
Compositional Bitvector Analysis For
Concurrent Programs With Nested Locks

Azadeh Farzan Zachary Kincaid

University of Toronto

Abstract. We propose a new technique to perform bitvector data flow
analysis for concurrent programs. Our algorithm works for concurrent
programs with nested locking synchronization. We show that this al-
gorithm computes precise solutions (meet over all paths) to bitvector
problems. Moreover, this algorithm is compositional: it first solves a lo-
cal (sequential) data flow problem, and then efficiently combines these
solutions leveraging reachability results on nested locks [5,6]. We imple-
mented our algorithm on top of an existing sequential data flow analysis
tool, and demonstrated that the technique performs and scales well.

1 Introduction

Writing concurrent software is difficult and error prone. In principle, static anal-
ysis offers an appealing way to mitigate this situation, but dealing with con-
currency remains a serious obstacle. Theory and practice of automatically and
statically determining dynamic behaviours of concurrent programs lag far be-
hind those for sequential programs. Enumerating all possible interleavings to
perform flow-sensitive analyses is infeasible. It is imperative to formulate com-
positional analysis techniques and proper behaviour abstractions to tame this
so-called interleaving explosion problem. We believe that the work presented in
this paper is a big step in this direction. We propose a compositional algorithm
to compute precise solutions for bitvector problems for a general and useful class
of concurrent programs.

Data flow analysis has proven to be a useful tool for debugging, maintain-
ing, verifying, optimizing, and testing sequential software. Bitvector analyses
(also known as the class of gen/kill problems) are a very useful subclass of data
flow analyses. Bitvector analyses have been very widely used in compiler opti-
mization. There are a number of applications for precise concurrent bitvector
analyses. To mention a few, reaching definitions analysis can be used for precise
slicing of concurrent programs with locks, which can be used as a debugging aid
for concurrent programs1. Both problems of race and atomicity violation detec-
tion can be formulated as variations of the reaching definitions analysis. Lighter
versions of information flow analyses may also be formulated as bitvector analy-
ses. Precision will substantially decrease the number false positives reported by
any of the above analyses.

1Concurrent program slicing has been discussed previously [10], but to our knowl-
edge there is no method up until now that handles locks precisely.

There is an apparent lack of techniques to precisely and efficiently solve data
flow problems, and more specifically bitvector problems for concurrent programs
with dynamic synchronization primitives such as locks. The source of this diffi-
culty lies in the lack of a precise and efficient way to represent program paths.
programs. Control flow graphs (CFG) are used to represent program paths for
most static analyses on sequential programs, but concurrent analogs to CFGs
suffer major disadvantages. Concurrent adaptations of CFGs mainly fall into
two categories: (1) Those obtained by taking the Cartesian product of CFGs
for individual threads, and removing inconsistent nodes. These product CFGs
are far too large (possibly even infinite) to be practical. (2) Those obtained by
taking the union of the CFGs for individual threads, adding inter-thread edges,
and performing a may-happen-in-parallel heuristic to get rid of infeasible paths.
These union CFGs may still have an abundance of infeasible paths and cannot
be used for precise analyses.

Bitvector problems have the interesting property that solving them precisely
is possible without analyzing whole program paths. The key observation is that,
in a forward may bitvector analysis, a fact f is true at a control location c iff
there exists a path to c on which f is generated and not subsequently killed; what
happens “before” f is generated, is irrelevant. Therefore, bitvector problems
only require reasoning about partial paths starting at a generating transition.
For programs with only static synchronization (such co-begin/co-end), bitvector
problems can be solved with a combination of sequential reasoning and a light
concurrent predecessor analysis [8]. Under the concurrent program model in [8],
a fact f holds at a control location c if and only if the control location c′ at
which f is generated is an immediate concurrent predecessor of c. Therefore, it is
sufficient to only consider concurrent paths of length two to compute the precise
bitvector solution. Moreover, the concurrent predecessor analysis is very simple
for co-begin/coend synchronization.

Dynamic synchronization (which was not handled in [8]) reduces the number
of feasible concurrent paths in a program, but unfortunately makes their finite
representation more complex. This complicates data flow analyses, since a pre-
cise concurrent data flow analysis must compute the meet-over-all-feasible-paths
solution, and the analysis should only consider feasible paths (that are no longer
limited to paths of length two). Evidence of the degree of difficulty that dynamic
synchronization introduces is the fact that pairwise reachability (which can be
formulated as a bitvector problem) is undecidable for recursive programs with
locks. It is however decidable [6] if the locks are acquired in a nested manner (i.e.
locks are released in the reverse order that were acquired). We use this result
to introduce sound and complete abstractions for the set of feasible concurrent
paths, which are then used to compute the meet-over-all-feasible-paths solution
to the class of bitvector analyses.

We propose a compositional (and therefore scalable) technique to precisely
solve bitvector analysis problems for concurrent programs with nested locks. The
analysis proceeds in three phases. In the first phase, we perform the sequential
bitvector analysis for each thread individually. In the second phase, we use a

sequential data flow analysis to compute an abstract semantics for each thread
based on an abstract interpretation of sequential trace semantics. We then com-
bine the abstract semantics for each pair of threads to compute a second set
of data flow facts, namely those who reach concurrently. In the third phase, we
simply combine the results of the sequential and concurrent phases into a sound
and complete final solution for the problem. This procedure is quadratic in the
number of threads and exponential (in the worst case) in the number of shared
locks in the program; however, we do not expect to encounter even close to the
worst case in practice. In fact, in our experiments the running time follows a
growth pattern that almost matches that of sequential programs. Our approach
avoids the limitations typically imposed by concurrent adaptations of CFGs: it is
scalable and compositional, in contrast with the product CFG; and it is precise,
in contrast with union CFGs.

We have implemented our algorithm on top of the C language front-end
CIL [17], which performs the sequential data flow analyses required by our al-
gorithm. We show through experimentation that this technique scales well and
has running time close to that of sequential analysis in practice.

Related Work. Program flow analysis was originally developed for sequential
programs to enable compiler optimizations [1]. Although the majority of flow
analysis research has been focused on sequential software [19,14,20], flow analy-
sis for concurrent software has also been studied. Flow-insensitive analyses can
be directly adapted into the concurrent setting. Existing flow-sensitive analy-
ses [13,15,16,18,21] have at least one of the following two restrictions: (a) the
programs they handle have extremely simplistic concurrency/synchronization
mechanisms and can be handled precisely using the union of control flow graphs
of individual programs, or (b) the analysis is sound but not complete, and solves
the data flow problem using heuristic approximations.

RADAR [2] attempts to address some of the problems mentioned above,
and achieves scalability and more precision by using a race detection engine to
kill the data flow facts generated and propagated by the sequential analysis.
RADAR’s degree of precision and performance depends on how well the race
detection engine works. We believe that although RADAR is a good practical
solution, it does not attempt to solve the real problem at hand, nor does it
provide any insights for static analysis of concurrent programs.

Knoop et al [8] present a bitvector analysis framework which comes closest
to ours in that it can express a variety of data flow analysis problems, and gives
sound and complete algorithms for solving them. However, it cannot handle
dynamic synchronization mechanisms (such as locks). This approach has been
extended for the same restricted synchronization mechanism to handle proce-
dures in [3,4,22] and generalizations of bitvector problems in [9,22].

