
Evaluating Proximity Relations Under Uncertainty

Zhengdao Xu and Hans-Arno Jacobsen
Department of Computer Science and

Department of Electrical and Computer Engineering,
University of Toronto

zhengdao@cs, jacobsen@eecg
�
.toronto.edu �

Abstract

For location-based services it is often essential to effi-
ciently process proximity relations among mobile objects,
such as to establish whether a group of friends or family
members are within a given distance of each other. A severe
limitation in accurately establishing such relations is the
inaccuracy of dynamically obtained position data, the point
in time, and the frequency with which the position data is
collected. In this paper, we use the common model of inter-
preting the unknown position of an object by a probability
distribution centered around the last know position of the
object. While this approach is straight forward, it poses
severe difficulties for establishing the truth or falsehood of
the proximity relation. To address this problem, we analyt-
ically quantify the lower and upper bounds of the size of
the smallest circle that covers the mobile objects involved
in the proximity relation. Based on this result we propose
two novel algorithms that closely monitor the relation at
low location update cost. Furthermore, we develop a cost-
effective estimation technique to determine the probability
of match for a given proximity relation.

1 Introduction
Location-based services have become an important in-

dustrial sector [10]. This is largely due to the proliferation
and miniaturization of various mobile devices that are ca-
pable of tracking the position of subscribers. New applica-
tions of location-based services range from buddy tracking
(e.g., ”notify me if my best friend is nearby”), group track-
ing (e.g., ”notify me if all members of a group of friends
are nearby”), mobile gaming (e.g., treasure hunts) to mo-
bile advertisement (e.g., ”notify me if I am within 50 meters
of a coffee shop”). All these applications require the con-
tinuous tracking of a proximity relation of a set of mobile
subscribers or a set of mobile subscribers and a static point
of demarcation. Existing work studies this problem un-
der the assumption that the location constraints all have the

same alerting distance and location data is accurate [14, 20].
Other approaches solve the related, but different, closest
pair and � nearest neighbor problem [4, 9, 21]. In our own
prior work [20] we model the proximity relation among
moving objects with two types of location constraints: the� -body and � -body static constraints. Both constraints as-
sume precisely defined positions of the associated moving
objects. It is this assumption that we relax in this paper.
Moreover, this paper considers the evaluation of a single
constraint and not the continuous tracking of a large set of
these constraints.

The � -body constraint is of the form � ���	��
������
�������
������	����
. It is satisfied if the � moving objects, identified by,����
����
�������
���� , can be enclosed by a sphere with diameter�
at some time, � . This constraint models whether a given

set of objects is in proximity to each other, where proximity
is defined to be within a sphere of diameter

�
.
�

is referred
to as the alerting distance.

The � -body static constraint is of the form� ��
�� � ��
�� ��
�������
 � � �!�"� �
, where � is the coordinate

of some static point. It is satisfied if the � moving objects,
identified by, � �
��
�������
#� � , are within the given range,

�
, of

the static point � at some time, � . This constraint models
whether a given set of objects is in proximity to a static
point � , where proximity is defined to be within a sphere
of radius

�
of the static point � .

Intuitively, when objects are in close proximity, their
pairwise distances are small. This intuition can be formal-
ized to show that the proximity relation defined by the en-
closing circle (our � -body constraints) and the pairwise dis-
tances are equivalent. We capture this in the following prop-
erty, formally proved in [19].
Property: (1) if the pairwise distance of a set of � objects is
below

�
, then these objects can be covered by a circle with

the diameter 	$ %% � . (2) if a set of � objects can be covered
by a circle with diameter

�
, then the pairwise distance of

these objects is smaller than
�
.

Establishing the pairwise distance among � objects has
quadratic complexity (&(' � *)). The enclosing circle compu-

tation is linear in the number of object (&(' �)), as we review
in Section 3. This suggest that using � -body constraints as
proximity relation is more efficient.

In [20] we develop algorithms for the efficient evaluation
of large numbers of these constraints under the assumption
that the location position is given as a precise point in 2-D
space and the position data is reported to the constraint eval-
uating server periodically without cost considerations (e.g.,
location query cost, network bandwidth cost etc.) In real-
ity, however, the imprecision of the location information is
an intrinsic characteristic of location positioning. The ex-
act position of a mobile object at a point in time is hardly
ever consistent with the last location update of the object.
The imprecision of the position mainly stems from two fac-
tors, (1) imprecision of location positioning technique used
and (2) discrete location update policy. Even if the position
is accurate at the point in time the location is reported, dur-
ing the time in between location quotes, the precise position
is unknown due to the continuous movement of the object.
Therefore, neither the location position data, nor the con-
straint matching results are accurate. The periodic manner
underlying the location updates may further exacerbate the
missing of matches. The location constraint is only evalu-
ated against discrete location updates, entirely missing po-
tential constraint matches in between updates (Fig. 1).

t1 t2

1
2

3

4
5

d

Mobile Object

The match of constraint |1,2,3,4,5|<
d is missed because of the discrete
location updates at time t1 and t2

Figure 1. Match Missed

To take these issues into account, we model the position
of the object with an uncertainty region, which models the
unknown position of the object as a circle around the last
known position of the object. The actual position of the
object is located somewhere inside the circle. The circle
is defined by the object’s velocity and the accuracy of the
location positioning technology used. Now, the challenge
becomes to evaluate the above defined � -body (static) con-
straints over the uncertainty regions of the associated ob-
jects and to determine whether a constraint is satisfied, sat-
isfied with some probability, or not satisfied.

