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ABSTRACT
In this paper, we propose a Semantics-Preserving Teacher-Student
(SPTS) model for group activity recognition in videos, which aims
to mine the semantics-preserving attention to automatically seek
the key people and discard the misleading people. Conventional
methods usually aggregate the features extracted from individual
persons by pooling operations, which cannot fully explore the
contextual information for group activity recognition. To address
this, our SPTS networks first learn a Teacher Network in semantic
domain, which classifies the word of group activity based on the
words of individual actions. Then we carefully design a Student
Network in vision domain, which recognizes the group activity
according to the input videos, and enforce the Student Network to
mimic the Teacher Network during the learning process. In this
way, we allocate semantics-preserving attention to different people,
which adequately explores the contextual information of different
people and requires no extra labelled data. Experimental results on
two widely used benchmarks for group activity recognition clearly
show the superior performance of our method in comparisons with
the state-of-the-arts.
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Figure 1: The basic idea of the SPTS networks. In the seman-
tic domain, the task is tomap thewords of individual actions,
which can be treated as a caption of the video [1], to theword
of group activity. In the vision domain,we attempt to predict
the label of group activity based on the corresponding input
video. We first learn a Teacher Network in the semantic do-
main, and then employ the learned attention information,
which represents different importance of different people
for recognizing the group activity, to guide a Student Net-
work in the vision domain. (Best viewed in color)

Seoul, Republic of Korea. ACM, New York, NY, USA, 9 pages. https://doi.org/
10.1145/3240508.3240576

1 INTRODUCTION
Group activity recognition (a.k.a. collective activity recognition),
which refers to discern what a group of people are doing in a video,
has attracted growing attention in the realm of computer vision
over the past decade [1–7]. There are widely real-world applica-
tions for group activity recognition including traffic surveillance,
social role understanding and sports video analysis. Compared with
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conventional action recognition which focuses on a single person,
group activity recognition is a more challenging task as it requires
further understanding the high-level relationship among different
people. Hence, it is desirable to design a model to aggregate the
individual dynamics across people and explore their contextual
information for effective group activity recognition.

During the past few years, great efforts have been devoted to
mine the contextual information for group activity recognition. In
the early times, a typical series of approaches are developed to
design graph-based structure models based on hand-crafted fea-
tures [7–10]. However, these methods required strong prior knowl-
edge and lack discriminative power to model the temporal evolution
of group activity. In recent years, with the promising progress of
deep learning methods, researchers attempt to build different deep
neural networks [2, 4] for group activity recognition. Most of these
methods treat all participants with equal importance, and integrate
the features of individual actions by simple pooling operators. How-
ever, the group activity is usually sensitive to a few key persons,
whose actions essentially define the activity, and other people may
bring ambiguous information and mislead the recognition process.
Let’s take Figure 1 as an example. The bottom of Figure 1 shows a
frame sampled from a video clip in Volleyball dataset [2]. Obviously,
the “spiking” person shall provide more discriminative information
for recognizing the “right spike” activity, and those “standing” peo-
ple may bring some confounding information. To address these,
several works [5, 11] have proposed attention-based models to as-
sign different weights to different people. Specifically, they learn
the weights based on the features extracted from input videos, and
allocate these weights to their corresponding features. However,
such a “self-attention” scheme is essentially lack of physical expla-
nation and is not reliable enough to find the key person for activity
recognition in the video.

In this work, we move a new step towards the interaction of
vision domain and semantic domain, and propose a Semantics-
Preserving Teacher-Student (SPTS) model for group activity recog-
nition. Figure 1 shows the basic idea of our approach. Concretely, we
first learn a high-performance model with typical attention mecha-
nism (namely Teacher Network) to map the individual actions to
group activity in the semantic domain. Next, we develop a similar
model (namely Student Network), which predicts the group activity
from the individual actions in vision domain. Then, we carefully
design a unified framework to utilize the attention knowledge in
the Teacher Network to guide the Student Network. As the inputs
of our Teacher Network are generated from the off-the-shelf single-
action labels, our SPTS networks require no extra labelled data. We
evaluate our approach on the widely used Volleyball dataset and
Collective Activity Dataset, where the experimental results show
that the SPTS networks outperform the state-of-the-arts for group
activity recognition.

