
Adaptive Location Constraint Processing

Zhengdao Xu and Hans-Arno Jacobsen
University of Toronto

zhengdao@cs.toronto.edu, jacobsen@eecg.toronto.edu

ABSTRACT
An important problem for many location-based applications is the
continuous evaluation of proximity relations among moving ob-
jects. These relations express whether a given set of objects is
in a spatial constellation or in a spatial constellation relative to
a given point of demarcation in the environment. We represent
proximity relations as location constraints, which resemble stand-
ing queries over continuously changing location position informa-
tion. The challenge lies in the continuous processing of large num-
bers of location constraints as the location of objects and the con-
straint load change. In this paper, we propose an adaptive loca-
tion constraint indexing approach which adapts as the constraint
load and movement pattern of the objects change. The approach
takes correlations between constraints into account to further re-
duce processing time. We also introduce a new location update
policy that detects constraint matches with fewer location update
requests. Our approach stabilizes system performance, avoids os-
cillation, reduces constraint matching time by 70% for in-memory
processing, and reduces secondary storage accesses by 80% for
I/O-incurring environments.

Categories and Subject Descriptors
H. [Information Systems]; H.2.8 [Database Applications]: Spa-
tial databases and GIS; H.3.3 [Information Search and Retrieval]:
Information Filtering; H.4 [Information Systems Applications]:
Location-based Services

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Location-based Services, Location Constraint Processing, Moving
Object Indexing, Adaptive Indexing, Location Update Policy, Lo-
cation Query, Standing Query, Continuous Location Query, and
Constraint Matching.

1. INTRODUCTION
The pervasive presence of wireless networks combined with ad-

vances in location positioning technology [28] gives rise to new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

and previously unthinkable potentials for tracking, correlating, and
filtering of information about moving objects. For example, it is
possible to track the location of mobile users in a wireless network,
even across wireless coverage areas, and in buildings across cam-
pus [28, 19], to track the discrete location of vehicles or packages
in delivery [1], and even track the movement of livestock or fish for
environmental purposes [2].

An important problem in the context of applications that leverage
this tracking potential is how to efficiently determine whether for
any given number of sets of moving objects, the objects per set are
close to, no closer than, or further-away-than a specified distance
to each other or to a given point of demarcation in the environment.
We refer to this problem as the location constraint matching prob-
lem. A given set of objects specifying a proximity relation that must
be enforced is referred to as a location constraint. There are many
applications that require a solution to this problem. The challenge
is to device algorithms that can efficiently monitor large numbers
of location constraints over larger numbers of continuously moving
objects.

In a cellular network, for example, an operator may want to of-
fer alerting services that notify members of a group (e.g., a group
of friends or family), if they are close to each other (e.g., friend
finder and buddy tracking applications) or are close to a designated
point in the environment (e.g., the CN Tower in Toronto or a road
congestion on Highway 407.) In metropolitan areas the number of
objects tracked can easily reach hundreds of thousands, specifying
a similar number of location constraints.

Other examples draw from protecting security sensitive areas in
cities by specifying that no airplane is to come closer than a spec-
ified distance from designated points, such as nuclear plants, tow-
ers, stadiums etcetera. Air traffic controllers and pilots may benefit
from alerting services that warn if designated planes come too close
to each other. Similarly, major production plants may specify poli-
cies that restrict personnel from entering restricted areas or enforce
constraints that a specific area must be guarded by a set number of
personnel. Again, these scenarios may involve large numbers of
continuously moving objects with many associated location con-
straints. Altogether different applications can be found in multi-
player online games, where friend or foe may want to setup con-
straints to notify and warn of each others’ presence and proximity
in the game world or parts of the virtual space. Multi-player online
games are played by thousands of players at the same time. The
efficient tracking of constraints among players and among players
and the game world is of critical importance to the success of the
game.