Depending on the source of the location information
(i.e., computed and available on the device or computed by
the network infrastructure and available at the server), we
propose two constraint evaluation algorithms, the Nearest
Update Time (NUT) and the Safe Region Update (SRU)
algorithms.

The contributions of this paper are four fold: (1) We in-
troduce and formalize the lower and upper bound of the size
of the smallest enclosing circle which covers a given set of
mobile objects with imprecisely given positions and pro-
pose an algorithm to compute these bounds. (2) We develop
two cost-effective algorithms, NUT and SRU, for evaluat-
ing location constraints and scheduling the location updates
under position imprecision. (3) We develop a technique to
efficiently approximate the probability of match, if a match
cannot be determined unequivocally. We also develop an
optimization for pruning constraints to avoid their evalua-
tion. (4) We conduct extensive experiments to evaluate our
algorithms under varying experimental conditions.

The outline of this paper is as follows. Section 2 briefly
reviews current location position techniques, mostly focus-
ing on their reported accuracies. Section 3 proposes a recur-
sive algorithm to effectively compute the upper and lower
bounds of the circle enclosing the objects involved in a con-
straint under uncertainty. Section 4 develops two new con-
straint evaluation algorithms for the constraint evaluation
and the location update scheduling. A sampling method is
used to estimate the matching probability. A strategy to
prune constraints prior to their evaluation are detailed in
Section 5. Performance evaluations are presented in Sec-
tion 6. Finally, in Section 7 we put our approach in per-
spective to related work.

2 Problem Context
In this section we briefly present background informa-

tion to further motivate the imprecision inherent to loca-
tion positioning techniques. We first review data we gath-
ered to establish the accuracy of a commercial location po-
sitioning technology available to us and then review loca-
tion positioning technology deriving two mainstream cate-
gories, which motivate our algorithm design in subsequent
sections.

Most location positioning techniques are imprecise. In
a prior application-oriented study we leveraged the location
positioning technology of a wireless carrier. The technol-
ogy combines GPS, CDMA network triangulation, and cell
site location to identify a subscriber’s location. Position
data is retrieved in a pull-based manner. To evaluate the ac-
curacy of this location positioning approach we conducted
an experiment recording locations retrieved over time un-
der different environmental conditions. A location request
to the network infrastructure is responded to with a location
position and the accuracy that was achievable. Fig. 2 sum-
marizes the data recorded. The data suggests that outdoor
environments and good weather conditions greatly improve
the accuracy of the position returned. Under most favorable
conditions (i.e., in the park on a sunny day) the accuracy
reached up to about 10 meters. However, under least fa-
vorable conditions (i.e., inside an office at a rainy day), the

0

500

1000

0

500

1000

ac
cu

ra
cy

 (
m

)

rainy

cloudy

sunny
grassland

open hall

street

office

park

Figure 2. Accuracy of Location Data

accuracy deteriorated by up to 1000 meters for repeated lo-
cation requests from the same location.

There are many other location positioning tech-
niques [10]. As reported in the literature, the accuracy of
GPS in the open air is around 10-300m [5]. WiFi (e.g.,
802.11) can be interpreted as an indoor form of GPS for
location positioning, with the access points acting as satel-
lites. At least three access points are necessary to calcu-
late a position, and additional access points improve accu-
racy. The accuracy of WiFi highly depends on the density
of the access points, and is reported to be around 2-50m [2].
Active badge and RFID use radio frequency identification
to position the user for an estimated accuracy to within a
few meters in a designated area [15, 1]. Other tracking
methods include Cricket, GSM fingerprinting, and Ubisense
etcetera [8, 7]. None of these existing methods can provide
perfectly accurate location positioning. All approaches are
subject to various levels of inaccuracy. Apart from the ac-
curacy, the methods also differ in terms of where the posi-
tion information is calculated. Two categories determining
location-aware algorithms design can be distinguished:

1. Externally supported devices: many WiFi-based ap-
proaches, active badges, and the network we used in
our evaluations are examples. For devices in this cat-
egory, either the device cannot independently obtain
the position data (e.g., no GPS available on the device)
or the device has very limited capabilities or power
and is not capable of computations such as evaluating
whether its position is within a certain geographic area,
for example.

2. Self-sustained devices: onboard GPS and many tele-
com network solutions are examples. The position
is calculated typically with triangulation based on the
signal strength or time of arrival and delay from a num-
ber of satellites, access points, base stations or anten-
nas by the mobile device itself. Often devices in this
category are capable of other multi-purpose computa-
tions.

Generally speaking, the self-sustained device is consid-
ered more powerful than the externally supported device.
However, a self-sustained device is usually more power-
consuming, more expensive and more bulky. This differ-
ence in functionality requires location-aware algorithms to
work with devices and location positioning techniques from
either of the two categories.

3 Computing Uncertainty Bounds
In this section we develop algorithms to decide whether a� -body (static) constraint is satisfied, satisfied with a proba-

bility, or not satisfied. The constraint is defined as discussed
in the introduction, with the positions of the associated ob-
jects defined by an uncertainty region (i.e., not precisely
known.)

At time � , the position of the object + is represented by
the uncertainty region ,.- �/ . ,.- �/ is a circle in 2-D space
with the last position update of object + as the center and0�13254 1 6	7/ '8�:9;�=<) as the radius.