Foundational work on nested locks appears in [5,6]. Recently, analyses based
on this work have been developed, including [7] and [11]. Notably, the authors
of [7] detect violations of properties that can be expressed as phase automata,
which is a more general problem than bitvector analysis. However, their method
is not tailored to bitvector analysis, and is not practically viable when a “full”

solution (a solution for every fact and every control location) to the problem is
required, which is often the case.

2 Preliminaries

A concurrent program CP is a pair (T ,L) consisting of a finite set of threads T
and a finite set of locks L. We represent each thread T ∈ T as a control flow
automaton (CFA). CFAs are similar to a control flow graphs, except actions
are associated with edges (which we will call transitions) rather than nodes.
Formally, a CFA is a graph (NT , ET) with a unique entry node sT and a function
stmtT : ET → Stmt that maps edges to program statements. We assume no two
threads have a common node (edge), and refer to the set of all nodes (edges) by
N (E). In the following, we will often identify edges with their corresponding
program statements. CFA statements execute atomically, so in practice we split
non-atomic statements prior to CFA construction.

For each lock l ∈ L, we distinguish two synchronization statements acq(l)
and rel(l) that acquire and release the lock l, respectively. Locks are the only
means of synchronization in our concurrent program model. For a path π through
thread T , we let Lock-SetT (π) denote the set of locks held by T after executing
π2.

A local run of thread T is any finite path starting at its entry node; we refer
to the set of all such runs by RT . A run of CP is a sequence ρ = ρ1 . . . ρn ∈ E?
of edges such that:

i) ρ projected onto each thread T (denoted by ρT), is a local run of T
ii) There exists no point p along ρ at which two threads T, T ′ hold the same lock

(@T, T ′, p.T 6= T ′ ∧ Lock-SetT ((ρ1· · · ρp)T) ∩ Lock-SetT ′((ρ1· · · ρp)T ′) 6= ∅).

We use RCP to denote the set of all runs of CP (just R when there is no
confusion about CP). For a sequence ρ = ρ1 . . . ρn ∈ E? and 1 ≤ r ≤ s ≤ n we
use ρ[r] to denote ρr, ρ[r, s] to denote ρr . . . ρs, and |ρ| to denote n.

A program CP respects nested locking if for every thread T ∈ T and for every
local run π of T , π releases locks in the opposite order it acquires them. That
is, there exists no l, l′ (l 6= l′) such that π contains a contiguous subsequence
acq(l); acq(l′); rel(l) when projected onto the the acquire and release transitions
of l and l′3.

From this point on, whenever we refer to a concurrent program CP, we assume
that it respects nested locking. Restricting our attention to programs that respect
nested locking allows us to keep reasoning about run interleavings tractable. We
will make critical use of this assumption in the following.

2.1 Locking Information

2Formally, Lock-SetT (π) = {l ∈ L | ∃i.πT [i] = acq(l) ∧ @j > i s.t . πT [j] = rel(l)}
3this implies that locks are not re-entrant

acq(l2);
acq(l1);

...
rel(l1);
a: ...

rel(l2);

acq(l1);
acq(l2);

...
rel(l2);
while (...) {

if (...) {
rel(l1);
acq(l1);

} else {
b: ... // gen "d"

}
}
c: ... // kill "d"

rel(l1);

Fig. 1. Locking information.

Consider the example in Figure 1. We
would like to know whether the fact d
generated at the location b reaches the
location a (without being killed at loca-
tion c). If the thread on the right takes
the else branch in the first execution of
the loop, it will have to go through loca-
tion c and kill the fact d before the execu-
tion of the program can get to location a.
However, if the program takes the then
branch in the first iteration of the loop
and takes the else branch in the second
one, then execution can follow to a without having to kill d first. This exam-
ple shows that in general, the sorts of interleavings that we must consider in a
bitvector analysis can be quite complicated.

In [5] and [6], compositional reasoning approaches for programs that respect
nested locking were introduced, which are based on local locking information. We
quickly give an overview of this here. In the following, T ∈ T denotes a thread,
and ρ ∈ E?T denotes a sequence of edges of T (in practice, ρ will be a run or a
suffix of a run of T).

– Locks-HeldT (ρ, i) = {l ∈ L | ∀k ≥ i.l ∈ Lock-SetT (ρ[1, k])}: the set of locks
held continuously by T through ρ, starting no later than at position i.

– Locks-AcqT (ρ) = {l ∈ L | ∃k.ρ[k] = T :acq(l)}: the set of locks that are
acquired by T along ρ.

– fahT (ρ) (forward acquisition history): a partial function which maps each
lock l whose last acquire in ρ has no matching release, to the set of locks that
were acquired after the last acquisition of l (and is undefined otherwise)4.

– bahT (ρ, i) (backward acquisition history): a partial function which maps each
lock l that is held at ρ[i] and is released in ρ[i, |ρ|] to the set of locks that were
released before the first release of l in ρ[i, |ρ|] (and is undefined otherwise).

We omit T subscripts for all of these functions when T is clear from the context.
Of these definitions, fah and bah are the least common, so we illustrate

their use with runs from Figure 1. The run of the right thread that starts at the
beginning, enters the while loop, and takes the else branch to end at b has
forward acquisition history [l1 7→ {l2}]. If that run continues to loop, taking
the then branch and then the else branch to end back at b, that run has
forwards acquisition history [l1 7→ {}]. The run of the left thread that executes
the entire code block has backwards acquisition history [l2 7→ {}] at a and
[l2 7→ {l1}; l1 7→ {}] between the acquire and release of l1.

2.2 Bitvector data flow Analysis

Let D be a finite set of data flow facts of interest. The goal of data flow analysis
is to replace the full semantics by an abstract version which is tailored to deal

4Note that the domain of fahT (ρ) (denoted dom(fahT (ρ))) is exactly Lock-SetT (ρ).

with a specific problem. The abstract semantics is specified by a local semantic
functional J·KD : E → (D → D) where for each transition t, JtKD denotes the
transfer function associated with t. J·KD gives abstract meaning to every CFA
edge (program statement) in terms of a transformation function from a semi-
lattice (D,u) (where u is ∪ or ∩) into itself. We will drop D and simply use JtK
when D is clear from the context. We extend J·K from transitions to transition
sequences in the natural way: JεK = id, and JtρK = JρK ◦ JtK.

Bitvector problems can be characterized by the simplicity of their local se-
mantic functional J·K: for any transition t, there exist sets gen(t) and kill(t)
(⊆ D) such that JtK(D) = (D ∪ gen(t)) \ kill(t). Equivalently, for any t, JtK can
decomposed into |D| monotone functions JtKi : B → B, where B is the Boolean
lattice ({ff, tt},⇒).

Our goal is to compute the concurrent meet-over-paths (CMOP) value of
edge5 t of CP, defined as

CMOP [t] =
l

ρt∈RCP

JρKD(>D)

CMOP [t] is the optimal solution to the data flow problem. Note in par-
ticular that only runs that respect the semantics of locking contribute to the
solution. This definition is not effective, however, since RCP may be infinite; the
contribution of this work is an efficient algorithm for computing CMOP [t].

In the following, we discuss the class of intraprocedural forward may bitvector
analyses for a concurrent program model with nested locking as our main contri-
bution. In Section 6, we discuss how to adapt our techniques to other program
models and analyses, including interprocedural analysis, backwards analysis, and
an extension to a parameterized concurrent program model.

