
Inductive Data Flow Graphs

Azadeh Farzan Zachary Kincaid
University of Toronto

Andreas Podelski
University of Freiburg

Abstract
The correctness of a sequential program can be shown by the anno-
tation of its control flow graph with inductive assertions. We pro-
pose inductive data flow graphs, data flow graphs with incorpo-
rated inductive assertions, as the basis of an approach to verifying
concurrent programs. An inductive data flow graph accounts for a
set of dependencies between program actions in interleaved thread
executions, and therefore stands as a representation for the set of
concurrent program traces which give rise to these dependencies.
The approach first constructs an inductive data flow graph and then
checks whether all program traces are represented. The size of the
inductive data flow graph is polynomial in the number of data de-
pendencies (in a sense that can be made formal); it does not grow
exponentially in the number of threads unless the data dependen-
cies do. The approach shifts the burden of the exponential explosion
towards the check whether all program traces are represented, i.e.,
to a combinatorial problem (over finite graphs).

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Correctness Proofs; F.3.1 [Logics and Meanings of
Programs]: Specifying, Verifying and Reasoning about Programs

General Terms Languages, Verification

Keywords Concurrency, Verification, Static Analysis

1. Introduction
The success of the two main approaches to algorithmic verification
is well established for their intended target domains:

• static analysis for the verification of sequential programs [8],
• model checking for the verification of finite-state concurrent

protocols [7].

This paper addresses the algorithmic verification of concurrent
programs. Considerable progress has been made with approaches
that, depending on terminology, extend static analysis to concurrent
control or extend model checking to general data domains [3, 10–
12, 16, 21, 26]. Each of these approaches provides a different angle
of attack to circumvent the same fundamental issue: the space
required to prove the correctness of a concurrent program grows
exponentially in the number of its threads (in at least some practical
examples).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’13, January 23–25, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1832-7/13/01. . . $10.00

We propose inductive data flow graphs (iDFGs), data flow
graphs with incorporated inductive assertions, as the basis of an
approach to verifying concurrent programs. An iDFG accounts for
a set of dependencies between data operations in interleaved thread
executions, and therefore stands as a representation for the set of
concurrent program traces which give rise to these dependencies.
The approach first constructs an iDFG and then checks whether all
program traces are represented. The size of an iDFG is polynomial
in the number of data dependencies (in a sense that can be made for-
mal); it does not grow exponentially in the number of threads unless
the data dependencies do. Intuitively, this succinctness is possible
because iDFGs represent only the data flow of the program, and
abstract away control features that are irrelevant to the proof. The
approach shifts the burden of the exponential explosion towards the
check whether all program traces are represented, which is a com-
binatorial problem (over finite graphs).

There are several directions in which one can explore the practi-
cal potential of the approach. This is not the focus of this paper. The
focus in this paper is to introduce the approach and to investigate
its formal foundation.

We will next explain in what sense our approach relies on the
respective strength of both static analysis and model checking.

In static analysis, techniques have been developed that are suc-
cessful in finding solutions to fixpoint equations, namely by solv-
ing them over abstract domains. In the settings where the ele-
ments of the abstract domain denote state predicates, static anal-
ysis amounts to establishing a Floyd-Hoare annotation of the con-
trol flow graph of the program. The validity of the fixpoint equa-
tion translates to the inductiveness of the annotation, i.e., the valid-
ity of the Hoare triple at each node of the control flow graph. To
establish the validity (of the solution for the fixpoint equation/of
the Hoare triples), the Floyd-Hoare annotation of the control flow
graph has to be stored. This becomes an obstacle for the naive ap-
proach to apply static analysis to a concurrent program. The naive
approach is to flatten the concurrent program, i.e., transform it to a
non-deterministic sequential program whose executions include all
interleaved executions of the concurrent program. The size of the
control flow graph of the flattened program grows exponentially
with the number of threads.

One motivation behind the work in this paper is the question
whether static analysis—with the techniques that are well estab-
lished for sequential programs [4]—can be put into work for con-
current programs. Our approach does not aim at improving those
techniques (for constructing abstract domains, widening, strength-
ening loop invariants, etc.) but, instead, relies on them. The ques-
tion is whether the output of the static analysis applied to inter-
leaved executions of the threads of a concurrent program can be
assembled (and used) in a space-efficient way. The answer we pro-
pose lies in iDFGs.

In model checking, techniques have been developed that are
successful for the exhaustive exploration of the finite, though expo-
nentially large state space of concurrent protocols. Model checking

is a combinatorial problem that is “easy” in the sense that it can
be reduced to search, and therefore can be solved in PSPACE. Our
approach relies on the efficiency of space exploration techniques
as used in model checking for checking whether all program traces
are represented by a given candidate iDFG proof. The check is a
combinatorial problem which is directly related to model check-
ing, and inherits its theoretical complexity bound; i.e., the check
can be implemented in polynomial space (polynomial in the num-
ber of threads of the given concurrent program).

We will next explain how the concept of data dependencies in
connection with Hoare triples leads to iDFGs.

z := x+y

x++ y++
Assume trace τ is composed of

three actions a1: x++, a2: y++, and
a3: z:=x+y (possibly from different
threads of a concurrent program). The two
edges in the graph to the right express the
data dependences in τ . Conceptually, the
graph represents the set of all traces that preserve the data depen-
dences expressed by its edges. Such traces contain the three ac-
tions in an order that complies with the two edges (i.e., a1 and
a2 must occur before a3); they can contain additional actions as
long as these actions do not modify the value of x, y, or z. All
such traces have the same end state, which formally means that
they satisfy the same set of pre/postcondition pairs. Now, in the set-
ting of verification where correctness is defined by one particular
pre/postcondition pair, we would like to have a more targeted sense
of data dependencies (and thus a means to define a more targeted
set of traces).

As an example, let us take the pre/postcondition pair that defines
the correctness of the trace τ in the Hoare triple:

{x ≥ 0 ∧ y ≥ 0} x++ ; y++ ; z:=x+y {z > 0}.
The essence of the correctness proof for τ consists of the three
Hoare triples below.

{x > 0 ∧ y > 0} z:=x+y {z > 0}
{y ≥ 0} y++ {y > 0}
{x ≥ 0} x++ {x > 0}

(1)

In addition to these essential Hoare triples, the correctness proof
for τ requires the following stability Hoare triples, which state the
irrelevance of an action with respect to an assertion:

{y ≥ 0} x++ {y ≥ 0}
{x > 0} y++ {x > 0}

We obtain the two Hoare triples below by taking the sequential
composition of Hoare triples that appear above.

{x ≥ 0} x++ ; y++ {x > 0}
{y ≥ 0} x++ ; y++ {y > 0}

To obtain a correctness proof for τ , we apply the conjunction rule
to these two Hoare triples and then sequentially compose with the
Hoare triple for z:=x+y in (1).

z := x+y

x++ y++

x ≥ 0 y ≥ 0

x > 0 y > 0

z > 0

The iDFG to the right is constructed
from the correctness proof for the trace τ .
The annotation of edges with assertions
corresponds to the three Hoare triples
in (1) which form the essence of the cor-
rectness proof.

We consider this iDFG to be a repre-
sentation the set of all traces that have the
three Hoare triples in (1) for the essence
of the correctness proof (all other Hoare triples in the correctness
proof state just the stability of an assertion under an action). By
definition, all traces in this set are correct. We next give examples
of traces in the set.

If we permute the actions a1 and a2 in the trace τ , the resulting
trace τ ′ lies in the set: the essence of the correctness proof for
τ ′ is the three Hoare triples in (1); the other Hoare triples in the
correctness proof for τ ′ state the stability of x ≥ 0 under the action
y++ and the stability of y > 0 under the action x++.

If we add actions to the trace τ (or to the trace τ ′) and the
assertion at each position with an added action is stable under the
added action, then the new trace lies in the set: the essence of its
correctness proof are the Hoare triples in (1); the new Hoare triples
in the correctness proof are stability Hoare triples.

The edges in an iDFG explicitly formulate ordering constraints
on the actions in a trace (as in the example above). We will next
illustrate that the assertion labels of edges implicitly define addi-
tional ordering constraints.

z := x*(y-x)

x > 0 y > x

x := y+1

z > 0

y := x+1

x ≥ 0y ≥ 0The iDFG shown to the
right can be constructed from
the correctness proof for the
trace composed of the actions
b1: x:=y+1, b2: y:=x+1, and
b3: z:=x*(y-x) (we use the
same pre/postcondition pair as
above). The assertions labeling
the two edges are x > 0 and
y > x. The assertion x > 0 is stable under the action b2 (the
Hoare triple {x > 0} y:=x+1 {x > 0} holds). However, the as-
sertion y > x is not stable under the action b1 (the Hoare triple
{y > x} x:=y+1 {y > x} does not hold). This means that the ac-
tion b2 may come after the action b1, but not vice versa. That is, the
trace b1.b2.b3 lies in the set of traces represented by the iDFG, but
the trace b2.b1.b3 does not. Note that the trace b1.b2.b3 is correct
wrt the specification but the trace b2.b1.b3 is not.

We use iDFGs as the basis of an algorithm to verify concurrent
programs (see also Figure 3). The algorithm iteratively picks a
program trace, applies a static analysis to the program trace, uses
the output of the static analysis to construct an iDFG, merges the
new iDFG with the one constructed so far, and checks whether the
set of traces that is represented by the resulting iDFG includes all
program traces. If this is the case, the iteration stops; the program
is proven correct.

In Section 2 we will see examples in the context of concurrent
programs. Sections 3 to 7 then present the individual conceptual
and technical contributions of our work:

• the concept of iDFGs as a representation of a set of interleav-
ings of thread executions, and the characterization of program
correctness by an iDFG (Section 3),

• the reduction of the check of program correctness, given a
program and an iDFG, to a combinatorial problem in PSPACE
(Section 4),

• the formalization of a measure of data complexity and the proof
that iDFGs can be polynomial in this measure (Section 5),

• a verification algorithm (Section 6), and
• the proof that the algorithm constructs a polynomial-size iDFG

under the assumption that the underlying static analysis pro-
vides the required inductive assertions (Section 7).