2 RELATEDWORK
Group Activity Recognition: Activity recognition is a broadly
researched field [12–27], where group activity recognition is an
important topic. There have been many methods for group activity
recognition in recent years [1–7], which can be roughly divided into

two categories: hand-crafted feature based and deep learning fea-
ture based methods. For the first category, a number of researchers
fed hand-crafted features into graphical models to capture the struc-
ture of group activity. For examples, Lan et al. [9] presented a latent
variable framework to model the contextual information of person-
person interaction and group-person interaction. Hajimirsadeghi
et al. [3] developed a multi-instance model to count the instances
in a video for group activity recognition. Shu et al. [10] employed
AND-OR graph formalism to jointly group people, recognize event
and human roles in aerial videos. However, these methods relied
on hand-crafted features, which required strong prior knowledge
and were short of discriminative power to capture the temporal
cue. For the deep learning based methods, various works have been
proposed to leverage the discriminative power of deep neural net-
work for group activity recognition. For example, Ibrahim et al. [2]
proposed a hierarchical model with two LSTM networks, where the
first LSTM captured the dynamic cues of each individual person,
and the second LSTM learned the information of group activity.
Shu et al. [4] extended this work by introducing a new energy layer
to improve reliability and numerical stability of inference. Wang
et al. [6] built another LSTM network upon this work to capture
the interaction context of different people. However, these works
mainly focused on the vision domain, which igonred the seman-
tic relationship between the individual actions and group activity.
More recently, Li et al. [1] presented a SBGAR scheme, which gener-
ated the captions of each video and predicted the final activity label
based on these captions. However, the generated captions were
not always reliable, and the inferior captions will do harm to the
final process of recognition. To this end, we simultaneously explore
the contextual relationship of individual actions and group activity
in both semantic and vision domains, and employ the semantic
knowledge to enhance the performance of vision task.
Attention-based Models: Attention-based model, motivated by
the attention mechanisms of primate visual system [28, 29], aims to
select the most informative parts from the global field. During the
past two decades, attention-based models have been widely applied
into the realm of natural language processing (e.g., machine transla-
tion [30, 31]), computer vision (e.g., video face recognition [32, 33],
person re-identification [34], object localization [35]), and their
intersection (e.g., image caption [36], video caption [37] and visual
question answering [38]). As for human action/activity recogni-
tion, Liu et al. [39] developed global context-aware attention LSTM
networks to select the informative joints in skeleton-based videos.
Further more, Song et al. [40] proposed a spatial-temporal attention-
based model to learn the importance of different joints and different
frames. Different from these two works [39, 40], we employ the
attention model to allocate different weights to different people
in a group for RGB-based activity recognition. Although a few
works [5, 11] have exploited attention-based models for group ac-
tivity recognition, they only applied “self-attention” scheme and
were incapable to explain the physical meaning of the learned atten-
tion explicitly. Different from these methods, our SPTS networks
distill the attention knowledge in the semantic domain to guide the
vision domain, which utilize the semantic information adequately
and make the learned attention interpretable.
Knowledge Distillation: The concept of “knowledge distillation”
is originated from the work [41] by Hinton et al., which aims to



transfer the knowledge in a “teacher” network with larger archi-
tecture and higher performance to a smaller “student” network.
They enforced a constraint on the softmax outputs of the two net-
works when optimizing the student network. After that, several
works have been proposed to regularize the two network based
on the intermediate layers [36, 42, 43]. For example, Yim et al. [43]
utilized flow of solution procedure (FSP) matrix, which were gener-
ated based on feature maps of two layers, to transfer knowledge
in teacher network to student network. Chen et al. [44] employed
technique of function-preserving transformations to accelerate the
learning process of student network. The most related work to ours
is [36], which also utilized the information across the attention
mechanisms of two networks. Different from [36], where the input
of the two networks were both images and the networks architec-
ture were similar, our work explores the knowledge in two different
domains (semantic domain and vision domain) and utilizes the ad-
ditional recurrent neural network to address a more challenging
task of group activity recognition.

3 APPROACH
Themotivation of this work is to adequately explore the information
in both vision domian and semantic domain for group activity
recognition. In this section, we first formulate the problem, and
then present the details of our SPTS networks.