0>1
is the accuracy of the

tracking method ? ,
4 1 6	7/ is the maximum velocity of ob-

ject + and � < is the last location update time prior to � . The
real position of the moving object is anywhere inside the
uncertainty region. For many tracking methods, the posi-
tion of the object is reported actually as a circle with a cer-
tain probability distribution function (PDF) describing the
likelihood of the object appearing at any point inside the
circle. GPS, for example, adopts the normal distribution as
the PDF. Empirically, it is also feasible to establish the pa-
rameters of the PDF experimentally, but this is outside the
scope of this paper.

For the � -body constraint, the smallest enclosing cir-
cle covering its associated objects could be as small as the
smallest circle intersecting all the uncertainty regions of the
objects or it could be as large as the smallest circle enclos-
ing all the uncertainty regions of the objects. We call these
circles the internal circle (denoted as @A�/ � �) and the external
circle (denoted as @B�C 7 �), respectively. They represent the
lower and upper bounds of the circle that actually encloses
all the moving objects. Fig. 3 shows 6 uncertainty regions
(dotted), their internal circle (dashed), and their external cir-
cle (solid).

Suppose, at time � , the smallest circle intersecting all un-
certainty regions has the diameter DE�/ � � and the smallest cir-
cle enclosing all uncertainty regions has the diameter DF�C 7 � .
If DG�C 7 � � � , then the constraint is satisfied with probabil-
ity 1; if DG�/ � �IH �

, then the constraint is not satisfied (i.e.,
probability 0); if D �/ � � � �;J D �C 7 � , then the constraint is
satisfied with some probability, which is estimated depend-
ing on the distribution function of the object position inside
the uncertainty region. In the last case, the estimated proba-
bility of match is returned to the user, and its interpretation
are up to the application.
Enclosing circle computation for � -body constraints:

Uncertainty Region
Internal Enclosing Circle
External Enclosing Circle1

2

3

4

5
6

Mobile Object

Figure 3. Bounds of Uncertainty Regions

The computational geometry literature developed algo-
rithms for computing the circle enclosing a set of points or
circles [18, 16, 3]. However, these approaches do not dis-
cuss algorithms to compute the internal circle intersecting
a set of circles. We have adapted the methodology from
Welzl [16] to solve this problem. Below, we develop a re-
cursive algorithm for computing both internal circle @I�/ � �
and external circle @.�C 7 � for a set of uncertainty regions.

The computation of the internal circle is done in a recur-
sive manner. Suppose that we want to compute the inter-
nal circle, @LK , for M uncertainty regions. We first pick an
arbitrary one of the M regions and compute @LK!N�� for the re-
maining MG9PO uncertain regions. We put the last one that
has been taken out back; if it intersects @LK!N�� , then we are
done, @ KRQ @ K!NS� . If it does not intersect @ K!NS� , then the
last circle inserted is a bounding region of @ K (it is tangent
to @ K). A similar property holds for the external circle. This
is stated in the following lemma. The proof can be found in
the extended technical report [19].

Lemma 1 Suppose that @:K!N�� is the internal (or external)
circle of ME9TO uncertainty regions, ,.-AU�
>'�O J � J MV9O) , and @:K is the internal (external) circle of M uncertainty
regions, ,.-.U�
*'WO J � J M) . If ,.-XKZY[@:K!N�� Q]\ (,.- K_^`@ K!N��), then ,.- K is a bounding region of @ K .

The above lemma suggests the following recursive algo-
rithm for computing the internal circle for a set of uncer-
tainty regions. The main function (INTERNAL) computes
the internal circle of a set of uncertainty regions, ,A- . It
arbitrarily takes one uncertainty region out of ,A- (line 3)
and computes the internal circle @ for the rest of the uncer-
tainty regions (line 4); then the one taken out is put back,
if it is intersecting @ (check with function INTERSECT),
we are done; if not, a second function INTERNAL 1BD is
called and it computes the internal circle of ,.- with one
bounding uncertainty region that is taken out initially (line
6). INTERNAL 1BD works in a similar fashion. It calls
INTERNAL 2BD which computes the internal circle with
the knowledge of two bounding uncertainty regions, and so
on. It is not difficult to prove that the time complexity of
the algorithm is &(' �) (� is the number of uncertainty re-

gions). For each call to INTERNAL INTERNAL 1BD or
INTERNAL 2BD, the size of the first parameter ,.- will be
reduced by one, unless it is already 0.

The recursive function to compute the external circle
is nearly the same as INTERNAL. It is therefore omitted.
The only difference is that all INTERSECT functions be-
low are replaced with the function ENCLOSE, which checks
whether the circle is enclosing an uncertainty region. It also
has a linear complexity.

Algorithm INTERNAL(acb)
1. if (d acbed�fgfih) return j ;
2. randomly choose kml�n oAacb ;
3. acb = acb - kml n ;
4. p = INTERNAL(acb);
5. if !INTERSECT(p , kml�n)
6. p = INTERNAL 1BD(acb , kml�n);
7. return p ;

Algorithm INTERNAL 1BD(acb:qsr:t)
1. if (d acbed�fgfih) return r t ;
2. randomly choose kml n oAacb ;
3. acb = acb - kmlun ;
4. p = INTERNAL 1BD(acb , r t);
5. if !INTERSECT(p , kml�n)
6. p = INTERNAL 2BD(acb , r t , kml n);
7. return p ;

Algorithm INTERNAL 2BD(acb:qsr t qsrwv)
1. if (d acbed�fgfih) return circle intersecting r t and rxv ;
2. randomly choose kml�n oAacb ;
3. acb = acb - kmlun ;
4. p = INTERNAL 2BD(acb , r t , rwv);
5. if !INTERSECT(p , kml�n)
6. p = circle intersecting r t , rxv and kml�n ;
7. return p ;

Enclosing circle computation for � -body static con-
straints: The internal circle and external circle of a set of
uncertainty regions for � -body static constraint are slightly
different from the � -body constraint, because the center of
the circle has to be at a static point. The computation of the
lower and upper bounds (the internal and external circles)
for � -body static constraint is given in the BOUND NBS
algorithm. Here, y / and z / are the center and the radius of
the uncertainty region + . Since the static point � is already
given, the radius of the internal circle is the maximum of
the smallest distances from � to all the uncertainty regions
(� y / 9{�|�m9;z /), the radius of the external circle is the max-
imum of the maximum distances from � to all the uncer-
tainty regions (� y / 9;�|� 2 z /) 1.