2. Examples
In this section, we use a few simple examples of concurrent pro-
grams to illustrate iDFGs.

Lamport’s Bakery Algorithm
The code below implements a version of Lamport’s mutual exclu-
sion protocol for two threads [23]. The integer variables n1 and n2

e1 := true

tmp1 := n2

n1 := tmp1 + 1

e1 := false

[¬e2]
[(n2 = 0 ∨ n2 ≥ n1)]

e2 := true

tmp2 := n1

n2 := tmp2 + 1

e2 := false

[¬e1]
[(n1 = 0 ∨ n1 > n2)]

a1 :
a2 :
a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :
b2 :
b1 :

b6 :

Trace 1
init

[(n1 = 0 ∨ n1 > n2)]

n2 ≥ 0

n1 > 0 n1 < n2

true

tmp1 := n2

n1 := tmp1 + 1 n2 := tmp2 + 1

tmp2 := n1

tmp1 ≥ 0 tmp2 ≥ n1

e1 := true

tmp1 := n2

e2 := true

tmp2 := n1

n2 := tmp2 + 1

e2 := false

[¬e1]
[(n1 = 0 ∨ n1 > n2)]

n1 := tmp1 + 1

e1 := false

[¬e2]
[(n2 = 0 ∨ n2 ≥ n1)]

a1 :
a2 :

a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :
b2 :
b1 :

b6 :

Trace 4

e1 := true

[¬e1]

true

e1 = true

init

false

false

PreC

PreC

n1 ≥ 0

n2 > 0n2 < n1

true

[(n2 = 0 ∨ n2 ≥ n1)]

n1 := tmp1 + 1 n2 := tmp2 + 1

tmp2 := n1tmp1 := n2

tmp1 ≥ n2 tmp2 ≥ 0

e2 := true

tmp2 := n1

n2 := tmp2 + 1

e2 := false

[¬e1]
[(n1 = 0 ∨ n1 > n2)]

e1 := true

tmp1 := n2

n1 := tmp1 + 1

e1 := false

[¬e2]
[(n2 = 0 ∨ n2 ≥ n1)]

a1 :
a2 :
a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :
b2 :
b1 :

b6 :

Trace 2
init

false

PreCiDFG G1 :

e1 := true

tmp1 := n2

e2 := true

tmp2 := n1

n2 := tmp2 + 1

e2 := false

n1 := tmp1 + 1

e1 := false

[¬e2]
[(n2 = 0 ∨ n2 ≥ n1)]

[¬e1]
[(n1 = 0 ∨ n1 > n2)]

a1 :
a2 :
a3 :
a4 :

a5 :
a6 :
b5 :

b4 :
b3 :

b2 :
b1 :

b6 :

Trace 3
init

[(n1 = 0 ∨ n1 > n2)]

tmp1 := n2

n1 := tmp1 + 1 n2 := tmp2 + 1

tmp2 := n1

false

n2 = 0 n1 = 0

tmp1 = 0 tmp2 = 0

n1 = 1 n2 = 1

PreC

iDFG G2 :

iDFG G3 :
iDFG G4 :

Figure 1. Four traces of the Bakery algorithm and their corresponding iDFGs. The four iDFGs constitute a proof of the correctness of the
mutual exclusion property. Correctness here means: every trace that violates mutual exclusion is infeasible, i.e., has postcondition false . The
precondition PreC is n1 = n2 = 0 ∧ e1 = e2 = false. The action init is a dummy label of the initial node in an iDFG.

(the tickets) are initially set to 0, the boolean variables e1 and e2 to
false. We use the notation [exp] for assume statements (“if(exp)
then skip else block”). Thread B cannot enter its critical sec-
tion unless either n1 = 0 (Thread A has not asked to enter the
critical section) or n1 < n2 (Thread A has asked but it has done
so after Thread B). Symmetrically for Thread A, except if there is
a tie (n1 = n2), Thread A has priority over Thread B to enter its
critical section first. We break the ticket acquisition statement (n1
:= n2 + 1) into two statements tmp1 := n2 and n1 := tmp1 +
1 to reflect the possibility of the update happening non-atomically
(we treat individual program statements as atomic). The flag e1
(initially false) is used to communicate that Thread A is entering
(that is, it is in the process of acquiring its ticket). The flag e2 is
used similarly for Thread B.

e1 := true

tmp1 := n2

n1 := tmp1 + 1

e1 := false

[¬e2]
[(n2 = 0 ∨ n2 ≥ n1)]

// critical section
n1 := 0

a1 :
a2 :
a3 :
a4 :
a5 :
a6 :

Thread A

a7 :

e2 := true

tmp2 := n1

n2 := tmp2 + 1

e2 := false

[¬e1]
[(n1 = 0 ∨ n1 > n2)]

// critical section
n2 := 0

b5 :
b4 :
b3 :
b2 :
b1 :

b6 :

Thread B

b7 :

We wish to verify that this protocol guarantees mutual exclu-
sion: only one thread at a time can be in its critical section. Each
trace leading to a state where both threads are in their critical sec-
tions (after executing a6 respectively b6) must be infeasible (i.e.,
there exists no initial state that has an execution along the trace) or,
equivalently, must have the postcondition false.

Trace 1 in Figure 1 is a run of Bakery where first Thread A runs
until it enters its critical section and then Thread B runs until it

enters its critical section. The iDFG G1 in Figure 1 expresses the
essence of the proof that Trace 1 is infeasible. This graph should
be read from bottom to top, and should be thought of as backwards
proof argument, along the lines of the following dialogue between
Student and Teacher:

Why is Trace 1 infeasible? – Thread B can not execute the
statement b6. – Why not? – When Thread B tries to execute
b6, n1 > 0 (Thread A has a ticket) and n1 < n2 (Thread A’s
ticket is smaller than Thread B’s ticket).

The dialogue then bifurcates:

• Why is n1 > 0 at b6? – Thread A executes n1:=tmp1+1
at a3 when tmp1 ≥ 0. – But what about everything that
happens between a3 and b6? – Irrelevant. Nothing between
a3 and b6 can change the fact that n1 > 0. – Why is
tmp1 ≥ 0 at a3? – . . .

• Why is n1 < n2 at b6? – . . .

The iDFG G1 in Figure 1 keeps account of the relevant details
of the trace (e.g., the edge labeled n1 > 0 represents that a3 must
be executed before b6, and nothing executed between a3 and b6
may change the fact that n1 > 0). It abstracts away irrelevant
details of the trace (e.g., the ordering between a2 and b2). The iDFG
represents the set of traces which are infeasible for essentially the
same reason as Trace 1 (i.e., which have essentially the same Hoare
triples in the proof that the postcondition is false). The traces
in the set can be obtained from Trace 1 by reordering actions or
by inserting actions that are irrelevant for the proof (they leave
the corresponding assertion stable). Informally, the set contains all
traces where Thread B enters its critical section while Thread A has
a smaller (nonzero) ticket.

Every trace that violates mutual exclusion falls into one of four
scenarios, each scenario being exemplified by a trace in Figure 1.
The scenarios are: (Trace 1) Thread B attempts to enter its critical
section when Thread A has a smaller ticket, (Trace 2) the symmet-
ric scenario where Thread A attempts to enter its critical section
when Thread B has a smaller ticket, (Trace 3) Thread B attempts to
enter its critical section when Thread A and B have the same ticket
(recalling that Thread A has priority in this situation), (Trace 4)
Thread B enters its critical section without waiting for Thread A
to receive its ticket. The iDFGs G1,. . . , G4 express the essence of
the proof of the infeasibility of each trace that falls into the corre-
sponding scenario. Together, they form a proof of the correctness
of Bakery. This is because each trace of Bakery falls into one of
the four scenarios; formally, it lies in one of the four sets repre-
sented by G1,. . . , G4 (which one can check with the algorithm of
Section 4). Note that there is no need for a new iDFG for the trace
symmetric to Trace 4. The corresponding scenario is accounted for
by the scenario of Trace 3. This asymmetry is due to the asymmetry
of the protocol (Thread A has priority over Thread B if they have
the same ticket).

Increment Example
We use a simple program with a parametrized number of threads
to illustrate the exponential succinctness of data flow graphs. The
program has one global variable x (initially 0) and is composed of
a thread that asserts x ≤ 0 and a parametrized numberN of threads
that each increment x once.

x++a1 :

Thread 1

x++aN :

Thread N
. . .

Thread 0

a0 : assert(x ≤ N)

init

x = 0

x = 1

x = N− 1

x++

x++

x++

x++

x ≤ N

x = 0

[x > N]

false

x ≤ N

x ≤ N

x ≤ N

x ≤ N

The program is safe (the assert
never fails) if x ≤ N is an invariant. For-
mally, the correctness of the program
means that each trace containing the
assume statement [x>N] is infeasible,
i.e., has postcondition false. The iDFG
shown on the right is a proof of the cor-
rectness of the program. Its size linear
in N . As one can check algorithmically
(Section 4), the set of traces it represents
contains all program traces. Thus, it is a
proof of the correctness of the program.

The program is based on an ex-
ample that was used in [28] to illus-
trate the need for auxiliary variables
in compositional proof rules. The pro-
gram is a challenge for many exist-
ing approaches. We ran experiments,
for example, with the tool THREADER
[16], which generates Owicki-Gries type
proofs and rely-guarantee type proofs,
and with the tool SLAB [11], which uses
abstraction-refinement using Craig inter-
polation with slicing. In both tools, the space used for the proof
grows exponentially in N .

If we consider the increment actions of each thread as pairwise
distinct (i.e., the program has N actions instead of just one), then
we can give a correctness proof in the form of an iDFG of size
quadratic inN . The graph can be depicted as an (N+1)×N matrix
of vertices. Each column i contains N vertices labeled with the
increment action of the i-th thread (plus the vertex labeled [x>N]).
Each vertex in row j has an edge to every vertex in row j + 1.
The set represented by this iDFG thus contains traces with more
than one occurrences of the increment action of the same thread
(for example, the traces corresponding to a column). These traces

do not correspond to a path in the control flow graph but they are
correct. This illustrates the point that a set of correct traces can
represented more compactly if it is larger.

Ticket Algorithm
In the parametrized version of the ticket algorithm [1] depicted
below, the statement at line `1,i (for i ∈ [1, N]) indicates an
atomic operation that increments t after assigning its current value
to mi. Initially s = t = 0. The algorithm is a challenge for many
existing approaches to concurrent program verification in that, as
with the increment example, the space used for the proof will grow
exponentially in N .

m1 := t++

[m1 ≤ s]

// critical section
s := s + 1

�1,1 :
�1,2 :

�1,3 :

Thread 1

mN := t++

[mN ≤ s]

// critical section
s := s + 1�N,3 :

�N,2 :
�N,1 :

Thread N

. . .

We can give a correctness proof in the form of an iDFG of
quadratic size in N . It is related to the one for the increment
example. We present its construction (for N = 3) as an example in
Section 6.

3. Inductive Data Flow Graphs (iDFGs)
We will first introduce the notation needed to define the correctness
of programs. We then introduce the notion of inductive data flow
graphs and use it to characterize program correctness.

To abstract away from the specifics of a programming language
and from the specifics of a program analysis and verification en-
vironment, we use a very general setup. A program is given as an
edge-labeled graph P = 〈Loc, δ〉 (the control flow graph) where
the edge labels are taken from the set Actions (a given set of ac-
tions); i.e., δ ⊆ Loc×Actions×Loc. We say that the edge between
the two vertices (locations) ` and `′ is labeled by the action a if
(`, a, `′) ∈ δ.