3.1 Problem Formulation
We denote a tri-tuples (V ,y, z) as a training sample for a video
clip, where V is the specific video and z is the ground-truth label
for group activity. Let Y = {yn }Nn=1 denote the labels of individual
actions, where yn represents the label corresponding to the nth
person. The goal of group activity recognition is to infer the final
label z corresponding to V during test phase. In many previous
works, researchers utilize a set of cropped images of each single
person at each frame (i.e., tracklets) X = {xt1 ,x

t
2 , ...x

t
n , ...x

t
N }

T
t=1 as

inputs, where t represents the tth frame. We follow this problem
setting in our work.

3.2 SPTS Networks
Our SPTS networks consist of two subnetworks, namely Student
Network and Teacher Network. Figure 2 illustrates the pipeline
of SPTS networks. In this framework, the Student Network aims
to predict the final label z given a set of tracklets from an input
video in the vision domain, while the Teacher Network aims to
model the relationship between the words of individual actions Y =
{yn }

N
n=1 and the word of group activity z in the semantic domain.

It is reasonable that Teacher Network tends to achieve comparable
or better performance than Student Network, because individual
action labels are powerful low-dimensional representations for the
task of group action recognition, which is also demonstrated in the
Experiments section. Additionally, we find the Teacher Network and
Student Network are complementary in classification results, which
indicates a combination of semantic domain and vision domain will
help. However, the ground-truth individual labels Y = {yn }Nn=1 are
not available during the testing stage. A natural way to address
this issue is to employ the knowledge of the Teacher Network to

guide the training process of the Student Network. We now detail
the proposed attention-transfer networks as follows.
Student Network: The goal of our student network is to learn a
model z = S(X ;θs ) to predict the label of group activity given a set
of tracklets in a video clip. where θs is the learnable parameters
of the student network. For fair comparison, we utilize the off-the-
shelf tracklets provided by [2, 7].

In order to capture the appearance information and temporal
evolution of each single person, we employ a DCNN network and
LSTM network to extract features of X , which is a similar scheme
according to [2]. Then, we concatenate the last-fc-layer feature
of DCNN and feature of LSTM layer. The concatenation, denoted
as G = {дt1 ,д

t
2 , ...д

t
n , ...,д

t
N }

T
t=1, represents the temporal feature

of each individual person. Sequentially, we calculate the score stn
which indicates the importance of the nth person as:

stn = tanh(W1 ∗ д
t
n + b1) , (1)

whereW1 and b1 are the weighted matrix and biased term. The
activation weight we allocate to each person is obtained as:

βtn = exp (stn )/
N∑
j=1

exp (stj ) , (2)

where βtn is a softmax normalization of the scores. Instead of con-
ventional aggregation methods like max-pooling or mean-pooling,
we fuse the feature of each individual person at timestep t as:

wt
aдд =

N∑
n=1

βtn · д
t
n . (3)

In this way, the set of activation factors {βtn }Nn=1 control the
contribution of each person to the aggregated featurewt

aдд . Having
obtainedwt

aдд , the aggregated features of each frame, we feed them
into another group-level bidirectional LSTM network. The output
features are sent into an fc-layer activated by a softmax function to
obtain the final label of the group activity.
Teacher Network: As illustrated above, our Student Network can
be regarded as extending a typical self-attention mechanism on the
hierarchical deep temporal models proposed in [2]. However, in
such a scheme, the labels of individual actions and group activities
are utilized to supervise the discriminative feature learning, while
their corresponding relationship, which captures the dependency
of the individual actions and group activities in another seman-
tic space, is rarely used. In this section, we introduce a Teacher
Network, which aims to learn a model z = T(Y ;θt ) to integrate
the labels of individual actions Y = {yn }Nn=1 into a label of group
activity z. Note that our Teacher Network essentially addresses
an NLP-related task, where attention mechanism also shows their
advantage. Based on this, we develop our Teacher Network by in-
troducing an attention scheme, which is similar to our Student
Network.

