical invariants (e.g. intervals, octagons, polyhedra) for parameterized concurrent programs.

Solution: annotation ι such that if some thread T's program counter is at v, then $\iota(v)$ holds over the globals & locals of T.

Our program model has:

- Unbounded concurrency: program is the parallel composition of n copies of some thread T, where n is a parameter
 - Invariants must be sound for all n
- Unbounded data domains

Natural model for device drivers, file systems, client/server-type programs, ...

- We develop an attack on the parameterized verification problem based on separating it into a data module and a control module
 - Data module computes numerical invariants
 - Control module computes a program model

- We develop an attack on the parameterized verification problem based on separating it into a **data** module and a **control** module
 - Data module computes numerical invariants
 - Control module computes a program model

We propose data flow graphs as a program representation for (parameterized) concurrent programs

- We develop an attack on the parameterized verification problem based on separating it into a data module and a control module
 - Data module computes numerical invariants
 - Control module computes a program model

- We propose data flow graphs as a program representation for (parameterized) concurrent programs
- 3 We give a semicompositional algorithm for constructing data flow graphs

- We develop an attack on the parameterized verification problem based on separating it into a **data** module and a **control** module
 - Data module computes numerical invariants
 - Control module computes a program model

- We propose data flow graphs as a program representation for (parameterized) concurrent programs
- 3 We give a semicompositional algorithm for constructing data flow graphs

Sequential program analysis

- Flow analysis: solve a system of equations valued over some abstract domain
- For sequential programs, equations come from the control flow graph:

Sequential program analysis

- Flow analysis: solve a system of equations valued over some abstract domain
- For sequential programs, equations come from the control flow graph:

How about parameterized programs?

Data flow

Represent data flow, not control flow:

Data flow

Represent data flow, not control flow:

Data flow

Represent data flow, not control flow:

Why data flow?

Invariant: x = 0acquire(lock) acquire(lock) Break invariant assert(x = 0)Restore invariant x := 0release(lock) release(lock)

Data flow graphs

A DFG for a program P is a directed graph $P^{\sharp} = \langle Loc, \rightarrow \rangle$, where

 →⊆ Loc × Vars × Loc is a set of directed edges labeled by program variables

$$(x := x + 1)$$
 $(x := x + y)$

- Loc contains a distinguished uninit vertex
- Note: # of vertices does not depend on # of threads

• A program is *represented* by a DFG P^{\sharp} if all its feasible traces are represented by P^{\sharp} .

- A program is *represented* by a DFG P^{\sharp} if all its feasible traces are represented by P^{\sharp} .
- A trace is $\it represented$ by a DFG P^{\sharp} if all data flow edges it witnesses belong to P^{\sharp}

- A program is *represented* by a DFG P^{\sharp} if all its feasible traces are represented by P^{\sharp} .
- A trace is *represented* by a DFG P^{\sharp} if all data flow edges it witnesses belong to P^{\sharp}
- A trace *witnesses* a data flow $u \to^x v$ iff it is of the form:

- A program is *represented* by a DFG P^{\sharp} if all its feasible traces are represented by P^{\sharp} .
- A trace is *represented* by a DFG P^{\sharp} if all data flow edges it witnesses belong to P^{\sharp}
- A trace *witnesses* a data flow $u \to^x v$ iff it is of the form:

Computing invariants with DFGs

Define an *inductive annotation* to be a solution to these equations.

Computing invariants with DFGs

DFGs induce a set of equations:

Define an inductive annotation to be a solution to these equations.

Theorem (DFG soundness)

If σ is a trace represented by a DFG P^{\sharp} , and ι is an inductive annotation for P^{\sharp} , then ι safely approximates the states reached by σ .

Overview

Overview

Constructing data flow graphs

Goal

Compute the set of all $\langle u,x,v\rangle$ such that there is some feasible trace that witnesses $u\to^x v$

- Strategy:
 - · Overapproximate the set of feasible traces
 - Compute dataflow edges witnessed by one of these traces

Precise DFG construction needs data

(flag is initially 0)

Precise DFG construction needs data

Precise DFG construction needs data

ι-feasible traces

Use an annotation ι to rule out infeasible traces: a trace σ is ι -infeasible if there is some subtrace $\sigma'\langle T_n,v\rangle$, some thread m, and some location u such that

- Thread m is at location u after executing σ'
- Thread n may not execute v in any state satisfying $\iota(u)$.

