Inductive Data Flow Graphs

Azadeh Farzan' Zachary Kincaid! Andreas Podelski?

LUniversity of Toronto
2University of Freiburg

January 23, 2013

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 1/16

Algorithmic verification

Given a (concurrent) program P and a specification ./ post, Prove

{Ppre} P{ppost}

(or provide a counter-example)

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 2/16

Algorithmic verification

Given a (concurrent) program P and a specification ./ post, Prove

{fpre}P{Lr:POSt}

(or provide a counter-example)

« Static analysis for sequential programs

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 2/16

Algorithmic verification

Given a (concurrent) program P and a specification ./ post, Prove
{‘?pre}P{'&fpost}

(or provide a counter-example)

« Static analysis for sequential programs
* Model checking for finite-state concurrent protocols

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013

Algorithmic verification

Given a (concurrent) program P and a specification ./ post, Prove
{@pre} P{@post}

(or provide a counter-example)

« Static analysis for sequential programs
* Model checking for finite-state concurrent protocols

This talk presents Inductive Data Flow Graphs (iDFGs): a form of
correctness proof for (concurrent) programs

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013

Why iDFGs?

There are many proof systems: Floyd/Hoare, Owicki-Gries,
Rely/Guarantee. Why do we want a new one?

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 3/16

Why iDFGs?

There are many proof systems: Floyd/Hoare, Owicki-Gries,
Rely/Guarantee. Why do we want a new one?
+ Succinct

+ Present only the essence of a proof
+ Polynomial in the data complexity of a program

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013

Why iDFGs?

There are many proof systems: Floyd/Hoare, Owicki-Gries,
Rely/Guarantee. Why do we want a new one?
+ Succinct
+ Present only the essence of a proof
+ Polynomial in the data complexity of a program
+ Can be generated and checked automatically

+ Extend static analysis to concurrent control
+ Extend model checking to (unbounded) data

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013

“Essence” of a proof

Ypre : x> 0Ny >0

Thread 1 Thread 2
X ++ X =2
y ++

z=x+y

Ypost : Z = 2

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013

“Essence” of a proof

l:l:Z()A?/Z()

Ypre : x> 0Ny >0

Thread 1 Thread 2
X ++ X =2
y ++

z=x+y

Ypost : Z = 2

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013

“Essence” of a proof

l:l:Z()A?/Z()

Ypre : x> 0Ay >0

Thread 1 Thread 2
X ++ X =2
y ++

z=x+y

Ypost : Z = 2

Independent conditions

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013

“Essence” of a proof

Ypre : x> 0Ay >0

Thread 1 Thread 2
X ++ X =2
y ++

z=x+y

Ypost : Z = 2

Independent conditions

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013

“Essence” of a proof

l:l:Z()A?/Z()

Ypre : x> 0Ay >0

Thread 1 Thread 2
X ++ X =2
y ++

z=x+y

Ypost : Z = 2

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013

“Essence” of a proof

l:l:Z()A?/Z()

Ypre : x> 0Ay >0

Thread 1 Thread 2
X ++ X =2
y ++

z=x+y

Ypost : Z = 2

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 4/16

Inductive Data Flow Graphs (iDFGs)

for all j, {41 A~ -+ A }emda{o;}

Suppress irrelevant details of a partial cor-
rectness proof

* Irrelevant ordering constraints
(x = 2jy ++Vvsy ++x = 2)
* Irrelevant actions (x ++)

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 5/16

Inductive Data Flow Graphs (iDFGs)

for all j, {41 A~ -+ A }emda{o;}

@ Parallelize a partial correctness proof
* Irrelevant ordering constraints
(x = 2;y ++Vvsy ++x = 2)

* Irrelevant actions (x ++)

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013

Denotation of an iDFG

Data flow graph with inductive assertions (iDFG) proves correctness of
traces that obey particular constraints

~ Control flow graph with inductive assertions (Floyd annotation) proves correctness
of traces that label paths

The set of such traces is called the denotation of the iDFG, denoted

[G]-

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 6/16

Denotation of an iDFG

Data flow graph with inductive assertions (iDFG) proves correctness of
traces that obey particular constraints

~ Control flow graph with inductive assertions (Floyd annotation) proves correctness
of traces that label paths

The set of such traces is called the denotation of the iDFG, denoted

[G]-

{x>0Ay >0}

ppre : x> 0Ny >0
Thread 1 Thread 2

X ++ x =2
y ++
z=x+y

Ppost 1 Z > 2

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 6/16

Denotation of an iDFG

Data flow graph with inductive assertions (iDFG) proves correctness of
traces that obey particular constraints

~ Control flow graph with inductive assertions (Floyd annotation) proves correctness
of traces that label paths

The set of such traces is called the denotation of the iDFG, denoted

[G]-

{x>0Ay >0}

ppre : x> 0Ny >0
Thread 1 Thread 2

X ++ x =2
y ++
z=x+y

Ppost 1 Z > 2

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 6/16

Denotation of an iDFG

Data flow graph with inductive assertions (iDFG) proves correctness of
traces that obey particular constraints

~ Control flow graph with inductive assertions (Floyd annotation) proves correctness
of traces that label paths

The set of such traces is called the denotation of the iDFG, denoted
[G]- {x>0Ay>0}
in@
ppre : x> 0Ny >0
Thread 1 Thread 2

X ++ x =2
y ++
z=x+y

Ppost 1 Z > 2

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 6/16

IDFGs as proof objects

Theorem
Let G = (V, E, opre, Pposts Vo, Viina) D @aniDFG. For all 7 € [G],

{#pre}7{#post }

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 7/16

IDFGs as proof objects

Theorem
Let G = (V,E, ppre, Pposts Vo, Viinal) D€ @aniDFG. For all 7 € [G],

{#pre}7{#post }

Program P ~ finite automaton, £(P) is the set of traces of P.