Given a set of individual action labels Y = {yn }Nn=1 as the input
of our Teacher Network, we first encode them into a sequence
of one-hot vectors Foh = { foh,n }Nn=1, where foh,n ∈ RC and C
is the number of individual action category. Then we embed the
Foh ∈ R

P×C into a latent space as:

fem,n = ReLU (W2 ∗ fn + b2) , (4)



Figure 2: A framework of our proposed SPTS networks, which contains two sub-networks. We first train the Teacher network,
which models relationship between words of individual actions and the word of group activity. Next, we train the student
network, which takes a set of tracklets as input and predicts the label of group activity. We enforce three types of constraints
during the training process of Student Network, i.e., semantics-preserving attention constraint, knowledge distillation con-
straint and classification constraint.

whereW2 and b2 are the weighted matrix and biased term, ReLU
denotes the nonlinear activation function [45]. Then another at-
tention mechanism, which is corresponding to that of the Student
Network, is derived as follow:

sn = tanh(W3 ∗ fem,n + b3) , (5)

αn = exp (sn )/
N∑
j=1

exp (sj ) , (6)

vaдд =

N∑
n=1

αn · fem .n . (7)

Having obtained the vaдд , we feed it into an fc-layer followed
by a softmax activation to predict the final label. We train this
model using the ground-truth label z, and achieve high performance
due to the discriminative power of the semantic space and the
complementary property of semantic domain and vision domain.
Semantics-Preserving Attention Learning: As we described,
there are two attention mechanism in this work and they both
work separately via self-attention scheme. Noticing the fact that
they both model the importance of different people, a valid question
is why not jointly consider these two mechanism. More specially,
as the Teacher Network directly takes the ground-truth label of
individual actions as inputs, it is reasonable that its performance is
better than the Student Network which takes the tracklets as inputs
and requires a more complex feature learning process before the
attention mechanism.

Based on this reason, we aim to use the attention knowledge of
the Teacher Network to guide the Student Network. In practice, we
first train the Teacher Network T(Y ;θt ) with the provided labels of
training samples. Then, we enforce the student network to absorb
the teacher’s knowledge during the learning process via a total loss

function defined as below:

J = JCLS + λ1 JSPA + λ2 JKD

= −

L∑
l=1

1(z = l )loд(P lS )

+ λ1
1
N

N∑
n=1

(αn −
1
T

T∑
t=1

βtn )
2

+ λ2∥PT − PS ∥
2
2 (8)

Here λ1 and λ2 are the hyper-parameters to balance the effects
of two different terms to make a good trade-off. The physically in-
terpretations of the JCLS , JSPA and JKD are respectively explained
as below.

The first term JCLS represents classification loss for activity
recognition. We calculate the categorical cross-entropy loss, where
1 is the indicator function which equals 1 when the prediction z = l
is true and 0 otherwise. Here l and L denote the predicted label and
the number of the total activity categories. The softmax output P lS
represents the corresponding class probability of the Student Net-
work. The second term JSPA aims to enforce the student’s attention
to preserve the teacher’s semantics attention. We adopt the mean
squared distance of these two types of attention, and minimize it
during the optimal process. The third term JKD denotes the loss
of knowledge distillation [41], in which PT and PS are the softmax
output of the Teacher and Student Network respectively.

To optimize (8), we employ the back propagation through time
(BPTT) algorithm for learning all the parameters θs of our Stu-
dent Network. We summarize the pipeline of our SPTS method
in Algorithm 1. Note that the Teacher Network only guides the
Student Network during the training phase, as the ground-truth
label Y = {yn }Nn=1 are not available during the testing stage.



Figure 3: Comparison of different DNN-based frameworks for group activity recognition. The solid lines, dashed lines and
green arrow denote the process of forward propagation, backward propagation and semantics-preserving attention learning
respectively. Method in (a) first extracts features of individual action, then aggregates them into group representations with f1,
and finally recognizes the activity based on the group representations. Approach in (b) first generates captions (i.e., individual
action labels) of video frames, and recognizes the activity based on these captions by f2. Our method in (c) first learns f2 to
model the relationship between individual action labels and group activity label. Then we employ the attention knowledge in
f2 to guide f1 when aggregating features of individual actions to feature of group activity, and make the final prediction.

Algorithm 1: SPTS
Input: Training samples: {X ,Y , z}, Parameters: Γ (iterative

number) and ϵ (convergence error).
Output: the weights of Student Network θs .
// Teacher Network Training:
Optimize the parameter θt of Teacher Network with (Y , z).
// Student Network Training:
Finetuned the DCNN and the train first LSTM with (X ,Y ) [2].
Extract features G from X .
Initialize θs .
Perform forward propagation.
Calculate the initial J 0 by (8).
for i ← 1, 2, ..., Γ do

Update θs by back propagation through time (BPTT).
Perform forward propagation.
Compute the objective function J i using (8).
If |J i − J i−1 | < ϵ , go to Return.

end
Return: The parameters θs of Student Network.