3 Concurrent Data Flow Framework

Fix a concurrent program CP with set of threads T , set of locks L, and a set of
data flow facts D with meet ∪ (bitvector problems that use ∩ for meet can be
solved using their dual problem). For a data flow fact d ∈ D, and for a transition
t, let JtKd denote JtKD projected onto d. Call a sequence π d-preserving if
JπKd = id. In particular, the empty sequence ε is d-preserving for any d ∈ D.

The following observation from [8] is the key to the efficient computation of
the interleaving effect. It pinpoints the specific nature of a semantic functional
for bitvector analysis, whose codomain only consists of constant functions and
the identity:

Lemma 1. [8] For a data flow fact d ∈ D, and a transition t of a concurrent
program CP, d ∈ CMOP [t] iff there exists a run t1· · · tnt ∈ RCP and there exists
k, (1 ≤ k ≤ n) such that JtkKd = consttt and for all m, (k < m ≤ n), we have
JtmKd = id.

5For the CFA formulation of data flow analysis, data flow transformation functions
and solutions correspond to transitions rather than nodes.

Call such a run a d-generating run for t, and call tk the generating transition
of that run.

(a) (b)

Fig. 2. A witness run (a) and a normal witness run (b) for definition f reaching
7

This lemma restricts the possible interference within a concurrent program:
if there is any interference, then the interference is due to a single statement
within a parallel component. Consider the program in Figure 2(a). In a reaching
definitions analysis, only transition f (of T ′) can generate the “definition at f
reaches” fact. For any witness trace and any fact d, we can pinpoint a single
transition that generates this fact (namely, the last occurrence of a generating
transition on that trace). This is not true for data flow analyses which are not
bitvector analyses. For example, in a null pointer dereference analysis, witnesses
may contain a chain of assignments, no single one of which is “responsible” for the
pointer in question being null, but combined they make the value of a pointer null.
Our algorithm critically takes advantage of the simplicity of bitvector problems
to achieve both efficiency and precision, and cannot be trivially generalized to
handle all data flow problems.

Based on Lemma 1 and the observation from [6] that runs can be projected
onto runs with fewer threads, we get the following:

Lemma 2. For a data flow fact d ∈ D, and for a transition t of thread T , there
exists a d-generating run for t if and only if one of the following holds:

– There exists a local d-generating run for t (that is, a d-generating run consist-
ing only of transitions from T). Call such a run a single-indexed d-generating
run.

– There exists a thread T ′ (T 6= T ′) such that there is a d-generating run π for
t consisting only of transitions from T and T ′ and such that the generating
transition of π belongs to T ′. Call such a run a double-indexed d-generating
run.

Proof. First, we note a simple fact: for any run π ∈ RCP and for any subset
of threads T ′ ⊆ T , πT ′ ∈ RCP . That is, we may take any run of CP, project
onto an arbitrary subset of threads, and obtain another run. This is clear: since
threads initially hold no locks, not executing transitions from a thread will never
disable transitions that would be enabled had the thread been running.

Let π be an d-generating path to t and let tg be the generating transition
of π. If tg is a transition of T , then πT is a d-generating path for t. If tg is a
transition of some other thread T ′, then π{T,T ′} is a d-generating path for t. ut

Thus, to determine whether d ∈ CMOP [t] (i.e. fact d may be true at t), it
is sufficient to check whether there is a single- or double-indexed d-generating
run to t. Therefore, the precise solution to the concurrent bitvector analysis
problem can be computed by only reasoning about concurrent programs with
one or two threads, so long as we consider each pair of threads in the system.
The existence of a single-indexed d-generating run to t can be determined by a
sequential bitvector data flow analysis, which have been studied extensively.

Here, we discuss a compositional technique for enumerating the double-
indexed d-generating runs. In order to achieve compositionality, we (1) char-
acterize double-indexed d-generating runs in terms of two local runs, and (2)
provide a procedure to determine whether two local runs can be combined into
a global run. First, we define for each thread T , each transition t of T , and each
data flow fact d ∈ D:

– IRT [t]d = {〈π, σ〉 | πσt ∈ RT ∧ JσK = id}
– GRT [t]d = {〈π, σ〉 | πσ ∈ RT ∧ Jσ[1]K = const tt ∧ Jσ[2, |σ| − 1]K =
id ∧ σ[|σ|] = t}.

Intuitively, IRT [t]d and GRT ′ [t′]d correspond to sets of local runs of threads
T and T ′ which can be combined (interleaved in a lock-valid way) to create a
global d-generating run to t. For example, in Figure 2(a), the definition at line f
reaches the use at line 7 (in a reaching-definitions analysis) since the local runs
π1σ1 of T and π2σ2 of T ′ can be combined into the run πσ (demonstrated in the
center) to create a double-indexed generating run. The following proposition is
the key to our compositional approach:

Proposition 1. Assume a concurrent program CP with two threads T1 and T2.
There exists a double-indexed d-generating run to transition t1 of thread T1 if and
only if there exists a transition t2 of thread T2 such that there exists 〈π1, σ1〉 ∈
IRT1 [t1]d and 〈π2, σ2〉 ∈ GRT2 [t2]d and a run πσ ∈ RCP such that πT1 = π1,
πT2 = π2, σT1 = σ1 and σT2 = σ2.

Since IR and GR are sets of local runs, they can be computed locally and
independently, and checked whether they can be interleaved in a second phase.
However, IRT [t]d and GRT [t]d are (in the general case) infinite sets, so we need
to find finite means to represent them. In fact, we do not need to know about
all such runs: the only thing that we need to know is whether there exists a
d-generating run in one thread, and a d-preserving run in the other thread that

can be combined into a lock-valid run to carry the fact d generated in one thread
to a particular control location in the other thread. Proposition 2, a simple
consequence of a theorem from [5], provides a means to represent these sets with
finite abstractions.

Proposition 2. Let CP be a concurrent program, and let T1, T2 be threads of
CP. Let π1σ1 be a local run of T1 and let π2σ2 be a local run of T2. Then there
exists a run πσ ∈ RCP with πT1 = π1, πT2 = π2, σT1 = σ1, and σT2 = σ2 if and
only if:

– Lock-Set(π1) ∩ Lock-Set(π2) = ∅
– fah(π1) and fah(π2) are consistent
– Lock-Set (π1σ1) ∩ Lock-Set (π2σ2) = ∅.
– fah(π1σ1) and fah(π1σ2) are consistent
– bah(π1σ1, |π1|) and bah(π2σ2, |π2|) are consistent
– Locks-Acq(σ1) ∩ Locks-Held(π2σ2, |π2|) = ∅ and

Locks-Acq(σ2) ∩ Locks-Held(π1σ1, |π1|) = ∅.
Observe that Proposition 2 states that one can check whether two local runs

can be interleaved into a global run by performing a few consistency checks
on finite representations of the local lock behaviour of the two runs. In other
words, one does not have to know what the runs are; one has to only know what
the locking information for the runs are. Therefore, we use this information as
our finite representation for the set of runs; more precisely, we use a quadruple
consisting of two forwards acquisition histories, a backwards acquisition history,
and a set of locks acquired to represent an abstract run6. Let P be the set of
all such abstract runs. We say that two run abstractions are compatible if they
may be interleaved (according to Proposition 2). We then define an abstraction
function α : E? × E? → P that computes the abstraction of a run:

α(〈π, σ〉) = 〈fah(π),Locks-Acq(σ), fah(πσ), bah(πσ, |π|)〉

For each transition t ∈ ET and data flow fact d, this abstraction function
can be applied to the sets IRT [t]d and GRT [t]d to yield the sets IRαT [t]d and
GRαT [t]d, respectively:

IRαT [t]d = {α(〈π, σ〉) | 〈π, σ〉 ∈ IRT [t]d}
GRαT [t]d = {α(〈π, σ〉) | 〈π, σ〉 ∈ GRT [t]d}

For example, the abstraction of the preserving run π1σ1 and the generating
run π2σ2 from Figure 2(a) are (in order):

〈[l1 7→ {}]︸ ︷︷ ︸
fah(π1)

, [l1, 7→ {l2}]︸ ︷︷ ︸
fah(π1σ1)

, [l2 7→ {}]︸ ︷︷ ︸
bah(π1σ1,|π1|)

, {l2}︸︷︷︸
Locks-Acq(σ1)

〉

〈[l2 7→ {l1}]︸ ︷︷ ︸
fah(π2)

, [l2 7→ {}]︸ ︷︷ ︸
fah(π2σ2)

, [l2 7→ {}]︸ ︷︷ ︸
bah(π2σ2,|π2|)

, {l2}︸︷︷︸
Locks-Acq(σ2)

〉

6Note that for a run πσ, we can compute Lock-Set(π) as dom(fah(π)), Lock-Set(πσ)
as dom(fah(πσ)), and Locks-Held(πσ, |π|) as (dom(fah(π)) ∩ dom(fah(πσ))) \
Locks-Acq(σ).

The definitions of IRα and GRα, and Proposition 2 imply the following
proposition:

Proposition 3. Assume a concurrent program CP with two threads T1 and T2.
There exists a double-indexed d-generating run to transition t1 of thread T1 if
and only if there exists a transition t2 of thread T2 such that there exists elements
of IRαT [t]d and GRαT ′ [t

′]d which are compatible.

For a fact d and a transition t ∈ ET , the sets IRαT [t]d and GRαT [t]d are finite,
and therefore one can use Proposition 3 to provide a solution to the concurrent
bitvector problem, once IRαT [t]d and GRαT [t]d have been computed. In the next
section, we propose an optimization that provides the same solution using a
potentially much smaller subsets of these sets.

3.1 Normal Runs

The sets IRαT [t]d and GRαT [t]d may be large in practice, so we introduce the
concept of normal runs to replace IRαT [t]d and GRαT [t]d with smaller subsets
that are still sufficient for solving bitvector problems.

Definition 1. Call a double-indexed d-generating run πσt (consisting of transi-
tions of threads T and T ′, where t is a transition of T) with generating transition
σ[1] (of thread T ′) normal if:

– |σ| = 1 (that is, σ[1] is an immediate predecessor of t), or
– All of the following hold:
• The first T transition in σt is an acquire transition.
• The last T ′ transition in σt is a release transition.
• @i (1 ≤ i ≤ |σ|) such that after executing π(σ[1, i]), T frees all held locks.
• @i (1 < i ≤ |σ|) such that after executing π(σ[1, i]), T ′ frees all held

locks.

Intuitively, normal runs minimize the number of transitions between the gen-
erating transition and the end of the (double-indexed) run. Consider the run in
Figure 2(a): it is a witness for definition at f reaching the use at 7, but it is
not normal, since σ1 does not begin with an acquire and σ2 does not end with
a release. Figure 2(b) pictures a witness that uses the same transitions (except
h has been removed from the end of σ2), but which has a shorter σ component.
Note that runs that are minimal in this sense are indeed normal; the reverse,
however, does not hold.

Definition 2. Let CP be a concurrent program, and let T be a thread of CP.
A pair 〈π, σ〉 is id-normal if πσ ∈ RT , and either

– σ = ε, or
– σ[1] is an acquire transition and there is no proper prefix σ′ of σ such that

Lock-Set(πσ′) = ∅.

A pair 〈π, σ〉 is gen-normal if πσ ∈ RT , and either

– |σ| = 1, or
– σ[|σ|] is a release transition and there is no proper prefix σ′ of σ such that

Lock-Set(πσ′) = ∅.

Intuitively, for a concurrent program CP with two threads T and T ′, a normal
double-indexed d-generating run to t ∈ ET is made up of a double-indexed d-
generating run to t that is id-normal when projected onto T , and gen-normal
when projected onto T ′.

We show that it is sufficient to consider only normal runs for our analysis,
by proving that the existence of a double-indexed d-generating run implies the
existence of a normal double-index d-generating run.

Lemma 3. Let t1· · · tn ∈ RT and let t′1· · · t′m ∈ RT ′ . If there is a run ρ =
πσ (ρ ∈ RCP) such that there exist 1 ≤ i ≤ n and 1 ≤ j ≤ m where:

πT = t1 . . . ti σT = ti+1 . . . tn πT ′ = t′1 . . . t
′
j σT ′ = t′j+1 . . . t

′
m

Then, the following hold:

1. If t′j+1 is not an acquire transition, then ∃π′, σ′ such that π′σ′ ∈ RCP , and
π′T = t1 . . . ti σ′T = ti+1 . . . tn π′T ′ = t′1 . . . t

′
j+1 σ′T ′ = t′j+2 . . . t

′
m

2. If t′m is not a release, then ∃σ′ such that πσ′ ∈ RCP is a valid run, and
π′T = t1 . . . ti σ′T = ti+1 . . . tn π′T ′ = t′1 . . . t

′
j σ′T ′ = t′j+1 . . . t

′
m−1

Proof. This lemma is a consequence of Lipton’s theory of movers [12]:

1. non-acquire transitions are left movers, so if the first transition from T ′ in π
is not an acquire, it can be moved to the beginning of π.

2. non-release transitions are right movers, so if the last transition from T ′ in
π is not a release, it can be moved right to the end of π, and then need not
be executed to form a run.

ut

Lemma 3 is used to trim the beginning of a d-preserving run if it does not
start with an acquire (part 1) and the end of a d-generating run if it does not
end in a release (part 2). The run in Figure 2(b) is obtained from the run in
Figure 2(a) by an application of Lemma 3.

Lemma 4. If there is a run πσ of concurrent program CP (consisting of two
threads T and T ′) such that πT = t1 . . . ti, σT = ti+1 . . . tn, πT ′ = t′1 . . . t

′
j and

σT ′ = t′j+1 . . . t
′
m, and if there exists k (j < k ≤ m) such that Lock-SetT ′(t′1 . . . t

′
k) =

∅, then there exists a run π′σ′ of CP where π′T = t1 . . . ti, σ′T = ti+1 . . . tn,
π′T ′ = t′1 . . . t

′
k and σ′T ′ = t′k+1 . . . t

′
m.

Similarly, if there exists k (j ≤ k ≤ m−1) such that Lock-SetT ′(t′1 . . . t
′
k) = ∅,

then there exists a run πσ′ where σ′T = σT and σ′T ′ = ti . . . tk.

Proof. Let ρ be the sequence of transitions in σ appearing after t′k, and let tr be
the first transition from T appearing before t′k. Then we construct π′ and σ′ as
follows:

π′ = t′1· · · t′kt1· · · ti
σ′ = ti+1· · · trρ

First, we see that t′1· · · t′k is a run of T ′, and thus is a run of CP. Since
Lock-Set(t′1· · · t′k) = ∅, every transition in t1· · · tr is enabled after executing
t′1· · · t′k, and so t′1· · · t′kt1· · · tr is a run. Finally, since T and T ′ are in the same
states they were in after executing t′1· · · t′kt1· · · tr as they were after executing
πσ up to tk, ρ is enabled and so π′σ′ is a run. ut

Lemma 4 is a consequence of Proposition 2.
It is used to trim the beginning of d-preserving
runs and the end of d-generating runs. The fig-
ure to the right illustrates the application of
this lemma: thread T ′ holds no locks after exe-
cuting g, so transitions h, i, and j need not be
executed. The witness pictured for definition f
reaching 7 corresponds to the normal witness
obtained by removing the dotted box.