The program P = 〈Loc, δ〉 can be defined as the parallel
composition of a number N of programs P1 = 〈Loc1, δ1〉, . . . ,
PN = 〈LocN , δN 〉 (we will say that P1, . . . ,PN are the threads
of the program P). Its set of locations is the Cartesian product
of the sets of thread locations, i.e., Loc = Loc1 ×· · · × LocN .
Each edge (`i, ai, `

′
i) in the i-th thread Pi gives rise to an edge

(`, ai, `
′) in the program P; the edge is labeled by the same action

ai and goes from the location ` = (`1, . . . , `i, . . . , `N) to the
location `′ = (`1, . . . , `

′
i, . . . , `N) (i.e., only the i-th component

can change). In algorithms that take P1, . . . ,PN as the input, the
control flow graph for the program P is generally not constructed
explicitly.

We assume a set Φ of assertions. Each assertion ϕ is a first-
order logic formula over a given vocabulary that includes a set
Var of variables (the program variables). We assume that the set
of assertions comes with a binary relation, the entailment relation.

Each action a comes with a binary relation between assertions
(the set of its precondition/postcondition pairs). We say that the
Hoare triple {ϕpre} a {ϕpost} is valid if the binary relation for the
action a holds between the assertions ϕpre and ϕpost.

It is useful to suppose that we have actions that correspond to
assume statements. That is, for every assertion ψ we have an action
[ψ] such that the Hoare triple {ϕpre} [ψ] {ϕpost} is valid if the
assertion ϕpost is entailed by the conjunction ψ ∧ ϕpre.

A trace τ is a sequence of actions, say τ = a1 . . . an. We ex-
tend the validity of Hoare triples to traces in the canonical way.
The Hoare triple {ϕpre} τ {ϕpost} is valid for the empty trace
ε if ϕpre entails ϕpost. It is valid for the trace τ = a1 . . . an if
each of the Hoare triples {ϕpre} a1 {ϕ1}, . . . , {ϕn−1} a {ϕpost}

is valid. Later, when we formulate algorithms, we will abstract
away from the specific procedure (static analysis, interpolant gener-
ation, . . .) used to construct the sequence of intermediate assertions
ϕ1, . . . , ϕn−1.

To define the correctness of the program P , we need define its
set of program traces. We assume that the control flow graph of
the program P comes with an initial location `0 and a set F of
final locations. We say that the trace τ is a program trace of P if τ
labels a path between the initial and a final location. Not every such
path corresponds to a possible execution of the program. The set of
program traces is generally not prefix-closed.

We say that the program P is correct wrt. to the
pre/postcondition pair (ϕpre, ϕpost) if the Hoare triple
{ϕpre} τ {ϕpost} is valid for every program trace τ of P .
We will later characterize program correctness in terms of the
notion that we introduce next.

Definition 3.1 (Inductive Data Flow Graph, iDFG) An inductive
data flow graph (iDFG)

G = 〈V,E, ϕpre, ϕpost, v0, Vfinal〉
consists of a vertex-labeled edge-labeled graph 〈V,E〉, an assertion
ϕpre (the precondition), an assertion ϕpost (the postcondition), a
vertex v0 ∈ V (the initial vertex), and the subset of vertices
Vfinal ⊆ V (the set of final vertices).

• Vertices are labeled by actions. We use act(v) to denote the
action that labels v. The initial vertex v0 has a dummy label:
the special action init which has the same Hoare triples as
skip, i.e., {ϕ} init {ϕ′} holds if ϕ entails ϕ′.

• Edge are labeled by assertions, i.e., E ⊆ V × Φ× V . We re-
quire that the initial vertex v0 has no incoming edges. We will
use the notation v

ϕ−→ v′ to denote an edge from v to v′ labeled
by the assertion ϕ.

• The labeling of edges with assertions is inductive, i.e., for
every vertex v labeled with, say, the action a, the Hoare triple
{ψ} a {ψ′} holds for assertions ψ and ψ′ chosen as follows.

If v is the initial vertex (i.e., v = v0), then ψ is the precon-
dition ϕpre; otherwise, ψ is the conjunction of the assertions
labeling the incoming edges to v.
If v is a final vertex (i.e., v ∈ Vfinal), then ψ′ is the conjunc-
tion of the postcondition ϕpost and the assertions labeling
the outgoing edges of v; otherwise ψ′ is just the conjunc-
tion of the assertions labeling the outgoing edges of v. ⌟

Remark 3.2 In the special case of an iDFG G where the initial
vertex is also a final vertex (v0 ∈ Vfinal), Definition 3.1 implies that
the precondition of G entails its postcondition (ϕpre |= ϕpost). ⌟

We will use an iDFGG as a representation of a set of traces JGK
(the denotation of G). The set JGK consists of those traces τ
for which G can be used—in a prescribed way—to justify the
correctness of τ (in this paper, whenever the context is given by
an iDFG G, the term correctness refers to the pre/postcondition
pair ofG). We will next use an example to explain how one uses an
iDFG G to justify the correctness of a trace τ , i.e., how one derives
that τ ∈ JGK.

Consider the iDFGs G0, . . . , G4 in Figure 2 (which all have
the same precondition, ϕpre = x ≥ 0 ∧ y ≥ 0, but different post-
conditions), the trace τ0 = x++.y++.z:=x+y, and its prefix traces
τ1 = x++.y++, τ2 = x++, and τ3 = ε. We will derive τ0 ∈ JG0K
via τ3 ∈ JG3K, τ2 ∈ JG1K, and τ1 ∈ JG1K in one derivation branch
and via τ3 ∈ JG4K, τ2 ∈ JG4K, and τ1 ∈ JG2K in the other.

By Remark 3.2, the precondition ofG3 entails its postcondition,
so we can use G3 to justify the correctness of the empty trace wrt.
the specification of G3 (i.e., the validity of {ϕpre} ε {x ≥ 0}).
Thus, τ3 ∈ JG3K.

The iDFG G1 has the postcondition x > 0. The trace τ2 is of
the form τ2 = τ3.x++. We have already used G3 to justify that
τ3 has the postcondition x ≥ 0. Since, by the inductiveness of G1,
the Hoare triple {x ≥ 0} x++ {x > 0} is valid, we can use G1 to
justify the correctness of τ2 (wrt. the postcondition x > 0). Thus,
τ2 ∈ JG1K.

The trace τ1 is of the form τ1 = τ2.y++. We have already used
G1 to justify that τ2 has the postcondition x > 0. The iDFG G1

has the postcondition x > 0 which is stable under the action y++,
i.e., {x > 0} y++ {x > 0} is valid. Taken together, this means
that we can use G1 also to justify the correctness of τ1 (wrt. the
postcondition x > 0). Thus, τ1 ∈ JG1K.

We use G2 to justify the correctness of τ1 (now wrt. the post-
condition y > 0). In three steps that are similar but not symmet-
ric to the previous one, we derive (1) ε ∈ JG4K (by Remark 3.2),
(2) τ2 ∈ JG4K (because τ2 = ε.x++ and the postcondition of G4

is stable under the action x++, i.e., {y ≥ 0} y++ {y ≥ 0}), and
(3) τ1 ∈ JG2K (τ1 = τ2.y++ and, by the inductiveness of G1,
{y ≥ 0} x++ {y > 0} is valid).

The trace τ0 is of the form τ0 = τ1.z:=x+y. We can
use G1 and G2 together to justify that τ1 has the postcon-
dition x > 0 ∧ y > 0 which is the conjunction of the postcon-
ditions of G1 resp. G2. Since, by the inductiveness of G0,
{x > 0 ∧ y > 0} z:=x+y {z > 0} is valid, we can use G0 to
justify the correctness of τ0 (wrt. the postcondition z > 0). Thus,
τ0 ∈ JG0K.

z := x+y

x++ y++

x ≥ 0 y ≥ 0

x > 0 y > 0

z > 0

init

x ≥ 0 ∧ y ≥ 0

x := 2

true

x > 0

In the derivation above,
the iDFGs G1 and G2 corre-
sponding to the two incom-
ing edges to the final node of
G0 are treated in conjunction:
one derives that the prefix τ1
of τ0 lies in JG1K and in
JG2K. We next illustrate that
the notion of iDFGs also pro-
vides a concept of disjunc-
tion. In the iDFG G′0 to the
right, two of the three incom-
ing edges to the final node are labeled with the same assertion,
namely x > 0. The two iDFGs corresponding to the two edges are
G1 and G′1, where G1 is as before and G′1 is the iDFG whose final
node is the new node (labeled with the action x:=2). Both, G1 and
G′1, have the postcondition x > 0. They are treated in disjunction:
in order to derive τ0 ∈ JG′0K, one can derive that τ1 lies in JG1K or
in JG′1K. As a consequence, we can derive not only τ0 ∈ JG′0K (via
τ1 ∈ JG1K) but also τ ′0 ∈ JG′0K where τ ′0 = x:=2.y++.z:=x+y
(via τ ′1 ∈ JG′1K where τ ′1 = x:=2.y++).

The examples above illustrate how one can use an iDFG G
to justify the correctness of a trace τ and derive τ ∈ JGK. The
definition below generalizes the examples.

Definition 3.3 (Denotation of an iDFG, JGK) We define when a
trace τ lies in the denotation of an iDFG G, formally

τ ∈ JGK

by induction over the construction of the trace τ . The empty trace
τ = ε lies in JGK iff v0 ∈ Vfinal. The trace τ = τ ′.a obtained by
attaching the action a at the end of the trace τ ′ lies in the denotation
of an iDFG G of the form

G = 〈V,E, ϕpre, ϕpost, v0, Vfinal〉
if either:

• the postcondition of G is stable under the action a and the trace
τ ′ lies in the denotation of G, i.e.,

{ϕpost} a {ϕpost} and τ ′ ∈ JGK

z := x+y

x++ y++

x ≥ 0 y ≥ 0

x > 0 y > 0

z > 0

z := x+y

x++ y++

x ≥ 0 y ≥ 0

x > 0 y > 0

z > 0

z := x+y

x++ y++

x ≥ 0 y ≥ 0

x > 0 y > 0

z > 0

G0 : G1 : G2 :

init

x ≥ 0 ∧ y ≥ 0

init

x ≥ 0 ∧ y ≥ 0

init

x ≥ 0 ∧ y ≥ 0

z := x+y

y++

x ≥ 0 y ≥ 0

y > 0

z > 0

init

x ≥ 0 ∧ y ≥ 0

z := x+y

x++

x ≥ 0 y ≥ 0

x > 0

z > 0

init

x ≥ 0 ∧ y ≥ 0G3 : G4 :

y++

y > 0

x++

x > 0

Figure 2. Example iDFGs used to illustrate Definition 3.3. The five iDFGs differ in the postcondition ϕpost and the set of final vertices Vfinal.
In each iDFG, Vfinal consists of the vertex with a dangling outgoing edge (the edge has no target or its target lies in the gray part of the graph),
and ϕpost is the assertion labeling that edge. For example, the final vertex of G1 is the vertex labeled with the action x++ and ϕpost is x > 0;
the final node of G3 is the initial vertex and ϕpost is x ≥ 0.

or
• one of the final vertices vf ∈ Vfinal is labeled by the action a,

and:
the assertions ϕ1, . . . , ϕn are the labels of the incoming
edges of the final vertex vf , i.e.,

{ϕ1, . . . , ϕn} = {ψ | v ψ−→ vf},
for each i = 1, . . . , n, the trace τ ′ lies in the denotation
of the iDFG Gi which we obtain from G by taking the
assertion ϕi for the postcondition and the set of vertices Vi
(defined below) for the set of final vertices, i.e.,

Gi = 〈V,E, ϕpre, ϕi, v0, Vi〉
where Vi is the set of vertices that have an outgoing edge
labeled with the assertion ϕi to the final vertex vf , i.e.,

Vi = {v | v ϕi−→ vf}. ⌟

Remark 3.4 An alternative, equivalent definition of the denotation
of an iDFG is based on fixpoints. Given the iDFG G as above, we
define a monotone function

F : (V → 2Actions∗)→ (V → 2Actions∗)

over the complete lattice V → 2Actions∗ as follows:

F (L)(v0) = {ε}
and for all v 6= v0,

F (L)(v) =
⋂

{ϕ|∃u∈V.u ϕ−→v}

⋃
{u|u ϕ−→v}

L(u).Stable(ϕ)∗.act(v)

where
Stable(ϕ) = {a ∈ Actions | {ϕ} a {ϕ}}

We use L̂ to denote the least fixpoint of F . The denotation ofG can
be equivalently defined as below.