To model these scenarios and to express various types of prox-
imity relations, we introduce two classes of location constraints,
the n-body constraint and the n-body static constraint. We refer

to these constraints as location constraints, as they are evaluated
over the location data of the associated objects. The constraints are
defined as follows:

The n-body constraint is of the form |p1
t, p2

t, ..., pn
t| < (or >

) d, and also abbreviated as P < (or >) d for object set P (={p1, p2,
..., pn}). The constraint with operator < is satisfied if the n mov-
ing objects, identified by, p1, p2, ..., pn, can be enclosed by a circle
with a diameter smaller than d at time t. The constraint with opera-
tor > is satisfied if the diameter of the smallest circle enclosing the
objects is greater than d at time t. pi (1 ≤ i ≤ n) is the identifier
of object i. In our notation pi

t is interpreted as the coordinate of
object i at time t. d is referred to as the alerting distance.

The n-body static constraint is of the form |A, p1
t, p2

t, ..., pn
t|

< (or >) d, also abbreviated as |A, P | < (or >) d for object
set P (={p1, p2, ..., pn}). A is the coordinate of some static point.
The constraint is satisfied if the n moving objects, identified by,
p1, p2, ... , pn, are within (for operator <) or outside (for operator
>) the circle defined by d around the static point A at time t.

The above constraint definitions do not include =, ≤ and ≥, as
the resulting constraints can be easily expressed with the negation
of the constraint itself. For example, Pci ≤ d is simply ¬(Pci > d)
and Pci = d is equivalent to ¬(Pci > d) ∧ ¬(Pci < d), where
Pci denotes the moving objects associated with constraint ci. This
simplifies the design of the constraint matcher.

The location constraint matching problem can then be formally
stated as follows: Given a set of location constraints, C = {c1, c2,
..., ck}, which designate the location relationship among a set of
m possibly moving objects, P = {p1, p2, ..., pm}, continuously
determine all constraints ci in C that are satisfied.

Location constraints are like continuous queries that once sub-
mitted to the system remain active until explicitly revoked. Fig. 1
shows the data flow of a typical location-based service employing
location constraint matching, as defined in this paper. Location
updates of mobile objects are streamed into the system and trig-
ger the evaluation of constraints and the constraint satisfaction is
communicated back to the interested subscribers via notifications.

Existing data management and indexing techniques for moving

Location Constraint

Matcher

Matching

Results

constraint 1

constraint 2

constraint 3

...

Comm. Tower

Workstation

Location based

Applications

3-body constraint (matched)

2-body static constraint (matched)

static point

<d

<d
 Notification/

Service

<obj_id, x, y>

Location Updates

Figure 1: Data Flow for Location Constraint Processing

objects [11, 3, 16, 17, 14] are mainly focusing on the efficient pro-
cessing of a single spatio-temporal query, such as a range query
and the k nearest neighbor query (kNN). However, the location
constraint matching problem deals with the concurrent and contin-
uous evaluation of many constraints at the same time (i.e., hundreds
of thousand of location constraints for the applications we advo-
cate.) Due to the continuous and frequent movement of objects,
an underlying database would be mostly busy updating the objects’
location without being able to evaluate the constraints. Moreover,
the location constraint matching problem is different from the kNN
problem [10, 27] in that the kNN problem determines the k near-
est object(s) among all the objects in the space to a given point,
while the location constraint matching problem continuously mon-

itors whether a specific set of objects are in a given spatial con-
stellation to each other or to a given point of demarcation in the
environment.