Algorithm BOUND NBS(acbgq=})
(~ Computation of the internal and external circle of acb centered at }G~)
1. for kmlu��oAacb
2. ��� = center of kmlu� ;
3. lu� = radius of kmlu� ;
4. lu���*��fF�B�!����d ������}ed	�Il���� ;
5. lu�s� � f���������d ������}edW�(lu��� ;

1The smallest (maximum) distance from a point to a circle is the small-
est (maximum) Euclidean distance from that point to any point on the
boundary of the circle.

4 Constraint Evaluation Algorithms
For each one of the two models of operation of loca-

tion tracking, we develop one algorithm for addressing the
constraint evaluation problem. The Nearest Update Time
(NUT) algorithm is developed for processing constraints of
mobile objects that are externally supported. The Safe Re-
gion Update (SRU) algorithm targets constraint process-
ing for mobile objects that are self-sustained. In the follow-
ing subsections, we focus on � -body constraint to illustrate
the algorithms. For the � -body static constraint, the solution
is similar.

4.1 The Nearest Update Time Algorithm
The NUT algorithm is given below. NUT first computes

the upper and lower bounds for the circle enclosing the un-
certainty regions. If the diameter of the external circle is
smaller than the alerting distance, the constraint is matched
with matching probability 1 (line 3). We define the location
update bound as a circle whose diameter equals the alert-
ing distance and whose center coincides with the center of
the external circle. NUT then computes the closest point in
time, � , when some uncertainty region will go beyond this
location update bound (line 4). See Fig. 4 for an illustra-
tion. Finally, � is returned to the user who uses it to trigger
its next location update (line 5). � could also be used by the
server as the next location probe time, if the tracking de-
vice does not support a time trigger. If different maximal
velocities of objects are allowed or the moving direction are
known (expressed in vector

4 1 6	7���), the center of the location
update bound is the center of the enclosing circle with off-
set � 4 1 6	7��� �W� . �W� is chosen such that the closest time point
some uncertainty region goes beyond this bound is maxi-
mized.

However, if the diameter of the internal circle is larger
than the alerting distance, the constraint is not matched (line
6). In this case, NUT computes the time points that any two
uncertainty regions getting closer than the alerting distance
and the latest time point of which is returned to the users
(line 9) as the next time point for a location update. As-
suming a unique global maximum velocity, only the furthest
pair of regions need to be checked. This further reduces the
complexity of the comparison.

Function matching probability (line 10) estimates the
matching probability using the sampling method introduced
in Section 4.3; the result is returned to the user (line 11) and
further interpretation of this result is made with the appli-
cation level logics. In this case, the next location update
time is set to some default value, ��� CW� 6	� < � . ��� CW� 6	� < � depends
on the tracking device or constrained to resources, e.g., net-
work bandwidth or battery power, it could also be a function
of matching probability, � 1 6 ���=� , computed, e.g., the closer� 1 6 ���=� is to 1 (any critical value), the high sampling fre-
quency (smaller � � CW� 6	� < �) is required.

Algorithm NUT(acbgq#�>����l��8�	 8¡W�)
1. compute p �s� � and pS���*� of acb ;
2. if p �s� �W¢ �Z£E�>����lu�8�! ¤¡��
3. ¥�¦x§ ��¨=© = 1;
4. � = MIN (time point kmlu�W��oªacbx� goes beyond the circle

[p �s� �W¢ �>q#�efi������l��8�	 8¡W�]);
5. return [¥ ¦x§ ��¨=© , t] to all;
6. if p����*� ¢ �¬«V������l��8�	 8¡W�
7. ¥�¦x§ ��¨=© = 0;
8. � = MAX (time point when distance b/w. kml����!��ckml�®���oGacbx�¯ ������l��8�	 8¡��);
9. return [¥ ¦x§ ��¨=© , t] to all;
10. ¥�¦w§ ��¨=© = ���!�8°�±� ²´³ ¥�l	��µ=��µs ¤�� ��¤¶ (acb , ������l��8�	 8¡W�);
11. return [¥�¦x§ ��¨=© , �¤· �s¸ §�¹>º �] to all;;

Uncertainty Region
Internal Enclosing Circle
External Enclosing Circle

1
2

3
4

5
6

Bound For Location Update

t3

t5

t4

t2

t1

t6

Mobile Object

Alerting Distance

Figure 4. Next Time Point for Location Update

4.2 Safe Region Update Algorithm
The SRU algorithm is given below. Similar to NUT,

first, the upper and lower bound of the enclosing circle is
compared with the alerting distance (line 2, 6) to determine
if the constraint is matched. The difference from NUT is
that when the constraint is matched, the safe region is com-
puted and returned to the user (line 5). A safe region is a
circle centered at the external circle’s center with the alert-
ing distance as the diameter (line 4). The mobile user tracks
his own position and does not need to update its new loca-
tion unless it moves beyond the safe region.