JGK =
⋃

v∈Vfinal

L̂(v).Stable(ϕpost)
∗

⌟

The following observation, a direct consequence of Defini-
tion 3.3, relates the correctness of a trace with the denotation of
an iDFG.

Remark 3.5 Let G = 〈V,E, ϕpre, ϕpost, v0, Vfinal〉 be an iDFG.
Then for any τ ∈ JGK, the Hoare triple {ϕpre} τ {ϕpost} holds. ⌟

Since we defined that the program P is correct wrt.
the pre/postcondition pair (ϕpre, ϕpost) if the Hoare triple

{ϕpre} τ {ϕpost} is valid for every program trace, the above ob-
servation gives immediately rise to a characterization of program
correctness.

Theorem 3.6 (Program correctness via iDFG). A program P is
correct wrt. the precondition ϕpre and the postcondition ϕpost if
there exists an iDFG G with precondition ϕpre and postcondition
ϕpost such that every program trace of the program P lies in the
denotation of the iDFG G:

{program traces of P} ⊆ JGK.

We say that G is a proof for P if the above inclusion holds. In
the next sections, we will investigate how one can algorithmically
check the inclusion for a given program and a given iDFG, and how
one can construct an iDFG.

4. Checking iDFGs
In order to show that a given iDFGG is a proof for a given program
P , we need to check the condition that every program trace of P
lies in the denotation ofG. We will reduce this check to an inclusion
problem between two automata.

The set of program traces of the program P is the set of label-
ings of paths between the initial location `0 and a final location
` ∈ F in the control flow graph of the program P (as mentioned
previously, not every such path corresponds to a possible execution
of the program). Thus, the set of program traces is a regular lan-
guage over the alphabet Actions, the set of actions. It is recognized
by the program P viewed as an automaton. Its set of states is Loc,
the set of program locations. Its transition are the edges `1

a−→ `2
(state `1 goes to state `2 upon reading letter a). The initial state is
the initial location `0 and the set of final states is the set F of final
locations. We use L(A) to denote the language recognized by the
automaton A. We thus have

{program traces of P} = L(P).

We will next transform an iDFG G into an alternating finite
automaton. Alternating finite automata [5, 6] or AFA are a gener-
alization of NFA. This generalization is easily understood if one
views the generalization from DFA to NFA as follows. The value
of the deterministic successor function is generalized from a single
successor state to a disjunction of states, and the initial state is gen-
eralized to be a disjunction of states. The NFA associates with any
word a Boolean expression (in fact, a disjunction of states) obtained
by repeatedly rewriting the initial formula using the successor func-
tion, and accepts if that Boolean expression evaluates to true under
the assignment that sends final states to true and non-final states to
false. The generalization to AFA is then very natural: one allows a

general Boolean expression over states for the image of the succes-
sor function and for the initial condition.

From data flow graph G to alternating finite automaton AG.
Given the data flow graph G = 〈V,E, ϕpre, ϕpost, v0, Vfinal〉, we
define the AFA AG = 〈Σ, Q, δ, q0, Qfinal〉 where

• Σ = Actions

• Q = {(ψ, v) | ∃v′ ∈ V. v ψ−→ v′} ∪ {(ϕpost, vf) | vf ∈ Vfinal}
• δ((ψ, v), a) = skip((ψ, v), a) ∨ step((ψ, v), a) where

skip((ψ, v), a) =

{
(ψ, v) if {ψ} a {ψ}
false otherwise

step((ψ, v), a) ={∧
{ϕ|v′ ϕ−→v}

∨
{v′|v′ ϕ−→v}(ϕ, v

′) if act(v) = a

false otherwise

• q0 =
∨
vf∈Vfinal

(ϕpost, vf)

• Qfinal = {(ψ, v) ∈ Q | v = v0}.

The observation below is immediate by the fact that the construc-
tion of AG mimics the definition of the denotation of G. We write
Lrev for the reversal of the language L.

Remark 4.1 The set of traces denoted by G is the reverse of the
language recognized by AG, i.e., JGK = L(AG)rev. ⌟

We can now reformulate Theorem 3.6 from the previous section.
The check whether a given language is included in the reversal of
the language of a given AFA can bypass the construction of the
reversal of the AFA (because we can reverse the program traces
instead).

Theorem 4.2 (Checking program correctness via an iDFG). A pro-
gram P is correct wrt. the precondition ϕpre and the postcondition
ϕpost if there exists an iDFGG with precondition ϕpre and postcon-
dition ϕpost such that the language inclusion

L(P) ⊆ L(AG)rev

holds for the program automaton of P and the alternating finite
automaton AG derived from the iDFG G.

The theorem above expresses that we can shift the burden of
having to deal with the exponential size of the control flow graph
of a concurrent program P defined by the parallel composition of
N threads to a combinatorial problem over finite graphs (and thus
to a place where it hurts less, in comparison to a setting where one
has to deal with data). We can view the problem as a finite-state
model checking problem since it is equivalent to the satisfaction
of a linear time property (a regular safety property defined by the
AFA) by a finite-state model (the control flow graph of P). It is a
classical result that this problem can be solve in polynomial space.

Theorem 4.3 (PSPACE). The problem of checking whether an
iDFG G is a proof for a program P given as the parallel composi-
tion of N threads, (i.e., checking whether all program traces of P
are included in the denotation of G) is PSPACE (in the number N
of threads).

5. Succinctness of iDFGs
In this section, we justify our claim that iDFGs are succinct proof
objects. We introduce localized proofs in order to define a measure
of the difficulty of proving that given program P satisfies a spec-
ification (ϕpre, ϕpost); we call this measure the data complexity of
P (with respect to (ϕpre, ϕpost)). We prove that if there exists a

“small” proof of correctness for a program (i.e., if the program has
low data complexity), then there exists a small iDFG proof.

It is easy to construct an iDFG proof from a control flow graph
with a Floyd annotation by replacing edges with vertices, and
vertices with edges. This construction proves the completeness
of our proof rule (relative to the completeness of Floyd/Hoare
proofs), but it leaves something to be desired: for a concurrent
programP , the iDFG resulting from this construction is of the same
size as the control flow graph for P , which is exponential in the
number of threads in P . In the rest of this section, we develop a
characterization of when it is possible to prove that smaller iDFG
proofs exist.

Consider the increment example from Section 2. There is an
intuitive sense in which it is easy to prove that this program is
correct because, although the size of the control flow graph for
increment is exponential in the number of threads, the number
of distinct assertions in the labeling of the control flow graph as
required by a Floyd/Hoare proof is linear (the assertions appearing
in the Floyd annotation are the ones of the form x = i, for
i ∈ [1, N]). Following this example, a first attempt at defining
a measure of the inherent difficulty of proving a program correct
w.r.t. a specification may be “the minimal number of assertions in
a Floyd/Hoare proof of the property.” This definition fails a natural
requirement for such a measure, which is that the if the threads have
no shared data (disjoint parallelism), then their parallel composition
should have a small proof. It is for this reason that we introduce the
concept of localized proofs. We first explain the intuition behind
localized proofs, and then give their formal definition.

Localized proofs are a way of exposing “how compositional” a
Floyd/Hoare proof is, while avoiding syntactic issues common to
practical compositional proof methods such as auxiliary variables
in Owicki-Gries or Rely/Guarantee. A localized proof essentially
splits each assertion in the Floyd annotation of the control flow
graph ofP into a global assertion and a set of local assertions (local
for a thread). The total number of distinct assertions (both global
and local) can then be seen as a measure of the inherent complexity
of the proof. The intuition behind this view comes from the idea
of transforming a succinct proof (in some other framework, e.g.,
Owicki-Gries) to a Floyd/Hoare proof for the product program. In
performing this transformation, assertions from the succinct proof
will be replicated several times: an assertion attached to the control
location ` of some thread Pi will appear as a conjunct in each
assertion attached to a location of the control flow graph ofP where
thread Pi is at `, i.e., a location of the form (`1, . . . , `i, . . . , `N)
where `i = `.

Definition 5.1 (Localized proof) Given a concurrent program P
defined by the parallel composition of N threads P1, . . . , PN and
a pre/postcondition pair (ϕpre, ϕpost), a localized proof

〈ι0, ι1, . . . , ιN 〉
is as a tuple of annotations (i.e., mappings from locations of the
control flow graph of P to assertions) where each assertion ι0(`)
(“the global assertion at `”) may refer to global and local variables
but each assertion ιi(`) may refer only to the local variables of
thread Pi.
1. If the edge (`, a, `′) labeled by the action a from the location `

to the location `′ in the control flow graph of P is induced by
the edge (`k, a, `

′
k) of the thread Pk (i.e., if ` = (`1, ..., `N)

and `′ = (`′1, ..., `
′
N) then `i = `′i for i 6= k), then the Hoare

triple
{ι0(`) ∧ ιk(`)} a {ι0(`′) ∧ ιk(`′)}

is valid and for all i > 0 different from k, the local assertion is
the same for location ` and location `′; i.e., ιi(`) = ιi(`

′) for
i 6= k.

2. The assertions at the initial location are entailed by the precon-
dition; i.e., ϕpre |= ιi(`0) for i = 0, 1, . . . , N

3. Every final location is annotated with the same assertions
and these assertions entail the postcondition; i.e., there exists
ϕ0, ϕ1, . . . , ϕN ∈ Φ such that for all final locations ` and all i,
ιi(`) = ϕi, and also ϕ0 ∧ ϕ1 ∧· · · ∧ ϕN |= ϕpost. ⌟

A localized proof can be viewed as a particular presentation of the
Floyd/Hoare proof that labels each location ` with the conjunction
of the global assertion and all local assertions for location `.