In this paper we propose an adaptive space partitioning scheme
and algorithms to solve the location constraint matching problem.
We experiment with two space partitioning schemes, one is a tree-
based organization of the space and the other one a grid file-based
organization. Our solution supports the continuous tracking of large
numbers of location constraints for large populations of moving
objects. Our algorithms are designed to adapt to changes in loca-
tion constraint loads and changes in movement patterns of objects.
In particular, our solution adapts to clusters of objects changing
over time in size, skewness and the formation of new clusters. Fur-
thermore, our solution constitutes a framework customizable for a
wide-range of query types expressing different geometric relations
among moving objects. We demonstrate and evaluate alternative
query types such as the continuous reverse range query and the
continuous reverse k nearest neighbor query. We also introduce
the notion of conflicting and harmonious constraints to capture de-
pendency relations among constraints that help in constraint prun-
ing. We develop a detailed analytical model to assess the constraint
evaluation cost for in-memory and I/O-incurring environments. Fi-
nally, we experimentally validate the efficiency of our algorithms
based on various movement patterns, compare to alternative ap-
proaches, and demonstrate scalability.

In Section 2, we describe the adaptive location constraint match-
ing algorithm. In Section 3, we develop the analytical model to
assess the constraint evaluation cost, determine system parameters,
and estimate secondary storage access cost. The system architec-
ture of a fully implemented location constraint processing system is
reviewed in Section 4. Section 5 presents the experimental evalua-
tion of our algorithms. In Section 6, we put our work in perspective
to related approaches.

2. MATCHING ALGORITHM
Our solution to the location constraint matching problem is based

on space partitioning. The intuition is that space partitioning can
approximate the location of the moving objects, without the need
for the exact location of objects all the time, to resolve many con-
straints with certainty. In this section we describe our approach in
detail.

2.1 Background & Basic Algorithms
A solution to the location constraint matching problem in prior

work [23] divides the whole space into partitions that are indexed
with a k-d-tree [5] or a multi-layered grid file structure [13]. To
avoid the overhead of a top-down scan in the k-d-tree when objects
change partition, a backtracking algorithm is used to quickly asso-
ciate the object with the new partition. In a multi-layer grid file,
the space is partitioned with different layers of grids, the grids in
the same level are equal-sized cells which are further indexed with
hashtables.

We assume that the position of each object is retrieved with GPS,
ground-based sensors or other location positioning technology. We
call each position retrieval a location update and we call the move-
ment of an object from one partition to another a partition update.

Constraint evaluation consists of two parts, the constraint eval-
uation based on exact position information and the partition-based
constraint evaluation given partition information. For the evalua-
tion based on the exact position, Welzl’s algorithm [20] is adopted,
which computes the smallest circle that encloses n points in O(n)
time. Below, we introduce partition-based evaluation that is trig-
gered when an object updates its partition or when the partition
scheme is adjusted by the adaptive adjustment algorithm. The par-

tition information is used as a rough approximation for the position
of the moving objects and for many constraints, this approximation
is enough to determine a result.

Partition-Based Evaluation for n-body Constraints: For n-
body constraint, if some object pi moves into a new partition Si, all
the constraints it is associated with need to be re-evaluated based
on the partition information. Suppose that cj is the constraint that
pi is associated with and Pcj = {p1, p2, ...,pn} is the set of bodies
involved in cj (pi∈Pcj). After the partitions that contain objects
in Pcj are identified, the smallest circle enclosing all these par-
titions and the smallest circle intersecting all these partitions are
computed. The size of these two circles are the upper and lower
bound of the size of the actual circle that encloses the objects in
Pcj . Based on this upper and lower bound, the result of many con-
straint can be determined.

For instance, the Partition Based NB Algorithm for the con-
straints with the ”<” operator (|p1

t, p2
t, ..., pn

t| < d) is shown
below. If the diameter of the smallest intersecting circle (lower
bound) is larger than d (checked by function Intersect in Line 3),
cj is unsatisfied. If the smallest enclosing circle (upper bound) has
a diameter smaller than d (checked by function Enclose in Line
5), cj is satisfied. If d is between this lower and upper bound, the
constraint is uncertain (Line 8). Due to the symmetry, the con-
straint |p1

t, p2
t, ..., pn

t| > d can be solved by exchanging Line 4
with Line 6.