In case of a mismatch (line 6), the safe region is de-
fined as the region outside a stripe (formed by two parallel
lines) with the alerting distance as the width and bisecting
the smallest line segment between some uncertainty regions» z / and » z!K (line 9). This is illustrated in Fig. 5. » z / and » z!K
could be any pair whose distance is larger than the alerting
distance. For simplicity, we pick the pair with the furthest
distance in our implementation. The intuition is that as long
as the distance between » z / and » z K is no less than the alert-
ing distance, this constraint can not be satisfied. Objects +
and M are called sentinel objects, because before the next
safe region is computed they are the only objects that track
if a match is even possible. The safe region computed in
this manner is returned only to user + and M . The rest of

uri urj

d

Safe region for i Safe region for j

Stripe bisecting the
distance bw. ur i and ur j

Mobile object
Uncertainty Region

Figure 5. Safe Region Outside the Stripe

the objects receive ” + �½¼ + � +s�=¾ ” as the safe region (line 10).
Next, + or M track their own position and do not need to up-
date the location as long as the uncertainty region does not
go beyond the safe region (i.e., intersects the stripe). On re-
ceiving the location update from + or M , the server sends out
a forced location update message to all objects and forces
them to update their location. After the server collects the
position information from all the objects, new sentinel ob-
jects are validated and the safe region is recomputed based
on the new sentinel objects. The movements of the other ob-
jects (other than + and M) are not constrained, they will not
initiate any location update until a forced location update
message from the server is received. If such sentinel ob-
jects do not exist (e.g., the distances of all pairs are smaller
than the alerting distance) then the safe region is set to ”-
” (line 11). On receiving ”-”, each user updates his loca-
tion with some default frequency. Note that we only list
SRU algorithm running on the server side. The operations
on the object’s side involves checking its position against
the safe region, waiting for a forced location update request
or updating its location with a default frequency, depend-
ing on the latest message from the server. Finally, match-
ing probability is used to estimate the matching probability
(line 12) if a match can not be crisply determined.

Algorithm SRU(acb:qs�>����l��8�	 8¡W�)
1. compute p �s� � and p����>� of acb ;
2. if p ��� ��¢ �¬£V������l��8�	 8¡��
3. ¥�¦w§ ��¨=© = 1;
4. SafeRegion = [p ��� ��¢ �>q#�Lf��>����lu�8�! ¤¡��];
5. return [¥ ¦x§ ��¨=© , SafeRegion] to all;
6. if pS���*� ¢ �Z«E�>����lu�8�! ¤¡��
7. ¥�¦w§ ��¨=© = 0;
8. if ¿ckmlu� , k�l�® (oIacb) at least �>����l��8�	 8¡W� apart
9. SafeRegion = region outside the strip with width ������l��8�	 8¡W�

that bisects the distance b/w. kml�� , kml�® ;
10. return [¥�¦w§ ��¨=© , SafeRegion] to and À and [¥�¦x§ ��¨=© , ��ÁÂ ²Ã ��¤¶] to the rest;
11. else return [¥ ¦x§ ��¨=© , -] to all;
12. ¥ ¦x§ ��¨s© = �B�!�8°W±m �Ã³ ¥�l	��µ=��µs ¤�Ä ²�¤¶ (acb , �>����l��8�	 8¡W�);
13. return [¥m¦x§ ��¨s© , -] to all;

Complication is expected when a constraint involves
both externally supported and self-sustained tracking de-
vices, and this complication can be smoothly resolved with
a hybrid approach, which uses a combination of both NUT
and SRU algorithms.

4.3 Calculation of Matching Probability
It may not be possible to determine a constraint match,

due to the position uncertainty of the involved objects. The
question then becomes one of approximating the probabil-
ity of match (to estimate the likelihood of the match). Even
with perfect knowledge of the bounds of enclosing circle
and the probability distribution function (PDF) of the mov-
ing objects, the precise computation of the matching proba-
bility is expensive because it involves numerical integration
of the PDF over irregularly shaped regions. Typically, the
response time is an important metric for the location-based
services, because the position data and matching results are
only valid for relatively short periods of time due to the on-
going movement. To prevent lengthy computations, we ap-
proximate the matching probability, with efficient, but less
precise methods. This is a trade-off between the precision
and the efficiency. In order to achieve efficiency, we choose
to use a Monte Carlo simulation to estimate the probabil-
ity of match. Assuming the position of the object follows
some known PDF within the uncertainty region, our algo-
rithm generates each user’s position according to the PDF
and checks whether the constraints are matched with the
sampled position data. This sampling process is repeated a
number of times and the percentage of match is used as an
estimate of the matching probability. More formally, sup-
pose that the sampling process is repeated � times, then the
matching probability � 1 6 ���=� is calculated as:

� 1 6 ���=� Q �ÆÅ��ÇÃÈ 1 6 ���=��É#Ê � È �sË ��Ì �=ËÎÍÎÍÎÍÎË ��Ï � Ê Ð ��ÑU� / / is the + -th generation of object + ’s position based on
the PDF of + . Function ?iÒÃ�WÓ�Ô above returns 1, if the con-
straint is matched, and 0 otherwise. As �ÆÕ×Ö , � 1 6 ���=�
becomes more accurate, it converges to a stable value.
Through experimentation, we find that very few samples
are needed to obtain an estimation (e.g., 10%-15% relative
standard error).