3.3 Discussion
This section clarifies the difference of our SPTS networks in com-
parison with other two categories DNN-based methods. The first
category, such as HTDM [2] and its variants [4] shown in Figure
3(a), mainly focus on the vision domain. They first learn features
of individual person with an LSTM network, aggregate them into
group representations with a function f1, and finally recognize the
activity based on the group representations with another LSTM
network. The labels of individual actions Y and group activity z
were respectively used to supervise the training process of the

first and second LSTM networks. But their corresponding relation-
ship of Y and z have not been utilized explicitly. Moreover, the
function f1 turned to be max-pooling or mean-pooling, which is
lack of physical meaning. The second category, such as SBGAR [1]
shown in Figure 3(b), focuses on the semantic domain. This method
directly generates the caption to describe the video frames, and
utilizes the captions to classify the group activity with a function
f2. The individual actions Y were used to supervise the caption
generation and the group activity z was utilized to supervise the
learning process of f2. However, as the group label is sensitive to
the captions, the inaccurate generated captions will do harm to the
final recognition results. Different from these methods, our SPTS
networks in Figure 3(c), adequately leverage the information in the
vision domain and semantic domain for group acitivity recognition.
We distill the knowledge in f2 learned in semantic domain to guide
the training process of f1 in vision domain.

4 EXPERIMENTS
4.1 Datasets and Experiment Settings
Volleyball Dataset [46]: The Volleyball dataset is currently the
largest dataset for group activity recognition. It contains 55 vol-
leyball videos with 4830 annotated frames. There are 9 individual
action labels (waiting, setting, digging, falling, spiking, blocking,
jumping, moving and standing) and 8 group activity categories
(right set, right spike, right pass, right winpoint, left winpoint, left
pass, left spike and left set) in this dataset. We employ the eval-
uation protocal in [46] to separate the training/testing sets. We
employ the metrics of Multi-class Classification Accuracy (MCA)
and Mean Per Class Accuracy (MPCA) on this dataset.
Collective Activity Dataset (CAD) [47]: The Collective Activity
Dataset is a widely used benchmark for the task of group activity



recognition. It comprises of 44 video clips, annotated with 6 indi-
vidual action classes (NA, crossing, walking, waiting, talking and
queueing) and 5 group activity labels (crossing, walking, waiting,
talking and queueing). There are also 8 pairwise interaction labels,
which we do not utilize in this paper. We split the training and
testing sets following the experimental setup in [9].

As suggested in [47] that originally presented the dataset, the
“walking” activity is rather an individual action than a collective
activity. To address this, we follow the experimental setup in [6],
to merge the class of “walking” and “crossing” as a new class of
“moving”. We report the Mean Per Class Accuracy (MPCA) of the
four activities on the CAD dataset, which can better evaluate the
performance of the classifiers.

4.2 Implementation Details and Baselines
Our SPTS was built on the Pytorch toolbox and implemented on a
system with the Intel(R) Xeon(R) E5-2660 v4 CPU @ 2.00Ghz. We
trained our SPTS with two Nvidia GTX 1080 Ti GPUs and tested it
with one GPU.

For the Teacher Network, we took the ground-truth label of each
individual action as input, and the one-hot vectors were projected
through an fc-layer. The embeded features were weighted and
sumed based on different weights learned by the self-attention
mechanism, which indicates the importance of different people. The
aggregated features were then fed into an fc-layer for classification.
The Teacher Network was trained with the Adam optimization
method with 16 as the batch size. And the initial learning rate was
0.003.

For the Student Network, we first finetuned VGG network [48]
pretrained on ImageNet [49] to extract CNN features of the tracklets.
The features of the last fc layer were fed into a LSTM network
with 3000 nodes. The concatenated features of VGG and LSTM
networks were then fed into an fc-layer with the size of 512 to
cut down the dimension. The importance of each person on each
frame was generated by the attention mechanism, and the embeded
features of each person were then sumed by weight. The weighted
features were then fed into a bidirectional LSTM network with the
hidden size of 128. The output features were fed into an fc-layer
for classification. During the Teacher guided training process, the
Student network was optimized with Adam and the initial learning
rate was 0.00003. As for ratio of different parts of losses, we set
λ1 = λ2 = 1. The batch size was set to be 16.