In a degenerate case of a localized proof, the local annotations
ι1,· · · , ιN are all trivial; i.e., ιi(`) = true for each location ` of P
and for i = 1, . . . , N . In this case, the whole assertion for location
` in a Floyd/Hoare proof is put into the global assertion ι0(`) of the
localized proof.

The size of a localized proof ι = 〈ι0, ι1, . . . , ιN 〉 is the number
of distinct assertions appearing in ι. Formally,

size(ι) =
∑

i∈[1,N]

|Actionsi| · |rng(ι0)| · |rng(ιi)|

where rng(ι) denotes the range of the annotation ι, and Actionsi is
the set of actions in the i-th thread Pi.

Example 5.2 Consider the following simple example program,
consisting of N threads, which each increment a local variable ti
before storing that value in a global variable x:

Thread 1: t1++; x:=t1
...

Thread N: tN++; x:=tN

In the Hoare proof that this program satisfies the specification
ϕpre : x = t1 = ... = tN = 0/ϕpost : x = 1, a distinct assertion is
required for each combination of values for the ti and x variables
(except the combination where x = 1 and each ti = 0). The total
number of such assertions is 2N+1−1. In the localized Hoare proof,
ιi assigns ti = 1 to every location after thread i executes ti++ and
ti = 0 to every other location. The global annotation ι0 assigns
x = 1 to every location where some thread has executed x:=ti and
x = 0 to every other location. The size of this localized proof is
8N . ⌟

Definition 5.3 (Data complexity) Given a pre/postcondition pair
(ϕpre, ϕpost), the data complexity of a program P is the mini-
mum size of a localized proof that P satisfies the specification
(ϕpre, ϕpost). ⌟

We can now state the main result of this section.

Theorem 5.4 (Size of iDFG proofs). Given the pre/postcondition
pair (ϕpre, ϕpost), if a proof for the program P exists, then there ex-
ists a proof for P in the form of an iDFG whose size is polynomial
in the data complexity of P .

Proof. Let ϕpre, ϕpost be a specification, P = 〈Loc, δ〉 be
a program obtained as the parallel composition of N threads
P1, . . . ,PN , and ι = 〈ι0, ι1, . . . , ιN 〉 be a localized proof of min-
imum size that P satisfies ϕpre/ϕpost. We construct an iDFG

G = 〈V,E, ϕpre, ϕpost, v0, Vfinal〉

that proves that P satisfies the specification ϕpre/ϕpost as follows:
First we define the set of vertices of G. There are three different

classes of vertices: the initial vertex, regular vertices, and final
vertices. As always, we use v0 to denote the initial vertex. The
regular vertices are defined as follows:

Vregular = {〈a, ι0(`), ιi(`)〉 | i ∈ [1, N], ∃`′.(`, a, `′) ∈ δi},

where for any i ∈ [1, N], δi denotes the set of edges due to thread
i. Letting F denote the set of final locations of P , the final vertices
are defined

Vfinal = {〈a, ι0(`), ι1(`), . . . , ιN (`)〉 | (`, a, `′) ∈ δ, `′ ∈ F}.
The set of all vertices may then be defined as

V = {v0} ∪ Vregular ∪ Vfinal.

Now we construct the edges of G. We introduce two auxiliary
functions for this purpose: the function in maps each vertex v to
a set of assertions that will label the incoming edges to v, and the
function pre maps each vertex to an assertion that can be thought
of as its precondition. Formally,

in(v0) = ∅ in(〈a, ϕ, ϕi〉) = {ϕ,ϕi}
in(〈a, ϕ0, ϕ1, . . . , ϕN 〉) = {ϕ0, ϕ1, . . . , ϕN}

pre(v0) = ϕpre pre(〈a, ϕ, ϕi〉) = ϕ ∧ ϕi
pre(〈a, ϕ0, ϕ1, . . . , ϕN 〉) = ϕ0 ∧ ϕ1 ∧· · · ∧ ϕN

The set of edges is the defined as

E = {u ϕ−→ v |u ∈ V \ Vfinal, v ∈ V, ϕ ∈ in(v),

{pre(u)} act(u) {ϕ} holds}.
This completes our definition of G. It is easy to check that G is

well defined (that is, that the labeling of G is inductive). We now
argue that the size of G is polynomial in the size of ι. The number
of regular vertices in G is at most

size(ι) =
∑

i∈[1,N]

|Actionsi| · |rng(ι0)| · |rng(ιi)|.

This is also the maximum number of final vertices of G,
since the definition of localized proofs guarantees that for any
a ∈ Actionsi and any two final vertices labeled with a,
〈a, ϕ0, ..., ϕN 〉, 〈a, ϕ′0, ..., ϕ′N 〉 ∈ Vfinal, we must have ϕj = ϕ′j
except when j = 0 or j = i. Thus, total number of vertices is at
most 1 + 2 · size(ι). Each pair of vertices may have at most two
edges between them, so the total number of edges must be at most

2 · |V |2 ≤ 2 · (1 + 2 · size(ι))2,
which is polynomial in size(ι).

It remains to show that every program trace τ of P belongs to
JGK. We prove the following result:

Lemma 5.5. For any path `0a0· · · an−1`n in P (starting at the
entry vertex `0), there exists u0, u1, . . . , uN ∈ V \ Vfinal such that
for all i = 0, 1, . . . , N ,

a0· · · an−1 ∈ JG/(ui, ιi(`n))K

where, for any vertex v ∈ V and assertion ϕ ∈ Φ,

G/(v, ϕ) = 〈V,E, ϕpre, ϕ, v0, {v}〉
is the iDFG obtained from G by making v the final vertex and ϕ
the postcondition.

Before we prove this lemma, we show why it implies that
every trace of P belongs to JGK. Suppose τ is a trace of P . Then
there exists a path `0a0· · · an−1`nan`n+1 such that a0· · · an = τ
and `n+1 is a final location. By the lemma, there exists some
u0, u1, . . . , uN such that a0· · · an−1 ∈ JG/(ui, ιi(`n))K for all
i = 0, 1, . . . , N . Let uf = 〈an, ι0(`n), ι1(`n), . . . , ιN (`n)〉. Then

it follows from the construction of E that ui
ιi(`n)−→ uf ∈ E for all

i = 0, 1, ..., N , and thus that τ = a0· · · an−1an ∈ JGK.
Now we prove the lemma by induction on paths. The base case

is trivial: we may choose u0 = u1 = · · · = uN to be the initial
vertex v0.

For the induction step, suppose that `0a0· · · an−1`nan`n+1 is a
path in P and that there exists u′0, u′1,· · · , u′N such that a0· · · an−1

belongs to JG/(u′i, ιi(`n))K for all i ∈ [0, N]. Let k ∈ [1, N] be
the thread which executes the last action an. We distinguish two
cases:

For i 6= k, we may take ui = u′i. By the induction hypothesis,
a0· · · an−1 ∈ JG/(u′i, ιi(`n))K. By condition 1 of Definition 5.1,
ιi(`n) = ιi(`n+1), so a0· · · an−1 ∈ JG/(u′i, ιi(`n+1))K. Since
ιi(`n+1) is stable under the action an (since an is executed by
thread k 6= i), it follows that a0· · · an−1an ∈ JG/(u′i, ιi(`n+1))K.

For i = k, we make take ui = 〈an, ι0(`n), ιk(`n)〉. First, we
note that we must have (by the definition of E)

u′0
ι0(`n)−→ ui ∈ E and u′k

ιk(`n)−→ ui ∈ E
Since (by the induction hypothesis), a0· · · an−1 is in both
JG/(u′0, ι0(`n))K and JG/(u′i, ιi(`n))K, we have the desired result:
a0· · · an−1an ∈ JG/(ui, ιk(`n+1))K. The same argument shows
that ui is also an adequate choice for u0 (i.e., a0· · · an−1an ∈
JG/(ui, ι0(`n+1))K).

The proof shows that the number of nodes of G is linear in
the data complexity. In the extreme case of disjoint parallelism (a
concurrent program composed of N threads with no shared data)
there exists a localized proof without global assertion (formally,
each global assertion is true.) In this case, the iDFG constructed in
the proof of Theorem 5.4 is essentially the collection of local proofs
as in an Owicki-Gries style proof (the local proofs are connected
via edges from the initial vertex v0). Its vertices correspond to pairs
consisting of an action and a local assertion. Hence, the number of
its vertices is linear in N .

A special case of this theorem is a concurrent program in a
parametrized numberN of threads that has a localized proof where
the number of global assertions (i.e., the size of rng(ι0)) grows
linearly in N , and the number of actions and local assertions (i.e.,
the size of rng(ιi)) is constant. The increment example from Sec-
tion 2 falls into this case. The iDFG constructed in the proof of
Theorem 5.4 has O(N) vertices (as does the one we constructed
manually in Section 2). In Section 2, we also hinted at the iDFG
(with O(N2) vertices) for the case where we rename apart the ac-
tion x++ in each thread. This case illustrates the motivation to use
the number of actions as a parameter for the data complexity (which
becomes quadratic in N in this case).

In the case of the Ticket algorithm, not only the number of
global assertions, but also the number of local assertions grows
linearly in N . Therefore, the data complexity is quadratic in N .
Indeed, the iDFG we will construct in Section 6 has O(N2) ver-
tices.

6. Verification Algorithm
In this section, we develop an iDFG-based algorithm for verifying
concurrent programs. Given a program P and a pre/postcondition
pair (ϕpre, ϕpost), the goal of this algorithm is to either:

• construct a proof for P in the form of an iDFG G, or
• return a counterexample, i.e., a program trace τ such that the

Hoare triple {ϕpre} τ {ϕpost} does not hold.

We use Figure 3 to explain the basic idea behind the algorithm.
The algorithm starts by picking a program trace τ . If the trace does
not satisfy the Hoare triple {ϕpre} τ {ϕpost}, then the program is
not correct with respect to the given specification. If it does, then τ
is abstracted into an iDFG Gτ .

The algorithm maintains an iDFG G that represents a set of
traces proven correct (initially, this set is empty). The iDFG G

Construct an iDFG Gτ from τ .

Merge Gτ into G.

Is τ correct?Pick a program trace τ .

Does G represent
all program traces?

yes

no

no

yes

Program is correct.

Program
is incorrect.

(a)

(b)

(c)

(d)

Figure 3. Verification algorithm based on inductive data flow
graphs (iDFGs). Initially G is empty.

is updated by merging it with Gτ . If the resulting iDFG contains
every program trace, then G is a proof for the program. If not, then
the algorithm keeps generating traces and updating G until either a
proof or a counterexample is found.

In component (d), we check whether an iDFG G is a proof for
P , which means checking the inclusionL(P) ⊆ JGK; we discussed
how to accomplish this in Section 4. The failure of the inclusion
check means that there is a trace τ in the difference between the
two sets, L(P) \ JGK. By choosing such a trace in component (a),
we ensure progress of the algorithm (i.e., after each iteration, G
denotes a larger set of correct traces). In what follows, we discuss
the remaining components (b) and (c). We will explain how an
iDFG Gτ is constructed from a trace τ (Section 6.1) and how
iDFG G is updated by merging it with Gτ (Section 6.2). Finally,
we present the full algorithm in Section 6.3.