The following Proposition, which is a con-
sequence of Lemmas 3 and 4, implies that it is
sufficient to only consider normal runs for the
analysis. Therefore, we can ignore runs that are
not normal without sacrificing soundness.

Proposition 4. If there exists a double-indexed d-generating run of concurrent
program CP leading to a state q, then there exists a normal double-indexed d-
generating run of CP leading to q.

Proof. Let πσt be a d-generating path to t (of thread T) with generating tran-
sition σ[1] (of thread T ′) and such that |σ| is minimal. We show that πσt is
normal.

First, if |σ| = 1, then πσt is obviously normal. So assume |σ| > 1. If πσt fails
any of the normality conditions, we may use Lemma 3 or Lemma 4 to construct a
d-generating path to t with a shorter σ component, contradicting the minimality
of |σ|.

Thus, d-generating paths minimizing |σ| are normal (although the converse
does not hold). Since any transition t with a double-indexed d-generating path
has a double-indexed d-generating path that minimizes |σ| (by well-ordering), it
follows that t has a normal d-generating path. ut

Therefore, for any transition t and data flow fact d, we define normal versions
(subsets of these sets which contain only normal runs) of IRαT [t]d and GRαT [t]d
as follows:

NIRT [t]d = {α(〈π, σ〉) | 〈π, σ〉 ∈ IRT [t]d ∧ (|σ| = 0
∨ |σ| = 0(@k.Lock-Set(πσ[1, k]) = ∅ ∧ σ[1]is an acquire))}

NGRT [t]d = {α(〈π, σ〉) | 〈π, σ〉 ∈ GRT [t]d ∧ (|σ| = 1
∨ @k.Lock-Set(πσ[1, k]) = ∅)}

NIRT [t]d (NGRT [t]d) is a finite representation of sets of normal d-preserving
(generating) runs. In order to compute solutions for every data flow fact in D
simultaneously, we extend NIRT [t]d and NGRT [t]d to sets of data flow facts.
We define NIRT [t] to be a partial function that maps each abstract run p to the
set of facts d for which there is a d-preserving run whose abstraction is p, and
is undefined if there is no concrete run to t whose abstraction is p. NGRT [t] is
defined analogously.

4 The Analysis

Here, we summarize the results presented in previous sections into a procedure
for the bitvector analysis of concurrent programs. The procedure is outlined in
Algorithm 1. Data flow facts reaching a transition t are computed in two different
groups as per Lemma 2: facts with single-indexed generating runs and facts with
double-indexed generating runs.

Algorithm 1 Concurrent Bitvector Analysis
1: Compute Summaries and Helper Sets // see Algorithm 2
2: for each T ∈ T do
3: Compute MFPT // Single-indexed facts
4: for each t ∈ ET do
5: Compute NDIFT [t] // (Normal) double-indexed facts
6: CMOPT [t] := MFPT [t] ∪NDIFT [t]
7: end for
8: end for

On line 6, the facts from single- and double-indexed generating runs are
combined into the solution of the concurrent bitvector analysis. Facts from single-
indexed generating runs can be computed efficiently using well-known (maximum
fixed point) sequential data flow analysis techniques. It remains to show how
to to efficiently compute facts from double-indexed generating runs using the
summaries and helper sets which are computed at the beginning of the analysis.

A naive way to compute NDIF would involve iterating over all pairs of
transitions from different threads to find compatible elements of NIR and NGR.
This would create an |E|2 factor in our algorithm, which can be quite large. We
avoid this by computing thread summaries for each thread T . The summary,

NGenT , combines information about each transition in T that is relevant for
NDIF computation for other threads. More precisely, NGenT is a function that
maps each run abstraction p to the set of facts for which there is a generating
run whose abstraction is p. Intuitively, NGenT groups together transitions that
have similar locking information so that they can be processed at once. This
speeds up our analysis significantly in practice.

Algorithm 2 Computing Summaries.
1: for each T ∈ T do
2: Compute NGRT // Normal generating runs
3: NGenT := λp.

S
{NGRT (t)(p) | t ∈ ET ∧ p ∈ dom(NGRT (t)(p))}

4: Compute NIRT // Normal preserving runs
5: end for

The essential procedure for finding facts in NDIFT [t] is to: 1) find compatible
(abstract) runs p ∈ dom(NIRT [t]) and p′ ∈ dom(NGen′T), and 2) add facts
that are both preserved by p and generated by p′. This procedure is elaborated
in Algorithm 3.

Algorithm 3 Compute NDIF (concurrent facts from non-predecessors)
Input: Thread T , transition t ∈ ET

Output: NDIFT [t].
1: NDIFT [t] := ∅
2: for each T ′ 6= T in T do
3: for each p ∈ dom(NIRT [t](p)) do
4: NDIFT [t] := NDIFT [t] ∪ {NGenT ′ [p

′] ∩NIRT [t](p) | compatible(p, p′)}
5: end for
6: end for
7: return NDIFT [t]

Complexity Analysis. The best known upper bound on the time complex-
ity of our algorithm is quadratic in the number of threads, quadratic in the size of
the domain, linear in the number of transitions in each thread, and double expo-
nential in the number of locks. We stress that this is a worst-case bound, and we
expect our algorithm to perform considerably better in practice. Programmers
tend to follow certain disciplines when using locks, which decreases the double
exponential factor in our algorithm. For example, allowing only constant-depth
nesting of locks reduces the factor to single exponential. Our experimental re-
sults in Section 5 confirm that our algorithm does indeed perform very well on
real programs.

4.1 Computing NIR and NGR

It remains to show how to compute NIR and NGR. Both of these sets can
be computed by sequential data flow analyses. Since the analyses are local, we
fix a thread T and refer to NIRT and NGRT as NIR and NGR. Recall for
a transition t, NIR[t] and NGR[t] are defined to be partial functions mapping
abstract runs to sets of dataflow facts; that is NIR,NGR ∈ P 2D. In the
following, we will represent a partial function f : P 2D by a subset F ⊆ P×2D

defined by F = {〈p, f(p)〉 : p ∈ dom(f)}. We adapt the partial function space
order and meet operation to our choice of representation as follows:

Y v X ⇐⇒ ∀p ∈ P. (∃D ⊆ D.〈p,D〉 ∈ X ⇒ ∃D′ ⊆ D.D ⊆ D′ ∧ 〈p,D′〉 ∈ Y)

X u Y = {〈a, v〉 ∈ X | @v′.〈a, v′〉 ∈ Y }
∪{〈a, v〉 ∈ Y | @v′.〈a, v′〉 ∈ X}
∪{a, 〈v ∪ v′〉 | 〈a, v〉 ∈ X ∧ 〈a, v′〉 ∈ Y }

Then for any transition t, we define NIR and NGR formally as:

NIR[t] =
l
{〈α(π, σ), JσKid(D)〉 | πσt ∈ RT ∧ normalid(α(π, σ))