5 Optimizations
To reduce the circle bound computations, we assume that

the size of an uncertainty region has an upper bound. This
can be achieved by forcing location updates (with some
time threshold or distance deviation threshold above which
the location update must be issued). 2

2If the uncertainty region goes beyond this bound (e.g., because the
object fails to update its location for a very long time), we assume the
object is disconnected and the evaluation of the location constraints it is
associated with are suspended until further location updates are received.

Further more, the whole space is partitioned with grids
and it is used to index the moving objects in space. We
define the active bound of the object as the Minkowski sum
of the upper bound of uncertain region of the object and the
grid. The Minkowski sum of two sets Ø (uncertain region)
and Ù / (grid), denoted as ØTÚ5Ù / , is defined as ØPÚÛÙ / QÜ � 2ÆÝ � � ` ØV
 Ý ` Ù /�Þ , where � 2ÆÝ is the vector sum of
the vectors � and

Ý
. (See Fig. 6)

G1

B

G1

Mobile object
Active bound

G2

G3

1

>1

a

b

c
<3

B

Figure 6. Constraint Pruning

If there exist two active bounds (for the objects in a con-
straint) whose distance is greater than the alerting distance,
then this constraint cannot be satisfied as long as the mo-
bile objects remain within their original grids. On the other
hand, if the active bounds of all the objects involved in
the constraint can be covered by a circle with the diameter
smaller than the alerting distance, then this constraint must
be satisfied as long as the objects remain within the grids.
Fig. 6 illustrates that constraint � ßÂ
uÓ��Z�áà is satisfied, be-
cause the active bounds of the partition Ù� , ÙA% can be cov-
ered by a circle with diameter 3. Constraint � Ò�
�Ó´���âO is un-
satisfied, because the distance between active bounds of the
partition Ù � and Ù % is larger 1. These constraints are im-
mediately pruned based on the grid information (no bound
computation is necessary). Only the constraints that can
not be evaluated solely by the partition information are sub-
jected to further processing. The computation of the con-
straint based on partition information happens only when
the object moves across the grids (referred to as a partition
update) and it can reduce the constraint processing time to
more than 60%, as shown in our experimental result.

If one object is associated with multiple constraints, each
location update may affect a number of constraints and the
next location update time (for externally supported devices)
is rescheduled for each one of them and the closest one in
time is used as the next location update time. Likewise, the
safe region (for self-sustained devices) is the intersection of
safe regions of all constraints involved.

10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f t
he

 m
at

ch
es

 d
et

ec
te

d

sample frequency (updates per minute)

n=2
n=4
n=6
n=8
n=10

Figure 7. Location Update Frequency and Matches De-
tected

6 Evaluation
We have fully implemented both algorithms NUT and

SRU in the L-ToPSS prototype 3. In the experiment, each
constraint is associated with a different number of objects
and has an alerting distance drawn uniformly in the range
[1000m-1200m]. All objects are moving randomly with
a velocity drawn uniformly from the range [1m/s-10m/s].
In the experiments we assume that location tracking tech-
niques have various accuracies, uniformly distributed in
[20m-500m].

In the first experiment, we model 10,000 � -body loca-
tion constraints associated with 10,000 moving objects. �
is chosen to be 2, 6, and 10, respectively. We compare NUT
and SRU against a basic scheme where the mobile objects
update their location according to a predetermined update
frequencies: 12/min (¼ �), 30/min (¼) and 60/min (¼ %)4 ¼ %
is chosen such that any frequency higher than ¼ % does not
result in an increase of the matches detected. Fig. 7 shows
the percentage of matches detected as a function of loca-
tion update frequency (with different bodies). A match is
counted when the probability of match is greater than zero.¼ % is considered as most sensitive to matches (i.e., by cap-
turing all matches.) The frequencies ¼ � and ¼ reduce the
number of location updates by a factor of 5 and 2, respec-
tively; however, at the cost of missing matches (less sen-
sitive). With multiple simulation runs, we measure the lo-
cation updates and matches (as a percentile with respect to
the fixed sampling rate with frequency ¼ %), and the matches
detected per location update (shown in Fig. 8).

Fig. 8(A) shows that the number of location updates
with NUT and SRU are very close to the basic scheme
with frequency ¼ � (about 20-30% of the ¼ %). However,
NUT and SRU capture almost all matches (close to 1 as
in Fig. 8(B)). Notice that the bars for NUT and SRU are the
measurements when the default location update frequency

3L-ToPSS is the Location-aware Toronto Publish/Subscribe System re-
search project

4 Á is location updates per unit of time.

0

0.2

0.4

0.6

0.8

1
lo

ca
tio

n
up

da
te

number of bodies

(A)

2 6 10
0

0.2

0.4

0.6

0.8

1

m
at

ch

number of bodies

(B)

2 6 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

m
at

ch
es

 p
er

 lo
ca

tio
n

up
da

te

number of bodies

(C)f1
f2
f3
NUT
SRU

2 6 10

Figure 8. Sensitivity to Matches

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

m
at

ch
es

 p
er

 lo
ca

tio
n

up
da

te

number of 2−body constraints
10000 30000 50000 70000

(A)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

m
at

ch
es

 p
er

 lo
ca

tio
n

up
da

te

number of total objects

f1
f2
f3
NUT
SRU

(B)