The result of an evaluation is valid as long as the objects re-
main in their partitions and the partition scheme does not change.
Fig. 2 illustrates partition-based evaluation. The 3-body constraint
c1(|p1, p2, p3| < 3, right side of the figure) is satisfied because the
diameter of the circle O1 which encloses partitions S11, S21 and
S22

1 (containing p1,p2 and p3) is
√

8 (< 3). The constraint c3 is
unsatisfied because the diameter of the circle O2 which intersects
S21, S22 and S45 is

√
10 (> 3). However, the constraint c5 is

uncertain because the diameter of the circle O3 enclosing S36, S45

and S56 is
√

10 and the diameter of the circle O4 intersecting these
partitions is 1, but the alerting distance 3 is between the lower and
upper bound (

√
10 > 3 > 1). Further computation based on the

precise object position reveals that c5 is actually satisfied (circle
not shown for clarity). But this can not be established with parti-
tion information alone. Similarly, one can verify the evaluation of
constraints c2, c4 and c6.

Algorithm Partition Based NB(MobileObject p)
1. for each Constraint c that p is associated with
2. let P = {p1, p2, ..., pn} be the set of bodies in c;
3. if (Intersect(

� n
i=1pi.current partition)> c.d))

4. c.result = unsatisfied;
5. else if (Enclose(

� n
i=1pi.current partition)< c.d)

6. c.result = satisfied;
7. else
8. c.result = uncertain;

Partition-Based Evaluation for n-body Static Constraints: The
n-body static constraint, |A, p1

t, p2
t, ..., pn

t| < d, is matched if
and only if all pi (i∈1..n) are in the circle O with static point A
as center and d as radius. Depending on whether the partition is
inside, intersecting, or outside the boundary of O, we identify the
internal, bounding, and external partitions w.r.t. O (e.g., the parti-
tion completely inside O is defined as an internal partition and so
on.) The distance between the moving object and the static point A
can be tracked according to the type of the partition the object is in
(i.e., ”internal”, ”external”, or ”bounding”).

The partition-based evaluation (Partition Based NBS) for con-
straints with the ”<” operator works as follows: if some object in
P = {p1, p2, ...,pn} is in the external partition, the constraint is

1Sij represents the partition in the ith row and jth column

1
 2
 3
 4
 5

1

2

3

4

5

Mobile point

n
-body constraint:

c
1
: |p ,p ,p | < 3, c
 2
: |p ,p ,p | > 3

(
satisfied
)

c
3
: |p ,p ,p | < 3, c
 4
: |p ,p ,p | > 3

(
unsatisfied
)

c
5
: |p ,p ,p | < 3, c
 6
: |p ,p ,p | > 3

(
uncertain
)

n
-body static constraint:

c
7
: |A, p | < 1.5, c
 8
: |A, p | > 1.5

(
satisfied
)

c
9
: |A, p | < 1.5, c
 10
: |A, p | > 1.5

(
unsatisfied
)

c
11
: |A, p | < 1.5, c
 12
: |A, p | > 1.5

(
uncertain)
Static point

A

p

p

p

p

1

2

3

4

p

p

p

5

6

7

1

S
ij
:Partition in
 i
th

row
j
th column

6

2
 3
 2
 3
 5

2
 3
 5
 1
 2
 3

4
 5

5
 4

7
 7

5
 6
 7

O
4
(d=1)

5
 6
 7

O
1
(
d=8)

1

u
n

i
t

O
5
(
r=1.5)

1/2

O
2
(
d=10)
1/2

i
j

O
3
(
d=10)
1/2

Figure 2: Illustration of Partition-based Evaluation

unsatisfied (Line 4); if all objects are in the internal partition, the
constraint is satisfied (Line 6); if the constraint does not belong to
the above two cases, the constraint is uncertain (Line 8). The so-
lution to the constraint with the ”>” operator can be derived in a
similar fashion due to its symmetry with ”<”.