NGR[t] =
l
{〈α(π, σ), JσK(∅)〉 | πσt ∈ RT ∧ normalgen(α(π, σ))

where
JtKid(D) = D \ (gen(t) ∪ kill(t))

normalid(π, σ) = (|σ| > 0⇒ ∃l.σ[1] = acq(l))
∧ @k ≥ 1.Lock-Set(π(σ[1, k])) = ∅

normalgen(π, σ) = |σ| > 1⇒ @k < |σ| − 1. Lock-Set(π(σ[1, k])) = ∅

We show how to compute NIR[·] using a local data flow analysis; the analysis
for NGR[·] is similar. Since for any transition t, NIR[t] is represented by a subset
of P × 2D, the domain of the analysis is D = 2P×2D

, with the meet operation as
defined above. The semantic functional for the analysis is defined as:

JtKNIR(X) = filter(extend(t,X u begin(t)))

where
filter(X) = {〈〈s, a, f, b〉, D〉 ∈ X | dom(f) 6= ∅ ∧ a 6= ∅}

begin(t) = {〈〈h, ∅, h, λx.h(x) ∩ ∅〉,D〉 | h ∈ AH[t]}7

AH[t] denotes the set of forwards acquisition histories that reach t (for-
mally, AH[t] = {fah(π) | πt ∈ RT }). In practice, AH can be computed as the
maximum fixedpoint solution to the dataflow problem with domain (2P ,∪) and

7equivalently, begin(t) = { 〈α(π, ε),D〉 | πt ∈ RT }

transfer functional JtKAH(P) = {extendfah(t, p) | p ∈ P}. This is essentially a
corollary of Lemma 5 and the fact that JtKAH is distributive.

extend(t,X) = {〈extendP(〈s, a, f, b〉, t), JtKid(D)〉 | 〈〈s, a, f, b〉, D〉 ∈ X}

extendP(t, 〈s, a, f, b〉) = 〈s, extendacq(t, a), extendfah(t, f), extendbah(t, b, a)〉

extendacq(t, a) = if t = acq(`) then a ∪ {`} else a

extendfah(t, f) =

λx.if x = ` then ∅ else f(x) ∪ {`} if t = acq(`)
λx.if x = ` then ⊥ else f(x) if t = rel(`)
f otherwise

extendbah(t, b, a) =

{
λx.if x ∈ a then b(x) else b(x) ∪ {`} if t = rel(`)
b otherwise

It is easy to check that JtKNIR is distributive for all t, so we can compute
the meet-over-all-paths solution to the NIR dataflow analysis problem (denoted
MOPNIR[t]) using standard maximum fixed point techniques. In the remainder
of the section, we prove that MOPNIR coincides with NIR.

Lemma 5. For all πσt ∈ RT ,

α(π, σt) = extendP(t, α(π, σ))

Proof. This is a trivial consequence of the definitions of α and extendP , with
one caveat: the backwards acquisition histories we compute with extendP are
slightly different from the definition of backward acquisition histories as defined
in Section 2.1. The domain of a backwards acquisition history is the set of locks
that are held when σ starts rather than the set of locks that are held when
σ starts and released along σ. This is a minor technical detail that makes the
analysis slightly easier to describe. But but the difference is immaterial, because
the two formulations represent the same information for our purposes. As such,
we abuse notation and claim equality. ut

For convenience, we introduce a new functional ef : ET → 2P×2D → 2P×2D

defined by
ef [t](X) = filter(extend(t,X))

We may extend ef to operate on sequences of transitions in the natural way:
ef [ε](X) = X and ef [tσ](X) = ef [σ](ef [t](X)).

Lemma 6. Let πσt ∈ RT and D ⊆ D. 〈π, σ〉 is id-normal iff

ef [σ]({〈α(π, ε), D〉}) = {〈α(π, σ), JσKid(D)〉}

Proof. First note that, given Lemma 5, it is clear that if ef [σ]({〈α(π, ε), D〉}) is
not ∅, then ef [σ]({〈α(π, ε), D〉}) = {〈α(π, σ), JσKid(D)〉}.

If σ = ε, the result is trivial. So let |σ| ≥ 1. Note that ef [σ]({〈α(π, ε), D〉}) =
∅ iff there exists a prefix σ′t of σ such that ef [σ′t]({〈α(π, ε), D〉}) = ∅. If σ′ is
the shortest prefix with this property, we have

ef [σ′t]({〈α(π, ε), D〉}) = filter(extend(t, ef [σ]({〈α(π, ε), D〉})))
= filter({〈α(π, σ′t), Jσ′tKid(D))

So ef [σ]({〈α(π, ε), D〉}) = ∅ iff there exists a prefix σ′t of σ such that
dom(fah(πσ)) = Lock-Set(πσ) = ∅ or Locks-Acq(σ′t) = ∅. Noting that Locks-Acq(σ′t) =
∅ iff σ[1] is not an acquire, we have that ef [σ]({〈α(π, ε), D〉}) = ∅ iff 〈π, σ〉 is
not id-normal, so the lemma holds for all σ of length at least 1. ut

Lemma 7. For all tσ ∈ E?T ,

JtσKNIR(∅) = JσKNIR(∅) u ef [tσ](begin(t)).

Proof. By induction on σ.

– Base case: σ = ε

JtσKNIR(∅) = JtKNIR(∅)
= ef [t](∅ u begin(t))
= ef [t](begin(t))
= JσKNIR(∅) u ef [tσ](begin(t))

– Induction: let σ = σ′t′, and assume Jtσ′KNIR(∅) = Jσ′KNIR(∅)uef [σ′](begin(t)).

Jtσ′t′KNIR(∅) = Jt′KNIR(Jtσ′KNIR(∅))
= Jt′KNIR(Jσ′KNIR(∅) u ef [σ′](begin(t)))
= Jt′KNIR(Jσ′KNIR(∅)) u ef [t′](ef [σ′](begin(t)))
= Jσ′t′KNIR(∅) u ef [σ′t′](begin(t))

We may now state the main result of this section:

Proposition 5. For all t ∈ ET ,

NIR[t] = MOPNIR[t] u beginNIR(t)

Proof. First, we note that NIR[t] = MOPNIR[t] u beginNIR(t) iff for all p ∈
P and d ∈ D, 〈p, {d}〉 w NIR[t] ⇐⇒ 〈p, {d}〉 w MOPNIR[t] ∨ 〈p, {d}〉 w
beginNIR(t).

We begin by proving the “⇒” direction. Let 〈p, {d}〉 w NIR[t]. Then there
exists an id-normal d-preserving run 〈π, σ〉 to t such that α(π, σ) = p. Distinguish
two cases:

1. Case: σ = ε. Then fah(π) ∈ AH[t] and 〈p,D〉 ∈ begin(t), whence {〈p, {d}〉} w
begin(t).

2. Case: |σ| ≥ 1. Then π is a run that ends at σ[1], so fah(π) ∈ AH[σ[1]] and
〈α(π, ε),D〉 ∈ begin(σ[1]).
Since 〈π, σ〉 is id-normal, it follows from Lemma 6 that ef [σ]({〈α(π, ε), {d}〉}) =
{〈α(π, σ), JσKid({d})〉} = {〈p, {d}〉}, and from Lemma 7 that

JπσKNIR(∅) v JσKNIR(∅)
= JσK(∅) u ef [σ](begin(σ[1]))
v ef [σ](begin(σ[1]))
v ef [σ]({〈α(π, ε), {d}〉})
= {〈p, {d}〉}.