6.1 Constructing an iDFG from a trace
We will present an algorithm that, given a trace τ and a
pre/postcondition pair (ϕpre, ϕpost) such that the Hoare triple
{ϕpre} τ {ϕpost} holds, constructs an iDFG Gτ (with the
same pre/postcondition pair) whose denotation contains τ . By Re-
mark 3.5,Gτ is a proof for the correctness of τ , i.e., for the validity
of the Hoare triple {ϕpre} τ {ϕpost}.

This algorithm uses an auxiliary procedure Interpolate. Given
a trace τ which ends in the action a, i.e., τ = τ ′.a and which is
correct for a given pair of assertions (ϕpre, ϕpost), i.e.,

{ϕpre} τ ′.a {ϕpost},

the call of the auxiliary procedure Interpolate(ϕpre, τ, a, ϕpost)
returns an intermediate assertion ψ such that

{ϕpre} τ ′ {ψ} and {ψ} a {ϕpost}.

The auxiliary procedure Interpolate is always applied to a finite
program trace, which is effectively a very simple sequential pro-
gram. This means that it can be implemented by one form or an-
other of static analysis applied backwards to this sequential pro-
gram (that consists just of the trace τ). One can leverage the power
of existing static analysis methods such as apply a backwards trans-
former in some abstract domain, Craig interpolation, weakest pre-
condition computation, among others to construct iDFGs [8].

Intuitively, the procedure construct-idfg(τ, ϕ, ϕ′) takes the
trace τ and detects what actions in τ and what ordering constraints
embodied in τ are irrelevant (for attaining the postcondition ϕ′).
This is accomplished by leveraging the Interpolate procedure as
follows:

• If Interpolate(ϕ, τ ′, a, ϕ′) returns the postcondition ϕ′ (and
thus, the postcondition ϕ′ is stable wrt. the action a (i.e.,
{ϕ′} a {ϕ′}), and therefore a is irrelevant.

• Otherwise, if Interpolate(ϕ, τ ′, a, ϕ′) returns a proper con-
junction ψ1∧· · ·∧ψk, then each assertion ψ1, . . . , or ψk can be

Algorithm construct-idfg(τ, ϕ, ϕ′)

Input: trace τ and a pair of assertions (ϕ,ϕ′) such that
{ϕ} τ {ϕ′}

Output: proof for τ in the form of an iDFG Gτ
(i.e., Gτ has the pre/postcondition pair (ϕ,ϕ′) and τ ∈ JGτ K)

if τ = ε then
return Gτ = 〈{v0}, ∅, ϕ, ϕ′, v0, {v0}〉

else
τ = τ ′.a for some trace τ ′ and action a
ψ ← Interpolate(ϕ, τ ′, a, ϕ′)
if ψ = ϕ′ then

return construct-idfg(τ ′, ϕ, ϕ′)
else
ψ = ψ1 ∧· · · ∧ ψk
v ← fresh vertex with label a (i.e., act(v) = a)
parallel for i = 1, . . . , k do
〈Vi, Ei, ϕ, ψi, v0, V ifinal〉 ← construct-idfg(τ ′, ϕ, ψi)

end parallel for
V ← {v} ∪

⋃
i=1,...,k Vi

E ←
⋃
i=1,...,k(Ei ∪ {u

ψi−→ v | u ∈ V ifinal})
return Gτ = 〈V,E, ϕ, ϕ′, v0, {v}〉

end if
end if

attained as postcondition for the prefix trace τ ′ in parallel (as
opposed to in sequential order).

One possibility to maximize parallelism is to have Interpolate
return formulae in conjunctive normal form. The particular strategy
to break the intermediate assertions into conjuncts does not matter
for the correctness of the overall algorithm.

Note that construct-idfg produces acyclic iDFGs without dis-
junctions (no vertex has multiple incoming edges labeled with the
same assertion). Disjunctions and cycles will be produced by the
merge procedure that we will discuss in Section 6.2.

Example 6.1 We will demonstrate the algorithm by applying
it to Trace 1 of Bakery, pictured in Figure 1(a). The precondi-
tion is PreC = n1 = n2 = 0 ∧ ¬e1 ∧ ¬e2 and the postcondition
is false. We use τ to denote Trace 1 and τ1 to denote the prefix of
τ obtained by removing last action b6.

For this example, we use the Craig interpolation feature
of MathSAT5 [15] to implement Interpolate. The first call to
Interpolate in construct-idfg yields the following interpolant:

Interpolate(PreC, τ1, b6, false) = n1 > 0 ∧ n1 < n2

Intuitively, the order in which the two assertions n1 > 0 and
n1 < n2 are enforced is irrelevant, as long as both are enforced
before b6 is executed. This is reflected by how the execution of
construct-idfg proceeds, namely by calling

construct-idfg(τ1, PreC, n1 > 0)

and
construct-idfg(τ1, PreC, n1 < n2)

in parallel. The two calls correspond, respectively, to the left and
the right branch of the iDFG (c) in Figure 1.

In order to illustrate how construct-idfg suppresses irrelevant
actions, we will continue and follow the execution of the call

construct-idfg(τ1, PreC, n1 > 0).

We use τ2 to denote the prefix of τ1 obtained by removing last
action, which is [¬e1]. The action [¬e1] is irrelevant in the sense
that it is not needed to enforce the postcondition n1 > 0. This is

established by construct-idfg when the next interpolant along this
branch is computed:

Interpolate(PreC, τ2, [¬e1], n1 > 0) = n1 > 0

Since the computed interpolant is the same as the postcondition,
construct-idfg enters the then branch of the conditional and pro-
ceeds to the call

construct-idfg(τ2, PreC, n1 > 0).

The algorithm continues to suppress irrelevant actions in this
way, going backwards along τ2 until it comes to the first action
under which n1 > 0 is not stable, which is a3 : n1 := tmp1 + 1.
This action becomes the next vertex along the n1>0 branch of the
iDFG in Figure 1(a). ⌟

The essential property of construct-idfg is that it constructs an
iDFG proof of the correctness of a trace with respect to a given
pre/postcondition. This is expressed in the following lemma.

Lemma 6.2. Let τ be a trace that is correct with respect to the
pre/postconditions ϕ/ϕ′, and let Gτ = construct-idfg(τ, ϕ, ϕ′).
Then τ ∈ JGτ K.

6.2 Merging iDFGs
Our merge operator G1 ! G2 can be thought of as a three step
process: in the first step, we construct the disjoint union of G1

and G2; in the second step, completion, we saturate this iDFG
by adding edges that do not violate the inductiveness property
for iDFGs; in the third step, reduction, we collapse “equivalent”
vertices.

We begin with a declarative definition for what it means for an
iDFG to be complete (i.e., edge-saturated).

Definition 6.3 (Complete) An iDFG G = 〈V,E, ϕ, ϕ′, v0, Vfinal〉
is complete if:

• For any v ∈ V with such that {pre(v)} act(v) {ϕ′} holds,
v ∈ Vfinal

• For any u, v ∈ V , and any ϕ such that v has an incoming edge
labeled ϕ and {pre(u)} act(u) {ϕ} holds, u

ϕ−→ v ∈ E
where

pre(v) =

{
ϕ if v = v0∧
u

ϕ−→v∈E ϕ otherwise
⌟

Completion plays an essential role in the construction of iDFG
proofs for programs. It is essential for producing proofs of pro-
grams that contain loops. Note that, as we mentioned in Section
6.1, the construct-idfg procedure does not introduce any disjunc-
tions. Disjunctions are essential for capturing program behaviour
produced by loops. The completion process can introduce these
necessary disjunctions.

x++

y++

x = y + 1

init

x = y

x = y

x = y

For example consider the following sim-
ple program and its specification:
{x = y} while(*): x++; y++ {x = y}

The iDFG pictured to the right proves that
this program satisfies the specification. The
subgraph consisting only of the solid arrows
can be generated by construct-idfg from a
sample trace of the program x++.y++. The
remaining dotted edge is added to the iDFG
by the completion procedure (since x++ has
an incoming edge labeled x = y and the
Hoare triple {pre(y++)} y++ {x = y} holds). This generalizes the
iDFG so that it proves the correctness of any number of iterations
of the loop rather than a single iteration.

The following is a declarative definition for what it means for
an iDFG to be reduced (i.e., vertex-minimal)

Definition 6.4 (Reduced) An iDFG G = 〈V,E, ϕ, ϕ′, v0, Vfinal〉
is reduced if there exist no distinct u, v ∈ V such that act(u) =
act(v) and the set of assertions labeling the incoming edges to u
and v are the same (i.e., {ϕ | ∃w.w ϕ−→ v ∈ E} = {ϕ |
∃w.w ϕ−→ u ∈ E}). ⌟

There is an algorithm that, given an arbitrary iDFG G, con-
structs a reduced complete iDFG rc(G) such that Jrc(G)K contains
JGK. We call rc(G) the reduced completion ofG. This is stated for-
mally in the following proposition:

Proposition 6.5. For every iDFG G =
〈V,E, ϕpre, ϕpost, v0, Vfinal〉, there is a reduced, complete iDFG
rc(G) that can be computed from G in O(|V | · |E|) time and such
that the precondition of rc(G) is ϕpre, the postcondition of rc(G)
is ϕpost, and JGK ⊆ Jrc(G)K.

Proof. For any vertex v, we define

in(v) = {ϕ | ∃u.u ϕ−→ v ∈ G}
We define rc(G) = 〈V ′, E′, ϕpre, ϕpost, v0, V

′
final〉, where

V ′ = {v0} ∪ {〈act(v), in(v)〉 | v ∈ V \ {v0}}
E′ = {〈a,Ψ〉 ϕ−→ 〈a′,Ψ′〉 | ϕ ∈ Ψ′ ∧ {

∧
Ψ} a {ϕ}}

∪{v0
ϕ−→ 〈a′,Ψ′〉 | ϕ ∈ Ψ′ ∧ {ϕpre} a {ϕ}}

and

V ′final =

{
{v0} ∪ {〈act(v), in(v)〉 | v ∈ Vfinal} if ϕpre ⇒ ϕpost

{〈act(v), in(v)〉 | v ∈ Vfinal} otherwise

It is easy to check that rc(G) is well-defined. The machinery
required to prove that JGK ⊆ Jrc(G)K is presented in Section 7.