In order to better explore themotion information of the video and
inspired by the success of two-stream network architecture [25], we
computed the optical flow between two adjacent video frames using
Flownet 2.0 [50]. We extracted DCNN and LSTM features of optical
flow tracklets, and concatenate them with the features extracted
from orignal RGB tracklets before the attention mechanism of the
Student Network.

We report the performance of the following baseline methods
and different versions of our approach:

• HDTM [2] : A hierarchical framework with two LSTM mod-
els. The first LSTM network took the features extracted from
the tracklet of each person as input, and was trained with
the supervision of the individual action label. The input of
the second LSTM network was the aggregation of features

Table 1: Comparison of the group activity recognition accu-
racy (%) on the volleyball dataset

Method MCA MPCA
CERN-2 [4] 83.3 83.6
SSU [5] 89.9 –
SRNN [51] 83.5 –
Ours-teacher∗ 88.3 84.4
Ours-teacher 69.3 66.8
Baseline-HDTM [2] 81.9 82.9
Ours-SA 87.1 86.1
Ours-SPA 89.3 89.2
Ours-SPA + KD 89.3 89.0
Ours-SA (+OF) 87.7 87.0
Ours-SPA (+OF) 89.6 89.5
Ours-SPA + KD (+OF) 90.7 90.0

learned by the first LSTM, and was trained with the supervi-
sion of the group activity label.
• Ours-teacher∗: The Teachers Network directly took the ground-
truth labels of the individual actions as input during both
training and testing phases. Hence, it is not fair to directly
compare the performance of Teacher Network with other
methods, which are inaccessible to the ground-truth labels
of the individual actions during testing phase. We report the
performance of Ours-teacher∗ only for reference.
• Ours-teacher: During the training phase, we used the ground-
truth label of each individual action as input to train the
Teacher Network. During the testing stage, we used the
individual action label learned from the first LSTM of HDTM
to predict the final group activity label.
• Ours-SA (self-attention): An original model of our Student
Network, which can be regarded as adding a self-attention
mechanism upon the HDTM [2] .
• Ours-SPA (semantics-preserving attention): A version of
model which employ the attention knowledge in Teacher
Network to help the training of Student Network.
• Ours-SPA+KD (knowledge distillation): A model of combin-
ing the knowledge distillation loss [41] with Ours-SPA.
• Ours-SPA (+OF), Ours-SPA (+OF), Ours-SPA+KD (+OF): Mod-
els of combining the optical flow input based on the Ours-
SPA, Ours-SPA and Ours-SPA+KD, respectively.

4.3 Results on the Volleyball Dataset
We first evaluate our method on the Volleyball dataset. We fol-
low [2] to seperate players into two groups on the left and right,
and extend the individual action labels to 18 categories (e.g., “left
standing”, “right waiting”, etc.) according to their positions. Table
1 presents the comparison with different approaches, where our
SPTS networks achieve 90.7% MCA and 90.0% MPCA, outperform-
ing existing state-of-the-art methods for group activity recognition.
Comparedwith the 0.3% (MCA andMPCA) improvement by the self-
attention scheme over the baseline method, our attention-guided
approach achieves 2.5% (MCA) and 3.2% (MPCA) improvement,
which demonstrates the effectiveness of our proposed method. We



Figure 4: Visualization of the learned attention on the Volleyball dataset. For each video clip, we show the representative
frame on the left, while the cropped people are shown on the right. In each dash box, we display the labels of indvidual
actions and three types of attention score: T (Teacher Network), SA (Student Network with self-attention scheme) and SPA
(Student Network with semantics-preserving attention method).

also discover that, combining with the optical flow can lead to
a slight improvement on this dataset. Besides, though the Our-
teacher∗, which takes the groud-truth of individual actions as the
input of Teacher Network, reaches high performance of 88.3% MCA.
Our-teacher only attains 69.3% MCA, which utilizes the predicted
individual actions as inputs. This is because, the Teacher Network
is sensitive to the inputs and the incorrectedly predicted individual
acitions will greatly harm the performance of the final recognition.