In Fig. 2, the 1-body static constraint c7 and c8 are satisfied be-
cause w.r.t. circle O5, partition S25 (contains p4) is an internal par-
tition and S45 (contains p5) is an external partition. Similarly, we
can verified that c9 and c10 are unsatisfied. However, constraints
c11 and c12 are uncertain because S36 (contains p7) is a bounding
partitions w.r.t. O5.
Algorithm Partition Based NBS(MobileObject p)
1. for each Constraint c that p is associated
2. let P = {p1, p2, ..., pn} be the set of bodies in c;
3. if (∃pi ∈ P, pi ∈ external partition)
4. c.result = unsatisfied;
5. else if (∀pi ∈ P, pi ∈ internal partition)
6. c.result = satisfied;
7. else // in bounding partition
8. c.result = uncertain;

Constraint Evaluation Algorithm: A location update triggers con-
straint evaluation (i.e., Evaluation). We distinguish the cases where
the location change leads to a partition update and where no such
partition update is incurred.

For a partition update, all constraints an object is associated with
have to be evaluated using the partition-based evaluation function
(Lines 4, 5) and the uncertain constraints involving that object have
to be explicitly evaluated based on the exact location position in-
formation afterwards (with Match Uncertain Constraints
in Line 6). The number of uncertain constraints (expressed as
Uparti tion id) in the previous and current partitions are updated
afterwards (Line 7). On the other hand, if the location update does
not incur a partition update, only uncertain constraints need to be
evaluated (Line 9). Partition-based evaluation is invoked every time
an object changes a partition or when the partition is adjusted, but
not for every location update.
Algorithm Evaluation(MobileObject p)
1. p.previous partition = p.current partition;
2. p.current partition = Find New Partition(p);
3. if p.previous partition 6= p.current partition
4. Partition Based NB(p);
5. Partition Based NBS(p);
6. Match Uncertain Constraints(p);
7. update Up.current partition and Up.previous partition;
8. else *if p.previous partition = p.current partition*
9. Match Uncertain Constraints(p);

2.2 Adaptive Space Partitioning
The static space partitioning described above suffers in environ-

ments where both the constraints and the movement patterns of the

objects are continuously changing. For many applications, con-
straints are continuously updated based on changing user prefer-
ences (i.e., inserts and deletes.) Thus, a partition scheme optimized
for one set of constraints and movement pattern may not be opti-
mal for another set of constraints and a different movement pattern.
Also, partition updates incur overhead when a large number of ob-
jects are moving between partitions, which is to be expected for
applications with varying movement patterns. These characteris-
tics are the motivations to develop an adaptive space partitioning
scheme that evolves with change.

The AKDT and AMLG Index: We propose the adaptive k-
d-tree (AKDT) index and the adaptive multi-layer grid (AMLG)
index to accommodate this situation. AKDT is fundamentally a k-
d-tree, except that it partitions the space rather than the objects in
the space. In AKDT, each leaf node represents a single partition
in the space. Each internal node stores information about a split-
ting line and represents the union of partitions of the (leaf) nodes
underneath it. Similarly, in AMLG, each grid at the lowest layer
presents a single partition in space and the higher layer grid stores
the information of the grid layout and represents the union of all
partitions underneath this layer. AKDT and AMLG adaptively set
and relinquish the splitting lines.

The adaptive space partition algorithm consists of two stages,
namely, the initial partitioning stage and the adjustment stage. The
initial partitioning simply divides the whole space into small cells
with arbitrary granularity. The adjustment stage tunes the parti-
tion scheme with an adjustment frequency proportional to the lin-
ear combination of the average velocity over all moving objects
tracked, v, and the average rate of constraint updates, r, i.e., a1v +
a2r, for constants a1 and a2. The average velocity is derived from
the location updates recorded over time. In this way, the parti-
tion scheme evolves as the movement pattern and constraint load
change. We formally show with Lemma 2 in Section 3 that the
splitting of a partition can reduce the number of uncertain con-
straints and can increase the partition update rate, while the merg-
ing of partitions can reduce the partition update rate and can in-
crease the number of uncertain constraints. The objective is to
balance the trade-off between splitting and merging such that both
the number of uncertain constraints and the partition update rate
decrease to the greatest extent possible.

