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Algorithmic verification

Goal
Given a (concurrent) program P and a specification φpre/φpost, prove

{φpre}P{φpost}

(or provide a counter-example)

• Static analysis for sequential programs
• Model checking for finite-state concurrent protocols

This talk presents Inductive Data Flow Graphs (iDFGs): a form of
correctness proof for (concurrent) programs
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Why iDFGs?

There are many proof systems: Floyd/Hoare, Owicki-Gries,
Rely/Guarantee. Why do we want a new one?

• Succinct
• Present only the essence of a proof
• Polynomial in the data complexity of a program

• Can be generated and checked automatically
• Extend static analysis to concurrent control
• Extend model checking to (unbounded) data
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“Essence” of a proof

φpre : x ≥ 0 ∧ y ≥ 0

Thread 1
x ++
y ++
z = x + y

Thread 2
x = 2

φpost : z ≥ 2

..x ++...

x = 2

.

y ++

.

z = x + y

..
{y ≥ 0}

.

{x ≥ 1 ∧ y ≥ 0}

.

{x ≥ 1 ∧ y ≥ 1}

.
{x ≥ 0 ∧ y ≥ 0}
.

{z ≥ 2}
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Inductive Data Flow Graphs (iDFGs)

Inductiveness condition: ..cmda.......
ψ1

.

ψi

.
ψm

.
φ1

.

φj

.
φn

for all j, {ψ1 ∧· · · ∧ ψm}cmda{φj}

...

init

.

x = 2

.

y ++

.

z = x + y

..

{x ≥ 1}

.

{y ≥ 1}

.

{true}

.

{y ≥ 0}

.
{x ≥ 0 ∧ y ≥ 0}

.

{z ≥ 2}

Suppress irrelevant details of a partial cor-
rectness proof

• Irrelevant ordering constraints
(x = 2;y ++ vs y ++;x = 2)

• Irrelevant actions (x ++)
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Denotation of an iDFG

Data flow graph with inductive assertions (iDFG) proves correctness of
traces that obey particular constraints
∼ Control flow graph with inductive assertions (Floyd annotation) proves correctness

of traces that label paths

The set of such traces is called the denotation of the iDFG, denotedJGK.

φpre : x ≥ 0 ∧ y ≥ 0

Thread 1
x ++
y ++
z = x + y

Thread 2
x = 2

φpost : z ≥ 2

...

init

.

x = 2

.

y ++

.

x ++

.

z = x + y

..

{x ≥ 1}

.

{y ≥ 1}

.

{true}

.

{y ≥ 0}

.
{x ≥ 0 ∧ y ≥ 0}

.

{z ≥ 2}

.

{x ≥ 0}

.

{x ≥ 1}
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iDFGs as proof objects

Theorem
Let G = ⟨V,E, φpre, φpost, vo,Vfinal⟩ be an iDFG. For all τ ∈ JGK,

{φpre}τ{φpost}

Program P ∼ finite automaton, L(P) is the set of traces of P.

..Program P is correct w.r.t. φpre/φpost iff ∃G.L(P) ⊆ JGK.
Proof rule
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Data complexity

If there exists a small proof that P is correct (w.r.t. φpre/φpost),
then exists a small iDFG proof

Theorem
For any {φpre}P{φpost}, there exists a iDFG proof with size polynomial
in the data complexity of P, φpre, φpost

Data complexity measures how difficult a property is to prove.
• Minimum # of assertions in a localized proof that {φpre}P{φpost}

• Localized proofs: expose “how compositional” a Floyd proof is.
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Automation

..Pick a program trace τ .. Is τ correct?.

Construct an iDFG Gτ from τ .

.

Merge Gτ into G.

.

L(P)
?

⊆ JGK

.

yes

...

no

.

Program is correct.

. Program is
incorrect.

.. no.

yes
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iDFG construction

Goal
Given a trace τ ∈ L(P) with {φpre}τ{φpost}, construct an iDFG Gτ with
τ ∈ JGτ K.

..x ++...

x = 2

.

y ++

.

z = x + y

..

{z ≥ 2}

.

{x ≥ 0 ∧ y ≥ 0}

.

{x ≥ 0}

.

{y ≥ 0}

.

{x ≥ 0}

.

{y ≥ 0}
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Automation

..Pick a program trace τ .. Is τ correct?.

Construct an iDFG Gτ from τ .

.

Merge Gτ into G.

.
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L(P)
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Merging iDFGs

Goal
Given iDFGs G1, G2, construct an iDFG G1 ! G2 such that

JG1K ∪ JG2K ⊆ JG1 ! G2K

...cmda . cmdb..

· · ·

..
ψ1

.
ψi

.
ψm

..

· · ·

..
φ1

.
φi

.
φm

.

G1

.

G2

..

..

{φ1 ∧· · · ∧ φn}cmdb{ψi}
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Automation
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Proof checking

For any iDFG G, we can efficiently (linear time, in the size of G) construct
an alternating finite automaton AG such that

L(AG) = JGKrev

Proof checking: L(P)rev ?
⊆ L(AG)

• Can be solved in PSPACE
• Combinatorial problem (non-reachability)
• Reuse techniques from (finite-state) model checking
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Summary

• Inductive Data Flow Graphs are a proof method for partial
correctness of (concurrent) programs

• (Provably) succinct
• Can be generated automatically

Future work
• Can iDFGs be constructed more effectively?
• Efficient proof checking?
• Parameterized programs?
• Weak memory models?
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Questions?

Thank you for your attention.
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