10000 13000 16000 19000

Figure 9. Scalability on Loads of Constraints and Objects

(O�^Â��� CW� 6	� < �) equals ¼ ; the lower and upper bounds of the
error bar are the measurements when the default location
update frequency is set to ¼ � and ¼ % , respectively. We ob-
serve that the difference between the bounds are less than
6%, which indicates that the choice of the default update
rate does not have much effect on the performance. In terms
of the matches detected per location update (Fig. 8(C)), in
which the difference between default frequencies is dimin-
ished, NUT and SRU are ranked at the top, which are four
to five times better than a periodical sampling algorithm.
SRU is more efficient because with safe region manage-
ment, the next location update time is not strictly specified.
In Fig. 9(A), for a fixed number of moving objects (10,000),
the number of 2-body constraints is increased from 10,000
to 70,000. A slight increase of matches per location update
is observed as the constraints increase. For a large number
of location constraints with relative low number of mov-
ing objects, each position information is exploited for an
aggregation of constraints, this makes the algorithm more
efficient. However, we do not see this trend when we in-
crease the number of total objects with a fixed number of
constraints (Fig. 9(B)). As with more objects, each object
is associated with less constraints and the effect of aggre-
gation is diminished. For the above two experiments, NUT
and SRU capture almost all the matches. (data omitted due
to space limits.)

The second experiment evaluates the capability of con-
straint pruning with grid-based partitioning. We track the

average number of location constraint computations (i.e.,
calls to the function NUT or SRU) with or without grid in-
dex optimization every minute. As shown in Fig. 10(A),
the number of computations for evaluating constraints is re-
duced by more than 60%, and the number of location up-
dates is reduced to around 20% of the algorithm without
optimization. This is because many constraints are pruned
with the grid index, and bounds computation and location
updates are not necessary. Again, in this experiment, NUT
and SRU capture almost all the matches.

To approximate the probability of match, we sample the
users’ positions according to a given PDF which is set to be
a normal distribution with the latest reported position as the
mean and 1/6 of the diameter of the uncertainty region as
the standard deviation. As more samples are taken, the re-
sult converges to the probability of match. The experiment
in Fig. 11(A) evaluates the cumulative probability that the
probability sampled is within a certain relative standard er-
ror range (10% - 15%) of the approximated value, which is
considered to be the true value of the probability of match
(which is obtained with over 300 samplings). The cumula-
tive probability is collected from multiple runs of the sim-
ulation for 2-body (static and non-static) constraints. The
cumulative probability shows that within 20 samples over
90% of the computed probability is within 15% of the rel-
ative standard error (rse) of the true probability (converged
value). To reach 10% relative standard error, about 25 sam-
ples are required. This means that the sampling approach is

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5000

10000

15000

nu
m

be
r

of
 c

om
pu

ta
tio

ns

number of constraints

(A)

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.1

0.15

0.2

0.25

0.3

0.35

lo
ca

tio
n

up
da

te

number of constraints

(B)

NUT
SRU
NUT(grid)
SRU(grid)

Figure 10. Optimization with Grid index

very cost-effective for coarse probability estimations (i.e.,
10% - 15% relative standard error).

When the constraint involves more bodies, the cumula-
tive probabilities for the � -body constraint (� = 2,4,6,8) are
converging quickly (Fig. 11(B)); the cumulative probabili-
ties for 4, 6, and 8 bodies are very close to each other. This
is because only the bounding uncertainty regions determine
the upper/lower bound, therefore, most of the time, only
the samples drawn from these regions affect the probability
computation. For the static constraint (Fig. 11(C)), the re-
sult is similar. Adjusting the standard deviation makes only
a small difference, requiring a few more samples for the
larger deviation value to reach the same standard error.

7 Related Work
Determining the close-to relationship among, either a set

of mobile, or static entities has received wide attention in
the literature. Corral et al. [4] study the problem of deter-
mining the � closest pairs between two spatial sets of static
points. Their approach is similar to a join query and dis-
covers the � smallest distances between two sets of points.
Different from the location constraint processing, this work
does not consider the close-to relationship involving more
than two entities and the points are partitioned into two
groups, the distance between the pairs from the same group
is not counted.

The nearest neighbor problem determines the nearest
object(s) to a given point among all the objects in the
space [9, 21]. This is a different query type from the loca-
tion constraint matching problem, we are looking at, which
determines whether a specific set of objects are in a given
spatial constellation to each other at a given point in time.

The buddy tracking system by Amir et al. [14] is the only
work known to us that is looking at a problem statement
similar to our location constraint matching problem. Amir
et al. are, however, exclusively looking at a 2-body prob-
lem in the 2-D space and propose and evaluate a distributed
algorithm for solving this problem. They assumed that the
mobile objects communicate with each other directly to re-
solve the 2-body constraints. Their objective is to reduce

the communication cost. Moreover, their approach is con-
strained by the assumption that all constraints are defined
with the same alerting distance.

All the above approaches do not take the uncertainty of
the position data into consideration. All approaches assume
the given location position is accurate.

As far as we know, the position uncertain problem is
first studied in [17], and extended in [12, 13]. Wolfson
et al. propose a number of cost-based approaches in or-
der to bound the error (deviation) between actual position
of a moving object and the position stored in the database.
They postulate that there is a given cost for each unit of
deviation and there is a given cost of an update. The loca-
tion update is sent only when the deviation-cost exceeds the
update cost. Their work generally focuses on eliminating
the imprecision of mobile data (i.e., reducing the difference
between the actual position and the database recorded posi-
tion of the object), which might not be optimal for a specific
query evaluation, because in the latter case, the query eval-
uation cost also needs to be considered.