For the efficient adjustment, each partition Si (i is the partition
ID) maintains the following additional information: 1. PURSi , the
estimated partition update rate inside Si. It equals ρSi ∗ vSi ∗LSi ,
where ρSi , vSi and LSi are the object density, the average veloc-
ity and the total length of the splitting lines inside Si, respectively.
2. USi : The number of uncertain constraints associated with the
objects in partition Si. The adjustment process is composed of the
split Split Adjust Algorithm and the merge Merge Adjust Algo-
rithm. The split algorithm creates new smaller partitions from a
leaf node partition by adding tentative splitting lines (Line 2) in-
side the candidate leaf node. For AKDT, the tentative splitting line
generated in the split process is random in terms of its orientation
(horizontal or vertical) and its position is strict (e.g., bisects the par-
tition) or follows some given distribution (e.g., uniform or normal
distribution). The randomization of the splitting lines reduces the
potential for oscillation of the algorithm. For AMLG, the splitting
lines do not have this degree of freedom, they have to divide the
space into equal-sized partitions. However, the objects in each par-
tition are in the same grid file indexed by a hashtable. The split
process reduces the number of uncertain constraints, but it also in-
duces more partition update overhead. We evaluate this trade-off
later on.

The algorithm only commits the splitting lines in the partition

where they lead to the greatest reduction in the number of uncertain
constraints (recorded by set ΓU in Line 4) and the smallest increase
in partition update rate (recorded in ΓPUR in Line 5). Only the
tentative splitting lines inside partitions ΓU ∩ΓPUR are confirmed
(Line 6). The final number of partitions split depends on the size of
ΓU and ΓPUR that are controlled by the window size w, which is
the main indicator of the adaptation speed and is directly coupled
with, and therefore adjusted according to, the linear combination
of the average speed of movement and the constraint update rate,
a1v +a2r. The reduction in the number of uncertain constraints is
computed in Line 3. Fig. 3 illustrates the split adjustment.
Algorithm Split Adjust(int w)
1. for each candidate leaf node Si

2. Si
′

= Si split by tentative splitting lines;
3. 4USi = reduction of uncertain constraint fr. Si to Si

′

;
4. ΓU = top w partitions with highest 4USi ;
5. ΓPUR = top w partitions with lowest PURSi ;
6. replace Si with Si

′

if Si ∈ ΓU ∩ ΓPUR;

U

Partition i
1

top w

Candidates

(sorted)

Partition i
2
 Partition i
3

PUR

Partition j
1

top w

Partition j
2
 Partition j
3

PUR
 PUR

Partitions for Adjustment

<

>
i
1
 U
U
 i
2
 i
3

j
1
 j
2
 j
3

Figure 3: Split Adjustment

The Merge Adjust Algorithm performs an inverse operation to
the split algorithm. It removes the current splitting lines and merges
the leaf node partitions. The merge algorithm aims at reducing the
partition update rate at the cost of a minor increase in the number
of uncertain constraints.
Algorithm Merge Adjust(int w)
1. for each candidate second level node Si

2. Si
′

= Si with splitting lines tentatively removed;
3. 4USi = increase of uncertain constraint fr. Si to Si

′

;
4. ΓU = top w partitions with lowest 4USi ;
5. ΓPUR = top w partitions with highest PURSi ;
6. replace Si with Si

′

if Si ∈ ΓU ∩ ΓPUR;

Overhead Reduction for Split & Merge Counting the change
in the number of uncertain constraints by recomputing all the con-
straints associated with the partition (Line 3 in Split Adjust and
Merge Adjust) is too costly. Lemma 2 in Section 3 shows that the
uncertain constraints after the split are a subset of the uncertain
constraints before splitting, therefore, only the original uncertain
constraints are considered when computing the number of uncertain
constraints after splitting. A similar property holds for merging.
This reduces the overhead of the split and merge process, however,
there are better ways to further reduce this cost.