Since JπσKNIR wMOP [t]NIR, we have {〈p, {d}〉} wMOP [t]NIR.

Now we prove the “⇐” direction.

1. Let 〈p, {d}〉 w begin(t). Then there exists some run π to t with α(π, ε) = p.
Since for any π, 〈π, ε〉 is id-normal and d-preserving, 〈p, {d}〉 w NIR[t].

2. Let 〈p, {d}〉 w MOPNIR[t]. Then there exists some ρ ∈ RT such that
〈p, {d}〉 w JρKNIR(∅).
Let σ by the shortest suffix of ρ such that 〈p, {d}〉 w JσKNIR(∅).
By Lemma 7, JσKNIR(∅) = Jσ[2, |σ|]KNIR(∅) u ef [σ](begin(σ[1])). By the
minimality of σ, we must have 〈p, {d}〉 w ef [σ](begin(σ[1])). Since ef acts
pointwise, there exists some p′ such that 〈p′,D〉 ∈ begin(σ[1]) and 〈p, {d}〉 w
ef [σ]({〈p′,D〉).
Since 〈p′,D〉 ∈ begin(σ[1]), there exists some π such that α(π, ε) = p′.
Since 〈p, {d}〉 w ef [σ]({〈p′,D〉}), 〈π, σ〉 is id-normal (since ef [σ]({〈p′,D〉}) is
nonempty) and is d-preserving (since d ∈ JσKid(D)). It follows that 〈p, {d}〉 =
〈α(π, σ), {d}〉 w NIR[t].

Combining both directions, we get the desired proposition. ut

Having finished the development for NIR analysis, we will now define the
transfer function for the NGR analysis.

JtKNGR(X) = filterNGR(extendNGR(t,X u begin(t)))

where
extendNGR(t,X) = {〈extendP(t, a), JtK(D)〉|〈a,D〉 ∈ X}

filterNGR(X) = {〈〈s, a, f, b〉, D〉 ∈ X | dom(f) 6= ∅}

We can now state a proposition analogous to Proposition 5 for NGR analysis.
The proof follows a similar development to the one for Proposition 5.

Proposition 6. For all t ∈ ET ,

NGR[t] = JtKNGR(MOPNGR[t])

5 Case Study

We implemented the intraprocedural version of our algorithm and evaluated its
performance on a nontrivial concurrent program. Our experiments indicate that
our algorithm scales well in practice; in particular, its performance appears to be
only weakly dependent on the number of threads. This is remarkable, considering
the program analysis community’s historical difficulties with multithreaded code.

The algorithm is implemented in OCaml, and is applicable to C programs
using the pthreads library for thread operations. We use the CIL program analysis
infrastructure for parsing, CFG construction, and sequential data flow analysis.
The algorithm is parameterized by a module that specifies the gen/kill sets
for each instruction, so lifting sequential bitvector analyses to handle threads
and locking is completely automatic. We implemented a reaching definitions
analysis module and instantiated our concurrent bitvector analysis with it; this
concurrent reaching definitions analysis was the subject of our evaluation.

We evaluated the performance our algorithm on FUSE, a Unix kernel module
and library that allows filesystems to be implemented in userspace programs.
FUSE exposes parts of the kernel that are relevant to filesystems to userspace
programs, essentially acting as a bridge between userspace and kernelspace. We
analyzed the userspace portion.

Name |T | |N | |E| |D| |L| Time

5 avg 5 2568.1 3037.9 208.9 1.0 1.0
5 med 5 405.0 453.0 62.0 1.0 0.1
10 avg 10 4921.9 5820.1 401.6 1.3 1.8
10 med 10 988.5 1105.0 155.5 1.0 0.1
50 avg 50 24986.3 29546.0 2047.0 3.1 10.7
50 med 50 22628.5 26607.0 2022.5 3.0 4.6
200a 200 79985 94120 6861 6 36.4
200b 200 119905 142248 9515 4 116.5
full 425 218284 258219 17760 6 347.8

Since our implementation
currently supports only intrapro-
cedural analyses, we inlined all
of the procedures defined within
FUSE and ignored calls to li-
brary procedures that did not
acquire or release locks. We did
a type-based must-alias anal-
ysis to finitize the set of locks
and shared variables. Some pro-
cedures in the program had the (implicit) precondition that callers must hold
a particular lock or set of locks at each call site; these 35 procedures could not
be considered to be threads because they did not respect nested locking when
considered independently. Each of the remaining 425 procedures was considered
to be a distinct thread in our analysis. We divided these procedures into groups
of 5 procedures, and analyzed each of those separately (that is, we analyzed the
program consisting of procedures 1-5, 6-10, 11-15, etc). We repeated this process
with groups of 10, 50, 100, 200, and also analyzed the entire program. We present
mean and median statistics for the groups of 5, 10, 50, and 100 procedures. The
experiments were conducted on a 3.16 GHz Linux machine with 4GB of memory.

The |T |, |N |, |E|, |D|, |L|, and Time columns indicate number of threads,
number of CFA nodes, number of CFA edges, number of data flow facts, number
of locks, and running time (in seconds), respectively. As a result of the inlining
step, there was a very large size gap between the smallest and the largest proce-

dures that we analyzed, which we believe accounts for the discrepancy between
the mean and median statistics.

In Figure 3(a), we observe that the running time of our algorithm appears
to grow quadratically in the number of threads in the program. However, the
dispersion is quite high, which suggests that the running time has a weak re-
lationship with the number of threads in the program. Indeed, the apparent
quadratic relationship can be explained by the fact that the points that contain
more threads also contain more total CFA edges. Figure 3(b) shows the running
time of our algorithm as a function of total number of CFA edges in the program,
which is a much tighter fit.

(a)

(b)

(c)

Fig. 3. Running time.

Figure 3(c) shows the running
time of our algorithm as a func-
tion of the product of the number
of CFA edges and the domain size
of the program. This relationship
is interesting because the time com-
plexity of sequential bitvector anal-
ysis is O(|E| · |D|). Our results
indicate that there is a linear re-
lationship between the running time
of our algorithm and the prod-
uct of the number of CFA edges
and domain size of the program,
which suggests that our algorithm’s
running time is proportional to
|E| · |D| in practice.

Our empirical analysis is not
completely rigorous. In particu-
lar, our data points are not in-
dependent and our treatment of
memory locations is not conser-
vative. However, we believe that
the results obtained are promis-
ing and suggest that the algorithm
can be used as the basis for fur-
ther work on data flow analysis
for concurrent programs.

6 Generalizations

The results presented in this paper focus on forward intra-procedural bitvector
analyses of concurrent programs, with a fixed set of threads and a fixed set of
locks. We leave the generalization of the bitvector analyses to more expressive

classes of analyses as future work. The other constraints, however, were intro-
duced for expository purposes rather than some limitation of our approach. In
this Section, we discuss generalizations of our methods that remove these con-
straints.

6.1 Dynamic Lock and thread creation

Our system model does not account for lock aliasing or dynamic lock creation.
It is straightforward to extend our model to handle both features by leveraging
a conservative pointer analysis for lock variables. Essentially, we may ignore
acquisitions and releases of lock variables that cannot be resolved to a single
“actual” lock. Since ignoring locks leads to more program behaviors, the resulting
analysis sound. More precise handling of lock aliases is left as future work.