Finally, we describe our merge operation. The merge operator
G1 ! G2 functions by forming the disjoint union of G1 and G2,
and then taking the reduced completion of the resulting iDFG.
Formally, we define merge as follows:

Definition 6.6 Given two iDFGs G1 = 〈V1, E1, ϕ, ϕ
′, v0, V

1
final〉

and G2 = 〈V2, E2, ϕ, ϕ
′, v0, V

2
final〉, their merge, G1 ! G2 is

defined to be the iDFG

G1 !G2 = rc(〈V !, E!, ϕ, ϕ′, v0, V
!

final〉)
where V ! = V1 ∪ V2, E! = E1 ∪ E2, V !

final = V 1
final ∪ V 2

final, and
act(v) is defined in the obvious way. For simplicity, this definition
assumes that the initial vertex of G is also the initial vertex of G′

and that otherwise their vertices are disjoint. ⌟

Applying the rc operator in the merge plays an essential role in
reducing the size of iDFG proofs. For example, the iDFG proof for
the Ticket example from Section 2 would require O(N !) vertices
without applying the rc operator (see Example 6.9).

The progress of our algorithm depends on the following lemma
concerning the merge operator:

Lemma 6.7. Let G1 and G2 be two iDFGs. We have

JG1K ∪ JG2K ⊆ JG1 !G2K.

An example of the merge operator appears in Figure 4: part (c)
is the merge of parts (a) and (b). Notice that (c) proves that the trace

m1=t++.m3=t++.[m3 <= s]

is infeasible (starting from the precondition s = t = 0), even
though this fact is not proved by (a) or (b).

m1:= t++

s = 0 ∧ t = 0

[m2 ≤ s]

init

t = 0

t = 1

m2 > 0

s = 0

false

m1 := t++

[m1 ≤ s]
m2 := t++

[m2 ≤ s]

m2 := t++

[m2 ≤ s]
m3 := t++

[m3 ≤ s]

s = 0 ∧ t = 0

init

t = 0

t = 1 s = 0

false

(a)

(b)

m3:= t++

[m3 ≤ s]

m3 > 0

m2:= t++

m2:= t++

s = 0 ∧ t = 0

init

t = 0

t = 1

s = 0

false

m3:= t++

[m3 ≤ s]

m3 > 0

m2:= t++m1:= t++

[m2 ≤ s]

t = 0

t = 1

m2 > 0

s = 0

false

m2:= t++

(c)

Figure 4. Intermediate iDFGs for the Ticket algorithm

6.3 Putting it all together
We are now ready to present a formal description of our verification
algorithm. The last component of this algorithm that has not already
been described is the initialization of G. If ϕpre implies ϕpost (or
equivalently, the Hoare triple {ϕpre} ε {ϕpost} holds), then G is
initialized to an iDFG with a single vertex that is both initial and
final (and therefore, JGK = {ε}). Otherwise, G is initialized to an
iDFG that has no final vertices (and therefore, JGK = ∅).

Algorithm Verification algorithm
Input: Program P , precondition ϕpre, postcondition ϕpost

Output: Yes if P is correct w.r.t. the specification; No otherwise.
if ϕpre entails ϕpost then
G := 〈v0, ∅, ϕpre, ϕpost, v0, {v0}〉

else
G := 〈v0, ∅, ϕpre, ϕpost, v0, ∅〉

end if
while L(P) 6⊆ JGK do

Let τ ∈ L(P) \ JGK
if the Hoare triple {ϕpre} τ {ϕpost} holds then
Gτ := construct-idfg(τ, ϕpre, ϕpost)
G := G!Gτ

else
return No (with counter-example τ)

end if
end while
return Yes

As a direct consequence of Lemmas 6.2 and 6.7, we can state
the following progress property of the verification algorithm:

Proposition 6.8 (Progress). If Gi and Gi+1 are the iDFGs con-
structed by the verification algorithm in (respectively) the round i
and round (i + 1), then we have JGiK ⊂ JGi+1K (the inclusion is
strict).

We conclude this section with an example run of the verification
algorithm on the Ticket algorithm mentioned in Section 2.

Example 6.9 We consider the 3-thread instance of the Ticket
mutual exclusion algorithm, which runs three copies of the thread
below in parallel (where i is substituted for the thread id).

mi := t++

[mi ≤ s]
// critical section
s := s + 1�i,3 :

�i,2 :
�i,1 :

Thread iThe first two rounds of the verifi-
cation algorithm are depicted in Fig-
ure 4. Since the property of interest is
mutual exclusion, we take the traces
of this program to be the ones that
end with (at least) two threads inside

init

t = 0

t = 1

m1:= t++

t = 0

m1:= t++

t = 1

m1:= t++

true

m3:= t++

m3:= t++

m3:= t++

[m3  s]

[m1  s]

[m1  s]

[m3  s]

s = 0

s = 1

s++

m2:= t++

m2:= t++

m2:= t++

[m2  s]

[m2  s]

t = 2 t = 2

s = 0

m1 > 0 m2 > 0 m3 > 0

m1 > 0 m3 > 0

m2 > 0

m3 > 1m2 > 1m1 > 1

Figure 5. Correctness proof of the Ticket algorithm. Note that the
post-conditions (all false) have been removed from the figure to
keep it clean. In a complete version of this figure all 6 nodes with
labels [mi ≤ s] have a dangling arrow with a label false.

their critical section, and prove that the program meets the specifi-
cation with precondition s = 0 ∧ t = 0 and postcondition false
(i.e., every trace violating mutual exclusion is infeasible).

The algorithm begins with the empty iDFG, G∅. The first pro-
gram trace τ1 that we select in L(P) \ JG∅K is depicted in Fig-
ure 4(a) along with an iDFG proof for τ1, as constructed by
construct-idfg. We call this iDFG G1.

On the next iteration of the loop, we select the trace τ2 depicted
in part Figure 4(b), and merge its corresponding iDFG proof (called
Gτ2) with G1 to form G2 pictured in Figure 4(c). Since JG2K does
not cover every program trace (i.e., L(P) 6⊆ L(G2)), the algo-
rithm continues the loop. After four more iterations, the algorithm
will terminate after all traces that violate mutual exclusion have
been proved to be infeasible. The iDFG that is constructed by this
algorithm is depicted in Figure 5.

The intuition for the iDFG in Figure 5 can be used to construct
a proof for the Ticket mutual exclusion algorithm for any number
of threads. For any such iDFG proof, the number of vertices is
quadratic in the number of threads. ⌟

7. Properties of the Verification Algorithm
We will now investigate the properties of the verification algorithm.
In particular, we prove that the algorithm is sound, that it is com-
plete (under the assumption that the auxiliary procedure Interpo-
late returns the right assertions), and that its time and space com-
plexity is polynomial in the data complexity of the input program
and specification (again, under the assumption about Interpolate).
We will also introduce some technical machinery required to prove
these results. We begin with soundness (if the algorithm returns a
result, then the result is correct), which is a direct consequence of
Theorem 3.6.

Theorem 7.1 (Soundness). If the verification algorithm returns
Safe, P satisfies the given specification. If it returns Unsafe, the
program does not satisfy the given specification.

We now move on to our completeness result. No algorithm ex-
ists that is complete in the strong sense (due to the halting prob-
lem). Instead, we show that the verification algorithm is complete
in the sense that, if a there exists a safety proof for a program, then
the algorithm will find one under the assumption that Interpolate
produces the right assertions. We formalize this by assuming that
Interpolate is a nondeterministic procedure that may return any
valid interpolant, and showing that the following holds:

Theorem 7.2 (Completeness). If a program has a Hoare safety
proof, then there exists a run of the verification algorithm that
terminates with a Safe result.

In fact, we can strengthen this completeness theorem and give
bounds on the time and space required by the verification algo-
rithm:

Theorem 7.3 (Complexity). If a program P has a Hoare proof that
it satisfies a specification ϕpre/ϕpost, then there exists a run of the
verification algorithm that terminates with an iDFG of size polyno-
mial in the data complexity of P (w.r.t. ϕpre/ϕpost). Moreover, the
number of iterations of the main loop of the algorithm required to
produce this proof is polynomial in the data complexity.

The proof of this theorem requires some technical machinery,
which will be presented in the following. However, we present
some early intuition on the proof for readers that wish to skip
the technical details in the remainder of this section. We assume
that we are given a proof presented as an iDFG G0 (the size of
which we may assume is polynomial in the data complexity, by
Theorem 5.4). Given any trace τ , there is a substructure of G0 that
corresponds to τ (roughly speaking, this structure corresponds to
the accepting run of τ through the AFA corresponding to G0). If
Interpolate returns the assertions corresponding to this structure,
then construct-idfg(τ, ϕpre, ϕpost) produces this exact structure.
This is a way of intuitively reasoning about why the appropriate
assertions exist for Interpolate to produce. Since G0 is finite, we
can show that it is “covered” by finitely many such substructures,
so that the algorithm will terminate in finite time with a proof that
is “essentially the same” as G0.

Proofs
We now present the technical machinery required to prove Theo-
rem 7.3. The main concept we introduce here is iDFG embeddings,
which is a structural relationship between iDFGs. We say that an
iDFG G embeds into G′ if G can be mapped onto a subgraph of
G′ in a way that is, in some sense, “tight”. Formally, we define an
iDFG embedding as follows:

Definition 7.4 (Embedding) Given iDFGs

G = 〈V,E, ϕpre, ϕpost, v0, Vfinal〉
and

G′ = 〈V ′, E′, ϕpre, ϕpost, v
′
0, V

′
final〉

sharing the same precondition and postcondition, we say that a map
h : V → V ′ is an embedding if the following hold:

• ∀v ∈ V , act(v) = act(h(v)) and

{ϕ | ∃u.u ϕ−→ v ∈ E} = {ϕ | ∃u.u ϕ−→ h(v) ∈ E′}
• h(v0) = v′0
• ∀v ∈ Vfinal, h(v) ∈ V ′final

• ∀u ϕ−→ v ∈ E, h(u)
ϕ−→ h(v) ∈ E′

If such an embedding exists, we say that G embeds into G′. ⌟

The main property of interest concerning embeddings is the
following lemma:

Lemma 7.5. If G and G′ are iDFGs such that G embeds into G′,
then JGK ⊆ JG′K.

The key idea of our completeness theorem is that we can use
a given iDFG proof G0 as an oracle to guide the interpolation
procedure, so that construct-idfg(τ, ϕpre, ϕpost) will yield an iDFG
representing some substructure of the target proofG0 (i.e., an iDFG
that embeds into G0). Formally,

Lemma 7.6. For any iDFG G = 〈V,E, ϕpre, ϕpost, v0, Vfinal〉 and
any trace τ ∈ JGK, there is a run of construct-idfg(τ, ϕpre, ϕpost)
that produces an iDFG Gτ such that Gτ embeds into G.

Our proof of Theorem 7.2 is based on being able to maintain a
loop invariant thatG embeds into some target proofG0. In order to
prove this invariant, we must show that if G and G′ are embed into
some target proofG0, thenG!G′ also embeds intoG0. Formally,
we have the following:

Lemma 7.7. For any iDFGs G and G′ sharing the same precon-
dition and postcondition, both G and G′ embed into G ! G′. For
any complete iDFG G0 such that G and G′ both embed into G0,
G!G′ embeds into G0

1.