We also show several visualization results of the learned atten-
tion in Figure 4. The group activity label of Figure 4(a) is “left spike”.
For the self-attention model of Student Network, the model most
likely focuses on those people wearing different clothes in a group,
e.g., the white person (SA:60) in the black team, and the yellow
person (SA:62) in the white team. However, these people are not
exactly key people for recognizing the group activity. When we
employ the attention model of Teacher network, we can focus on
those words, which are essentially important in the semantic space,
e.g., the spiking (T: 80), and the blocking(51). And after employing
our SPTS networks, we will transfer this attention knowledge from
semantic space to the vision space, and guide the Student Network
to focus on the “left spiking” person (SPA:62), who contributes most
to recognizing the final activity. The group activity label of Figure
4(b) is “left winpoint”, where there’s no special people for recog-
nizing this activity. However, the self-attention scheme assign the

highest score to the yellow person (SA:72), which does not carry
key information. After employing the SPTS networks, the score
of this person is decreased to 47, and extra attention is allocated
to other people. Figure 4(c) also illustrates some similar results to
Figure 4(a).

4.4 Results on the CAD dataset
Table 2 shows the comparison with different methods on the CAD
dataset. The MPCA results of other approaches are computed based
on the original confusion matrices in [1–4, 6, 7]. We observe that,
our method achieves 95.7% MPCA, outperforming the state-of-the-
arts by 4.9%. Moreover, our method have improved the baseline
method HDTM [2] by 6.1%. Objectively speaking, we should own
the major contribution to the combination of the optical flow, which
explicitly captures the motion information of the scene. Based on
this, our attention-guided method brings 1.4% improvement over
self-attention(SA) model. This improvement is less significant than
that on the Volleyball dataset because the setting of the CAD dataset
is to assign what the major people are doing to the label of group
activity. Hence, attention model is not so important. Besides, com-
pared with SBGAR and Ours-teacher, which directly utilized the se-
mantic information to predict the final labels, our methods achieves
5.8% and 7.5% improvement, which demonstrates its effectiveness.



Figure 5: Visualization of the learned attention on the CAD dataset.

Figure 6: Comparison of Confusion Matrices on CAD [47].
We merge the class of Walking and Crossing as the same
class of Moving as suggested in [6].

Table 2: Comparison of the group activity recognition accu-
racy (%) on the CAD dataset

Method MPCA
Cardinality kernel [3] 88.3
CERN-2 [4] 88.3
RMIC [6] 89.4
SBGAR [1] 89.9
MTCAR [7] 90.8
Ours-teacher∗ 97.6
Ours-teacher 88.2
baseline-HDTM [2] 89.6
Ours-SA 91.5
Ours-SPA 92.3
Ours-SPA + KD 92.5
Ours-SA (+OF) 94.3
Ours-SPA (+OF) 95.6
Ours-SPA + KD (+OF) 95.7

We also show the visualization of the learned attention in Figure
5. As shown in Figure 5(a), the group activity label is “waiting”,
hence the Teacher Network allocates more attention to the words
“waiting” (29) and less attention to the word “moving”. Guided

by this information, the Student Network decreases the attention
(from 22 to 17) to the “moving” person, which can be regarded as a
noise for recognizing the group activity. For Figure 5(b), the group
activity is “moving”, and it is reasonable that the Teacher Network
allocates averaged score to the three individual words “moving”.
Taught by this attention knowledge, the Student Network increase
the attention of the top person from 20 to 27, and decrease the
attention of the right person from 43 to 37, so that the information of
three people can be utilized equally. Figure 6 presents the confusion
matrices of the baseline methods and our SPTS networks. It is
clear that SPTS networks attain superior results, especially for
distinguishing the activity of “moving” and “waiting”.

5 CONCLUSIONS
In this paper, we have presented a Semantics-Preserving Teacher-
Student (SPTS) architecture for group activity recognition in videos.
The proposed method has explored the attention knowledge in the
semantic domain and employed it to guide the learning process in
vision domain, which explicitly exploits the attention information
of the group people. Both quantitative and qualitative experimental
results on the widely-used CAD dataset and Volleyball dataset have
shown the superior performance of our proposed method in com-
parison with the state-of-the-arts. To our best knowledge, these are
original efforts leveraging attention in multimedia clues, i.e., both
semantic and vision clues, performing group activity recognition.
In the future, it is an interesting direction to employ our method
for the tasks like image/video caption or visual question answering
(VQA), which lie in the interaction area of the natural language
domain and computer vision domain.
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