A different location update policy is studied by Hu et al.
[6]. They provide a generic framework to monitor contin-
uous spatial queries (range and � NN queries) over moving
object where the join of the safe regions of multiple queries
is maintained for the moving objects. The location update
is triggered only when the object moves outside of a safe re-
gion. This approach is similar to ours. However, the queries
they consider are static (range query and nearest neighbor
query with static query range and query point) which pre-
vents the application of this scheme to our problem.

Probabilistic query processing has recently gained a lot
of attention. For example, Tao et al. [11] proposes an U-tree
structure for supporting a probabilistic range query, which
returns the objects within a query range with a probability
higher than a given threshold. They use the idea of a proba-
bilistically constrained region to prune the query space and
reduce the expensive integral computation. However, for
our problem, the matching probability is the result of the
evaluation rather than a means to prune the query space
(i.e., constraints) and the computation of the true probabil-

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

number of samples

(A)

2−body(15% rse)
2−body static(15% rse)
2−body(10% rse)
2−body static(10% rse)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

number of samples

(B)

2−body(15% rse)
4−body(15% rse)
6−body(15% rse)
8−body(15% rse)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

number of samples

(C)

2−body static(15% rse)
4−body static(15% rse)
6−body static(15% rse)
8−body static(15% rse)

Figure 11. Cumulative Probability as a Function of the Number of Samples

ity is impossible to express as a closed-form function, there-
fore sampling is the only practically way to approximate the
function.

8 Conclusions and Future Work
In this paper, we study the effects of imprecisely given

location position data on the problem of location constraint
matching. We primarily focus on developing algorithms
for efficiently evaluating a single constraint in this setting.
We present an algorithm to compute the upper and lower
bounds of the circle intersecting the regions of uncertainty
delimiting the unknown location of mobile objects. We then
propose two algorithms (NUT and SRU) to do constraint
evaluation in two different types of environments and under
different location update scheduling policies. Experiments
show that NUT and SRU significantly reduce the location
update cost, while maintaining sensitivity to the matches,
performing close to what would be achieved under maxi-
mum location update frequency. Our sampling approach
to estimate the probability of match for cases where a pre-
cise answer can not be given is very cost-effective. For ex-
ample, 25 samples bring the relative standard error down
to 10%. Also, using space partitioning and active bounds,
about 60% of the constraints can be pruned without evalua-
tions, which improves the system performance significantly.

In future work, we intend to study the uncertainty of
proximity matching on road network where the objects are
only moving on the edges of the road network and the met-
ric used is the network distance rather than the Euclidean
distance. This will motivate a number of interesting and
practical applications.

References

[1] RFID Journal. http://www.rfidjournal.com.

[2] P. Bahl and V. N. Padmanabhan. Radar an in-building rf-based user
location and tracking system. In IEEE INFOCOM 2000.

[3] M. De Berg. In Computational Geometry. Springer-Verlag New
York, 2000.

[4] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopou-
los. Closest pair queries in spatial databases. In Proceedings 1994
ACM SIGMOD Conference, Dallas, TX, pages 189–200, 2000.

[5] A. El-Rabbany. Introduction to GPS: The Global Positioning System.
Artech House Publishers, 2002.

[6] H. Hu, J. Xu, and D. L. Lee. A generic framework for monitoring
continuous spatial queries over moving objects. In SIGMOD, 2005.

[7] V. Otsason, A. Varshavsky, A. LaMarca, and E. de Lara. Accurate
gsm indoor localization. In 7th International Conference on Ubiqui-
tous Computing (UbiComp), Tokyo, Japan, September 2005.

[8] N. Priyantha, A Miu, H. Balakrishnan, and S. Teller. The cricket
compass for context aware mobile applications. In MOBICOM 2001.

[9] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. In SIGMOD, 1995.

[10] J. Schiller and A. Voisard. Location-Based Services. The Morgan
Kaufmann Series in Data Management Systems, 2004.

[11] Y. Tao, R. Cheng, X. Xiao, W. Kay Ngai, B. Kao, and S. Prabhakar.
Indexing multi-dimensional uncertain data with arbitrary probability
density functions. In VLDB, 2005.

[12] G. Trajcevski, O.Wolfson, S. Chamberlain, and F. Zhang. The geom-
etry of uncertainty in moving objects databases. In EDBT, 2002.

[13] G. Trajcevski, O. Wolfson, and S. Chamberlain K. Hinrichs. Manag-
ing uncertainty in moving objects databases. In TODS, 2004.

[14] A. Amir. A. Efrat. J. Myllymaki. L. Palaniappan. K. Wampler. Buddy
tracking - efficient proximity detection among mobile friends. In
INFOCOM, 2004.

[15] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active badge lo-
cation system. In ACM Transactions on Information Systems (TOIS)
archive, 1992.

[16] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Mau-
rer, editor, New Results and New Trends in Computer Science, LNCS.
Springer, 1991.

[17] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G. Mendez. Cost
and imprecision in modeling the position of moving objects. In
ICDE, 1998.

[18] S. Xu, R. M. Freund, and J. Sun. Solution methodologies for the
smallest enclosing circle problem. In Computational Optimization
and Applications, 2003.

[19] Z. Xu and H. A. Jacobsen. In Uncertainty of
Location Constraint Processing. Technical Report,
www.cs.toronto.edu/ ã zhengdao/report/ uncertaintyreport.pdf,
2005.

[20] Z. Xu and H. A. Jacobsen. Efficient constraint processing for
location-aware computing. In Mobile Data Management, 2005.

[21] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor
queries over moving objects. In Proceedings of ICDE, 2005.

