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Algorithmic verification

Given a (concurrent) program P and a specification ./ post, Prove

{Ppre} P{ppost}

(or provide a counter-example)
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Algorithmic verification

Given a (concurrent) program P and a specification ./ post, Prove
{@pre} P{@post}

(or provide a counter-example)

« Static analysis for sequential programs
* Model checking for finite-state concurrent protocols

This talk presents Inductive Data Flow Graphs (iDFGs): a form of
correctness proof for (concurrent) programs
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Why iDFGs?

There are many proof systems: Floyd/Hoare, Owicki-Gries,
Rely/Guarantee. Why do we want a new one?

Z. Kincaid (U. Toronto) Inductive Data Flow Graphs January 283, 2013 3/16



Why iDFGs?

There are many proof systems: Floyd/Hoare, Owicki-Gries,
Rely/Guarantee. Why do we want a new one?
+ Succinct
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Why iDFGs?

There are many proof systems: Floyd/Hoare, Owicki-Gries,
Rely/Guarantee. Why do we want a new one?
+ Succinct
+ Present only the essence of a proof
+ Polynomial in the data complexity of a program
+ Can be generated and checked automatically

+ Extend static analysis to concurrent control
+ Extend model checking to (unbounded) data
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“Essence” of a proof

Ypre : x> 0Ny >0

Thread 1 Thread 2
X ++ X =2
y ++

z=x+y

Ypost : Z = 2
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Inductive Data Flow Graphs (iDFGs)

for all j, {41 A~ -+ A }emda{o;}

Suppress irrelevant details of a partial cor-
rectness proof

* Irrelevant ordering constraints
(x = 2jy ++Vvsy ++x = 2)
* Irrelevant actions (x ++)
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Inductive Data Flow Graphs (iDFGs)

for all j, {41 A~ -+ A }emda{o;}

@ Parallelize a partial correctness proof
* Irrelevant ordering constraints
(x = 2;y ++Vvsy ++x = 2)

* Irrelevant actions (x ++)
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Denotation of an iDFG

Data flow graph with inductive assertions (iDFG) proves correctness of
traces that obey particular constraints

~ Control flow graph with inductive assertions (Floyd annotation) proves correctness
of traces that label paths

The set of such traces is called the denotation of the iDFG, denoted

[G]-
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of traces that label paths

The set of such traces is called the denotation of the iDFG, denoted
[G]- {x>0Ay>0}
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ppre : x> 0Ny >0
Thread 1 Thread 2

X ++ x =2
y ++
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IDFGs as proof objects

Theorem
Let G = (V, E, opre, Pposts Vo, Viina) D @aniDFG. For all 7 € [G],

{#pre}7{#post }
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IDFGs as proof objects

Theorem
Let G = (V,E, ppre, Pposts Vo, Viinal) D€ @aniDFG. For all 7 € [G],

{#pre}7{#post }

Program P ~ finite automaton, £(P) is the set of traces of P.

Proof rule

Program Pis correct w.r.t. ¢ e/ vpost iff 3G.L(P) C [G]
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Data complexity

If there exists a small proof that P is correct (W.r.t. ©pre/Vpost),
then exists a small iDFG proof
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Data complexity

If there exists a small proof that P is correct (W.r.t. ©pre/Vpost),
then exists a small iDFG proof

Theorem

Forany {y.e } P{¢ost }, there exists a iDFG proof with size polynomial
in the data complexity of P, vpre, Ppost

Data complexity measures how difficult a property is to prove.
+ Minimum # of assertions in a localized proof that { .« } P{post }
+ Localized proofs: expose *how compositional” a Floyd proof is.
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Automation

Program is

Pick a program trace 7. .
incorrect.

Is 7 correct?

no

yes

(Construct an iDFG G, from 7-)

yes
Merge G- into G.

Program is correct.
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iIDFG construction

Given atrace 7 € L(P) with { e }7{post }, construct an iDFG G, with
T € [G].
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Automation

Program is

Pick a program trace 7. .
incorrect.

Is T correct?

no

yes

(Construct an iDFG G, from 7-)

yes
Merge G- into G.

Program is correct.
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Merging iDFGs

Given iDFGs Gy, G5, construct an iDFG G; /\ G5 such that

IIGl]] U [[GQ]] C [[Gl M\ GQ]]
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Proof checking

For any iDFG G, we can efficiently (linear time, in the size of G) construct
an alternating finite automaton A such that

L(Ag) = [G]™

Proof checking: £(P)"" é L(Ag)
+ Can be solved in PSPACE
« Combinatorial problem (non-reachability)
* Reuse techniques from (finite-state) model checking
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Summary

+ Inductive Data Flow Graphs are a proof method for partial
correctness of (concurrent) programs

 (Provably) succinct
» Can be generated automatically
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Summary

+ Inductive Data Flow Graphs are a proof method for partial
correctness of (concurrent) programs

* (Provably) succinct
+ Can be generated automatically
Future work
+ Can iDFGs be constructed more effectively?
+ Efficient proof checking?
+ Parameterized programs?
+ Weak memory models?
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Questions?

Thank you for your attention.
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