We are now ready to provide a sketch of the proof of Theo-
rem 7.3. In fact, we will prove a stronger (by Theorem 5.4) result:
for any reduced, complete iDFG G0 such that L(P) ⊆ JG0K, there
exists a run of the verification algorithm that terminates with an
iDFG G such that L(P) ⊆ JGK and such that G embeds into G0

(since G and G0 are reduced and complete, the fact that G embeds
into G0 implies that G is no larger than G0). Moreover, regardless
of how traces are chosen fromL(P)\JGK, the algorithm will termi-
nate in at most |V0| iterations, where |V0| is the number of vertices
in G0.

The proof is by induction: we assume that at the start of the
iteration of the loop, G embeds into G0, and prove that there is an
execution of the loop body such that the number of vertices in G
increases and such that G still embeds into G0 at the end of the
loop.

Let τ ∈ L(P) \ JGK. Since G0 is a safety proof, we
must have τ ∈ L(G0). By Lemma 7.6, there exists a run of
construct-idfg(τ, ϕpre, ϕpost) that produces an iDFG Gτ that em-
beds into G0. We let G′ = G ! Gτ be the iDFG at the end
of the loop. The invariant that G′ embeds into G0 is ensured by
Lemma 7.7. The condition that G′ has more vertices than G is en-
sured by the fact that Gτ embeds into G′, but not G (since that
would contradict τ /∈ JGK).

8. Related Work
Concurrent Program Verification. As mentioned above, exist-
ing approaches to the algorithmic verification of concurrent pro-
grams, e.g. [10, 11, 16, 19], provide a different angle of attack
at the same fundamental issue: the exponential space complexity
(exponential in the number of threads). None of these approaches
shifts the burden of the exponential growth of space towards a com-
binatorial problem (over finite graphs). The practical potential of
these approaches is demonstrated on a selection of practical ex-
amples. None of the approaches investigates the question whether
there are assumptions under which the space complexity is poly-
nomial. The exponential cost of space is not an issue that occurs

1 This proposition establishes that G!G′ is a coproduct in the category of
reduced complete iDFGs, where the morphisms are embeddings.

just in theory. We observe the exponential curve, e.g., when we
run THREADER [16] and SLAB [11] on the ticket algorithm and
the program Increment (see Section 2). These are two concurrent
programs (parametrized in the number n of threads) where our ap-
proach comes with a formal guarantee for polynomial space con-
sumption.

All the approaches mentioned above are based on abstraction.
The construction of an iDFG from a trace can be viewed as an ab-
straction of the trace. It is interesting to compare the two concepts
of abstraction. In the setting of the above-mentioned approaches,
a too coarse abstraction introduces spurious errors. In our setting,
it is desirable to abstract a trace aggressively (in order to obtain a
succinct iDFG that denotes a large set of traces). This is because
iDFG’s are used to represent correct behaviours rather than pro-
gram behaviours. More over-approximation leads to a larger set of
correct traces.

Compositional Proof Rules. Our notion of inductive data flow
graph bears similarities with Owicki-Gries style proof rules and
other compositional proof rules for concurrent programs (e.g., the
use of local assertions, of conjunction, of stability) [2]. Composi-
tionality is often thought of as the only way to go for polynomial-
sized proofs (in the number of threads). Our approach to algo-
rithmic verification can be viewed as the automation of a non-
compositional proof rule (the proof rule is obtained by reformu-
lating the characterization of program correctness in Theorem 3.6).
However, one can view sets of traces as semantics-based modules
(as opposed to modules based on the syntactic construction of pro-
grams). These modules capture the intuitive notion of scenarios.
The composition of modules is set union.

Thread-Modular Verification. The thread-modular approach to
verification [14] achieves modularity at the expense of giving up
completeness. In fact, the approach is complete exactly for the
class of programs whose correctness can be proven in Owicki-
Gries style proofs without auxiliary variables [9, 24]. Our approach,
in contrast, is motivated by combining the goal of full (relative)
completeness with space efficiency.

Data Flow Graphs. Variations of data flow graphs have a long
history within the compilers community, both as a means for ex-
posing parallelism in sequential code for parallelizing compilers
[13, 22], and as a data structure for use in sparse dataflow analy-
sis [20, 29]. Our use of DFGs is closer to this first line of work:
construct-idfg can be seen as a procedure that exposes the paral-
lelism in a single example trace. For a parallelizing compiler to be
correct, parallelization must preserve the behaviour of the sequen-
tial code; the correctness of construct-idfg depends on the much
weaker condition that a proof argument is preserved.

More recently, DFGs have been used for invariant generation
in both concurrent [12] and sequential [27] settings. The work of
[12] is particularly relevant: it uses data flow graphs to generate
numerical invariants for parameterized concurrent programs. These
invariants can be used to prove safety properties, but if the invari-
ants are too weak to prove a property of interest, a false alarm is
reported. Our verification algorithm produces no false alarms, and
can provide a counter-example for properties that fail. Moreover,
the inductive DFGs presented in this paper are capable of express-
ing proofs that cannot be represented using the (variable-labeled,
rather than assertion-labeled) DFGs used in [12] (i.e., every DFG
proof in [12] corresponds to an iDFG, but some iDFG’s do not cor-
respond to DFG proofs).

Trace Abstraction. The work in [17, 18] presents an automata-
theoretic approach to the analysis and verification of sequential and
recursive programs. The present paper continues this line of work
and extends it to concurrent programs.

9. Conclusion and Future Work
In this paper, we have introduced a new approach for the verifi-
cation of concurrent programs. The approach succeeds in putting
the well-established static analysis techniques for sequential pro-
grams to work, namely by assembling the output of the static anal-
ysis applied to interleaved executions in a space-efficient way. We
formalize under what assumptions the space efficiency can be guar-
anteed. For fundamental reasons, we cannot avoid the exponential
explosion in the number of threads but we can shift its burden to a
combinatorial problem over finite graphs (“to a place where it hurts
less”).

The approach has an interesting practical potential. The focus
in this paper was to introduce the approach and to investigate its
formal foundation. There are several directions in which one can
explore the practical potential of the approach. This should be the
focus of future work.

The most critical operation is perhaps the construction of an
iDFG from a given trace τ of the program (construct-idfg). In
Section 6.1, we already hinted at several directions for practical
optimizations. We need to develop and evaluate these optimizations
for practical examples.

The operation construct-idfg depends on the static analysis that
is applied to the trace (as a special case of a sequential program).
The abstract values generated by the static analysis are used to ex-
tract single conjuncts for the labeling of an iDFG with inductive
assertions. This raises an interesting topic for research on abstract
domains for abstract interpretation. We are used to working with
Moore families where abstract values are closed under ‘conjunc-
tion’ but not necessarily under ‘disjunction’. As a consequence, the
notion of ‘conjunctive completion’ has not yet been explored to the
same degree as the notion of ‘disjunctive completion’.

A related question is whether we can enhance interpolant gen-
eration in order to produce the ‘right’ conjuncts for the labeling of
an iDFG with inductive assertions. A possible direction to explore
here are tree interpolants [25] which were originally intended to
generate summaries for recursive programs and which generate in-
terpolants for graph-like structures.

References
[1] G. R. Andrews. Concurrent programming - principles and practice.

Benjamin/Cummings, 1991. ISBN 978-0-8053-0086-4.

[2] K. R. Apt, F. S. de Boer, and E. R. Olderog. Verification of Sequential
and Concurrent Programs. Springer-Verlag, 2009. ISBN 978-1-
84882-744-8.

[3] J. Berdine, T. Lev-Ami, R. Manevich, G. Ramalingam, and M. Sagiv.
Thread quantification for concurrent shape analysis. In CAV, volume
5123 of LNCS, pages 399–413. Springer Berlin / Heidelberg, 2008.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. In PLDI, pages 196–207, 2003.

[5] J. Brzozowski and E. Leiss. On equations for regular languages, finite
automata, and sequential networks. Theoretical Computer Science, 10
(1):19 – 35, 1980.

[6] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J.
ACM, 28(1):114–133, Jan. 1981.

[7] E. M. Clarke and E. A. Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Logic of
Programs, pages 52–71, 1981.

[8] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In POPL, pages 238–252, 1977.

[9] R. Cousot. Fondements des méthodes de preuve d’invariance et de
fatalité de programmes parallèles. les-Nancy, 1985.

[10] A. F. Donaldson, A. Kaiser, D. Kroening, and T. Wahl. Symmetry-
aware predicate abstraction for shared-variable concurrent programs.
In CAV, pages 356–371, 2011.

[11] K. Dräger, A. Kupriyanov, B. Finkbeiner, and H. Wehrheim. Slab:
a certifying model checker for infinite-state concurrent systems. In
TACAS, pages 271–274, 2010.

[12] A. Farzan and Z. Kincaid. Verification of parameterized concurrent
programs by modular reasoning about data and control. In POPL,
pages 297–308, 2012.

[13] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program depen-
dence graph and its use in optimization. ACM Trans. Program. Lang.
Syst., 9(3):319–349, 1987.

[14] C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN,
pages 213–224, 2003.

[15] A. Griggio. A Practical Approach to Satisfiability Modulo Linear
Integer Arithmetic. JSAT, 8:1–27, January 2012.

[16] A. Gupta, C. Popeea, and A. Rybalchenko. Predicate abstraction and
refinement for verifying multi-threaded programs. In POPL, pages
331–344, 2011.

[17] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace
abstraction. In SAS, pages 69–85, 2009.

[18] M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In
POPL, pages 471–482, 2010.

[19] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-
modular abstraction refinement. In CAV, pages 262–274, 2003.

[20] R. Johnson and K. Pingali. Dependence-based program analysis. In
PLDI, pages 78–89, 1993.

[21] V. Kahlon, S. Sankaranarayanan, and A. Gupta. Semantic reduction
of thread interleavings in concurrent programs. In TACAS, pages 124–
138, 2009.

[22] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe.
Dependence graphs and compiler optimizations. In POPL, pages 207–
218, 1981.

[23] L. Lamport. A new solution of Dijkstra’s concurrent programming
problem. Commun. ACM, 17(8):453–455, 1974.

[24] A. Malkis. Cartesian abstraction and verification of multithreaded
programs. PhD thesis, University of Freiburg, 2010.

[25] K. McMillan. Personal communication, 2012.
[26] A. Miné. Static analysis of run-time errors in embedded critical

parallel c programs. In ESOP, pages 398–418, 2011.
[27] H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. Design and implementation

of sparse global analyses for C-like languages. In PLDI, pages 229–
238, 2012.

[28] S. Owicki and D. Gries. Verifying properties of parallel programs: an
axiomatic approach. Commun. ACM, 19:279–285, May 1976.

[29] D. Weise, R. F. Crew, M. Ernst, and B. Steensgaard. Value dependence
graphs: representation without taxation. In POPL, pages 297–310,
1994.

	Introduction
	Examples
	Inductive Data Flow Graphs (iDFGs)
	Checking iDFGs
	Succinctness of iDFGs
	Verification Algorithm
	Constructing an iDFG from a trace
	Merging iDFGs
	Putting it all together

	Properties of the Verification Algorithm
	Related Work
	Conclusion and Future Work