(flag is initially 0)

• $\iota(x := alloc(...)) : flag = 0 \Rightarrow infeasible$


```
\langle T_1, x := null \rangle
   (\langle T_2, assume(flag) \rangle
\langle T_2, \text{assert}(x != \text{null}) \rangle
   quard: f laq \neq 0
   T_1 at x := alloc(...)
   T_2 at assume (flag)
   is \iota(x := alloc(...)) \land flag \neq 0
   satisfiable?
```

- $\iota(x := alloc(...)): flag = 0 \Rightarrow infeasible$
- $\iota(x := alloc(...)) : true \Rightarrow feasible$

Constructing data flow graphs

Goal

Compute the set of all $\langle u,x,v\rangle$ such that there is some feasible trace that witnesses $u\to^x v$

- Strategy:
 - Overapproximate the set of feasible traces
 - Compute dataflow edges witnessed by one of these traces

Constructing data flow graphs

Goal

Compute the set of all $\langle u, x, v \rangle$ such that there is some feasible trace that witnesses $u \to^x v$

- Strategy:

 - Compute dataflow edges witnessed by one of these traces

Constructing data flow graphs

Goal

Compute the set of all $\langle u, x, v \rangle$ such that there is some feasible trace that witnesses $u \to^x v$

- Strategy:
 - - Compute dataflow edges witnessed by one of these traces
 - · Parameterization is still an obstacle

Constructing data flow graphs

Goal

Compute the set of all $\langle u,x,v\rangle$ such that there is some feasible trace that witnesses $u\to^x v$

- Strategy:
 - - Compute dataflow edges witnessed by one of these traces
 - Parameterization is still an obstacle
 - ullet Data flow edges for 2-thread ι -feasible witnesses can be computed efficiently

Projection

Lemma (projection)

Let ι be an annotation, let σ be an ι -feasible trace, and let N be a set of threads. Then $\sigma|_N$, the projection of σ onto N, is also ι -feasible.

Projection

Lemma (projection)

Let ι be an annotation, let σ be an ι -feasible trace, and let N be a set of threads. Then $\sigma|_N$, the projection of σ onto N, is also ι -feasible.

Projection

Lemma (projection)

Let ι be an annotation, let σ be an ι -feasible trace, and let N be a set of threads. Then $\sigma|_N$, the projection of σ onto N, is also ι -feasible.

• A data flow edge $u \to^x v$ has an ι -feasible witness iff it has a 2-thread ι -feasible witness

- Given a DFG, we know how to compute numerical invariants
- Given numerical invariants, we know how to compute a DFG

- Given a DFG, we know how to compute numerical invariants
- Given numerical invariants, we know how to compute a DFG

- Given a DFG, we know how to compute numerical invariants
- Given numerical invariants, we know how to compute a DFG

- Given a DFG, we know how to compute numerical invariants
- Given numerical invariants, we know how to compute a DFG

- Given a DFG, we know how to compute numerical invariants
- Given numerical invariants, we know how to compute a DFG

- Given a DFG, we know how to compute numerical invariants
- Given numerical invariants, we know how to compute a DFG

Experimental results

- We implemented our algorithm in a tool, DUET
- Integer overflow & array bounds checks for 15 Linux device drivers
 - DUET proves 1312/1597 (82%) assertions correct in 13m9s

Experimental results: Boolean programs

Boolean abstractions of Linux device drivers:

Suite 1	DUET	Linear interfaces ¹	Improvement
Assertions proved	2503	1382	81% increase
Average time	3.4s	16.9s	5x speedup

Suite 2	DUET	Dynamic cutoff detection ²	Improvement
Assertions proved	55	19	189% increase
Average time	8.2s	24.9s	3x speedup

¹S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized concurrent programs using linear interfaces. In CAV, pages 629–644. 2010.

²A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff detection in parameterized concurrent programs. In CAV, pages 645–659, 2010.

Conclusion

• Separate reasoning into a data module and a control module

Conclusion

- Separate reasoning into a data module and a control module
- Data flow graphs represent parameterized programs

Conclusion

- Separate reasoning into a data module and a control module
- Data flow graphs represent parameterized programs
- Semi-compositional DFG construction algorithm

Questions?

Thank you for your attention.

Bonus slide: future work

- Improved algorithms for inferring groups of related variables to improve DFGs analyses over relational domains (e.g., octagons, polyhedra)
- Extension to handle aliasing