In our system model, each thread is created simultaneously at the beginning
of the program. For some programs, this is the correct behavior; for example,
libraries such as FUSE (see Section 5), which are not equipped with program
entry points, must assume that every thread may start at the beginning of the
program, because this assumption conservatively approximates any program that
creates threads dynamically. So by default, our analysis produces safe solutions
for programs that dynamically create a finite set of threads. If a program does
not have a fixed number of threads (for example, the program creates threads
in a loop), since the number of thread creation points is still fixed, and we can
use our results on parameterization to model the program behavior soundly. We
leave more precise handling of thread creation and deletion as future work.

6.2 Function Calls and Recursion

Throughout the paper, we have presented our system model such that each
thread is a finite state automaton. This means no function calls and, naturally,
no recursion. All the ideas presented in this paper extend to the case that threads
are pushdown systems, as long as we keep the principle of nested locking intact.
The reachability and decomposition results of [5,6] hold for the case of push-
down systems, and we need to only extend the notion of control locations to
configurations of pushdown systems (a control location plus the content of the
stack). The analysis stays essentially the same – the only major difference is
that the sequential data flow analyses employed by the algorithm must now be
inter-procedural sequential data flow analyses.

6.3 Parameterization

One advantage of data flow analysis is that it can be applied to open programs;
that is, programs that do not specify an entry point. This is useful for two
reasons: one, there are many interesting programs that are open (e.g., libraries);
two, it enables analyses to take advantage of programs that are composed of
modules. Open programs are often problematic for program analyses because the

number of threads that are active in the program is not known a priori – analyses
must be correct with respect to any number of threads in the program. Thus,
for open programs, the ideal solution to a data flow problem the parameterized
concurrent meet-over-paths solution (PCMOP). For a concurrent program CP
with threads T1, . . . , Tn, for any transition t ∈ Σ, PCMOP can be defined as
follows:

PCMOP [t] =
l

k∈Nn

CMOPk[t]

where CMOP〈k1,...,kn〉[t] is the CMOP solution at t for the concurrent program
consisting of k1, k2, . . . , kn distinct copies of T1, T2, . . . Tn, respectively. That is,
the PCMOP solution is the meet over all paths of all possible concurrent pro-
grams that can be constructed using any number of copies the threads in CP.

Computing the PCMOP solution to a bitvector problem poses no additional
difficulty for our algorithm. Indeed, we expect that computing the PCMOP
solution is sometimes even easier than computing the CMOP solution. This is
largely a consequence of Lemma 2: as far as the CMOP solution is concerned, 2
copies of a thread is indistinguishable from k threads, for any k ≥ 2. Next, note
that in the presentation of our algorithm, special care was taken to assure that
we did not consider concurrent executions of a single thread. If this restriction is
removed, then the algorithm with compute the PCMOP solution. Moreover, we
may collapse the NGen thread summaries even further into program summaries,
which can speed up the algorithm.

6.4 Backwards analysis

It is straightforward to adapt our techniques to handle backwards bitvector anal-
yses such as liveness and very busyness analysis. Traditionally, backwards data
flow analyses can be solved using forward data flow analyses on reverse flow
graphs. This method is not directly applicable in the concurrent case because
of complications from synchronization and deadlocks. However, backwards ana-
logues of all our results do hold, and optimal solutions to backwards analyses
can be obtained by an algorithm similar to the one presented in Section 4.

7 Application and Future work

We discussed a number of very important applications of bitvector analysis in
Section 1. One of the most exciting applications of our precise bitvector frame-
work (in our opinion) is our ongoing work on studying more suitable abstractions
for concurrent programs. Intuitively, by computing the solution to reaching-
definitions analysis for a concurrent program, we can collect information about
how program threads interact. We are currently working on using this informa-
tion to construct abstractions to be used for more powerful concurrent program
analyses, such as computing state invariants for concurrent libraries. The preci-
sion offered by our concurrent bitvector analysis approach is quite important in
this domain, because it affects both the precision of the invariants that can be
computed, and the efficiency of their computation.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, tech-
niques, and tools. Addison-Wesley Longman Publishing Co., Inc., 1986.

2. R. Chugh, J. Voung, R. Jhala, and S. Lerner. Dataflow analysis for concurrent
programs using datarace detection. In PLDI, pages 316–326, 2008.

3. Javier Esparza and Jens Knoop. An automata-theoretic approach to interprocedu-
ral data-flow analysis. In FoSSaCS ’99, pages 14–30, London, UK, 1999. Springer-
Verlag.

4. Javier Esparza and Andreas Podelski. Efficient algorithms for pre* and post* on
interprocedural parallel flow graphs. In POPL ’00, pages 1–11, New York, NY,
USA, 2000. ACM.

5. V. Kahlon and A. Gupta. On the analysis of interacting pushdown systems. In
POPL, pages 303–314, 2007.

6. V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating
via locks. In CAV, pages 505–518, 2005.

7. Nicholas Kidd, Peter Lammich, Tayssir Touili, and Thomas Reps. A decision pro-
cedure for detecting atomicity violations for communicating processes with locks.
In SPIN ’09, pages 125–142, Berlin, Heidelberg, 2009. Springer-Verlag.

8. J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Efficient and optimal
bitvector analyses for parallel programs. ACM Transactions on Programming Lan-
guages and Systems, 18(3):268–299, 1996.

9. Jens Knoop. Parallel constant propagation. In Euro-Par ’98, pages 445–455,
London, UK, 1998. Springer-Verlag.

10. Jens Krinke. Static slicing of threaded programs. SIGPLAN Not., 33(7):35–42,
1998.

11. Peter Lammich and Markus Müller-Olm. Conflict analysis of programs with proce-
dures, dynamic thread creation, and monitors. In SAS ’08, pages 205–220, Berlin,
Heidelberg, 2008. Springer-Verlag.

12. Richard J. Lipton. Reduction: a method of proving properties of parallel programs.
Commun. ACM, 18(12):717–721, 1975.

13. S. P. Masticola and B. G. Ryder. Non-concurrency analysis. In PPOPP, pages
129–138, New York, NY, USA, 1993.

14. S. S. Muchnick. Advanced Compiler Design and Imlementation. Morgan Kauf-
mann, 1997.

15. G. Naumovich and G. S. Avrunin. A conservative data flow algorithm for detecting
all pairs of statements that may happen in parallel. In SIGSOFT/FSE-6, pages
24–34, New York, NY, USA, 1998.

16. G. Naumovich, G. S. Avrunin, and L. A. Clarke. An efficient algorithm for com-
puting mhp information for concurrent java programs. In ESEC/FSE-7, pages
338–354, London, UK, 1999.

17. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil: Intermediate language
and tools for analysis and transformation of c programs. In CC, pages 213–228,
2002.

18. R. Netzer and B. Miller. Detecting data races in parallel program executions. In
Advances in Languages and Compilers for Parallel Computing, 1990 Workshop,
pages 109–129, Irvine, Calif., 1990.

19. F. Nielson and H. Nielson. Type and effect systems. In Correct System Design,
pages 114–136, 1999.

20. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. Sci. Comput. Program.,
58(1-2):206–263, 2005.

21. A. Salcianu and M. Rinard. Pointer and escape analysis for multithreaded pro-
grams. In PPoPP, 2001.

22. Helmut Seidl and Bernhard Steffen. Constraint-based inter-procedural analysis
of parallel programs. In ESOP ’00, pages 351–365, London, UK, 2000. Springer-
Verlag.

	Compositional Bitvector Analysis For Concurrent Programs With Nested Locks
	Azadeh Farzan Zachary Kincaid