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 7/16

IDFGs as proof objects

Theorem
Let G = (V,E, ppre, Pposts Vo, Viinal) D€ @aniDFG. For all 7 € [G],

{#pre}7{#post }

Program P ~ finite automaton, £(P) is the set of traces of P.

Proof rule

Program Pis correct w.r.t. ¢ e/ vpost iff 3G.L(P) C [G]

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013

Data complexity

If there exists a small proof that P is correct (W.r.t. ©pre/Vpost),
then exists a small iDFG proof

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 8/16

Data complexity

If there exists a small proof that P is correct (W.r.t. ©pre/Vpost),
then exists a small iDFG proof

Theorem

Forany {y.e } P{¢ost }, there exists a iDFG proof with size polynomial
in the data complexity of P, vpre, Ppost

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 8/16

Data complexity

If there exists a small proof that P is correct (W.r.t. ©pre/Vpost),
then exists a small iDFG proof

Theorem

Forany {y.e } P{¢ost }, there exists a iDFG proof with size polynomial
in the data complexity of P, vpre, Ppost

Data complexity measures how difficult a property is to prove.
+ Minimum # of assertions in a localized proof that { .« } P{post }
+ Localized proofs: expose *how compositional” a Floyd proof is.

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 8/16

Automation

Program is

Pick a program trace 7. .
incorrect.

Is 7 correct?

no

yes

(Construct an iDFG G, from 7-)

yes
Merge G- into G.

Program is correct.

Z. Kincaid Inductive Data Flow Graphs January 283, 2013 9/16

Automation

no Program is

Pick a program trace 7. X
incorrect.

no lyes

Construct an iDFG G from .

yesl

Program is correct.

Merge G- into G.

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 9/16

iIDFG construction

Given atrace 7 € L(P) with { e }7{post }, construct an iDFG G, with
T € [G].

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 23, 2013 10/16

iIDFG construction

Given atrace 7 € L(P) with { e }7{post }, construct an iDFG G, with
T € [G].

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 23, 2013 10/16

iIDFG construction

Given atrace 7 € L(P) with { e }7{post }, construct an iDFG G, with
T € [G].

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 23, 2013 10/16

iIDFG construction

Given atrace 7 € L(P) with { e }7{post }, construct an iDFG G, with
T € [G].

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 23, 2013 10/16

Automation

Program is

Pick a program trace 7. .
incorrect.

Is T correct?

no

yes

(Construct an iDFG G, from 7-)

yes
Merge G- into G.

Program is correct.

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 23, 2013 11/16

Merging iDFGs

Given iDFGs Gy, G5, construct an iDFG G; /\ G5 such that

IIGl]] U [[GQ]] C [[Gl M\ GQ]]

-
’ e S ~ ’ e ~
’ A ’ A
’ N ’ N
’ N ’ N
7 .. N ’ oo \

I) \] \
4 Pi ' ! Pi '
1 P1 Ym, ‘l 1 ©1 Pm ‘l
1 1
I cmd, I ' cmdp, I
1 1 1 1
\ 1 ' 1

\ ' \]

\ I \ ‘

\ ’ \ ’
\ ’ \ ’
N ’ \ ’

\ Gl ’ N G2 .
~ 7’ ~ 7’
~ - ~ -

< -

January 23, 2013 12/16

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs

Merging iDFGs

Given iDFGs Gy, G5, construct an iDFG G; /\ G5 such that

IIGl]] U [[GQ]] C [[Gl M\ GQ]]

Z. Kincaid (U. Toronto)

Inductive Data Flow Graphs

January 23, 2013 12/16

Merging iDFGs

Given iDFGs Gy, G5, construct an iDFG G; /\ G5 such that

IIGl]] U [[GQ]] C [[Gl M\ GQ]]

\
e e AY
, ‘ \
Pi Pi '
ll 1/)1 J "/)m 1 Pm \
:
1

{o1 A Applemdyp {7

Z. Kincaid (U. Toronto)

Inductive Data Flow Graphs

January 23, 2013 12/16

Merging iDFGs

Given iDFGs Gy, G5, construct an iDFG G; /\ G5 such that

IIGl]] U [[GQ]] C [[Gl M\ GQ]]

’

Z. Kincaid (U. Toronto)

Inductive Data Flow Graphs

January 23, 2013 12/16

Automation

Program is

Pick a program trace 7. .
incorrect.

Is T correct?

no

yes

(Construct an iDFG G, from 7-)

yes
Merge G- into G.

Program is correct.

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 23, 2013 13/16

Proof checking

For any iDFG G, we can efficiently (linear time, in the size of G) construct
an alternating finite automaton A such that

L(Ag) = [G]™

Proof checking: £(P)"" é L(Ag)
+ Can be solved in PSPACE
« Combinatorial problem (non-reachability)
* Reuse techniques from (finite-state) model checking

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 23, 2013

Summary

+ Inductive Data Flow Graphs are a proof method for partial
correctness of (concurrent) programs

 (Provably) succinct
» Can be generated automatically

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 23, 2013 15/16

Summary

+ Inductive Data Flow Graphs are a proof method for partial
correctness of (concurrent) programs

* (Provably) succinct
+ Can be generated automatically
Future work
+ Can iDFGs be constructed more effectively?
+ Efficient proof checking?
+ Parameterized programs?
+ Weak memory models?

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 23, 2013

Questions?

Thank you for your attention.

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 23, 2013 16/16