An uncertain constraint may be associated with multiple objects
in different partitions and adding splitting lines into these partitions
may have different effects on this constraint. For example, in Fig. 4,
c1 (|p1, p2, p3| < 6) is associated with partitions S1, S2 and S4

(where p1, p2 and p3 are located). c1 is uncertain because the
circle, O1, enclosing these partitions has a diameter

√
52 (> 6)

and the circle, O2, intersecting these partitions has a diameter
√

10
(< 6). After splitting S1, by adding two line segments l1 and l2
(dashed lines), p1 falls inside partition S

′

1 and the enclosing circle
becomes O3. O3’s diameter is

√
34(< 6), therefore c1 is satisfied.

If we further partition S2, which contains p2, c1 remains uncertain
because S2 is bounding neither O1 nor O2. Merging all the parti-

tions in S1 renders c1 uncertain again. However, merging S2 and
S3 does not have any effect on c1. The partition splitting process
may affect the result of the constraint when the partition bounds
intersect either the enclosing circle or the intersecting circle (i.e.,
S1 bounds both circles). The partition merging process may affect
the result of the constraint when the partition after a merge is in-
tersected by the enclosing or intersecting circle (i.e., S1 intersects
with O3). We call a constraint split affected w.r.t. a certain partition
if the constraint is uncertain, and has some bodies involved inside
the partition, and the partition bounds either the intersecting circle
or the enclosing circle. A constraint is merge affected w.r.t. a cer-
tain partition if the constraint is satisfied or unsatisfied, has some
bodies involved inside the partition that is being merged, and the
merged partition (a second level node) is intersected by either the
enclosing or the intersecting circle.

In the above example, c1 is split affected w.r.t. S1 and merge af-
fected w.r.t. S

′

1. Since the split affected constraints are the only con-
straints whose results might change in the split adjustment, when
computing the reduction of the uncertain constraints after the split-
ting (Line 3 in Split Adjust), only the split affected constraints
are considered because no other constraint changes its result due
to the split. Similarly, only merge affected constraints have to be
considered (Line 3 in Merge Adjust) for counting the increase in
uncertain constraints after a merge. This greatly reduces the over-
head of recounting in the split and merge processes.

Also, since the purpose of splitting is to reduce the uncertain
constraints, the candidate nodes for a split are selected such that
they contain the largest number of split affected constraints (Line 1
in Split Adjust). This improves the performance of the partition
adjustment because only the constraints that may be affected by the
split are counted. The purpose of merging is to reduce the partition
update rate, therefore the candidate nodes (second level partition
Si) for merge are selected such that these nodes contain the largest
estimated partition update rate, PURSi (Line 1 in Merge Adjust.)

Mobile point

Before splitting S
1
, c
1
: |p ,p ,p | < 6

is
uncertain
. After S
1
 is split with
l
1

and
l
2
, c
1
 becomes
satisfied
. Splitting

S
2
 will not make this difference.

Merging S
1
'
 by removing
 l
1
 and
l
2
,

changes c
1
 from
satisfied
 back to

uncertain
, but merging S
2
 and S
3
 has

no effect on c
1
.

p

p

p

1

2

3

1

S
1

S
2
 S
3

2
 3

O
1
(d=52)
1/2

1

u

n

i
t

S
4

2

u

n

i
t

1

2

l
1

l
2

O
3
(d=34)
1/2

O
2
(d=10)
1/2

S
1
’

Figure 4: Split/Merge Affected Constraints

2.3 Conflicting and Harmonious Constraints
There can be constraints that are in conflict with each other.

For instance, if c1(|p1
t, p2

t| > d) is satisfied, c2(|p1
t, p2

t| <
d) must be unsatisfied. Similarly, constraints can also be in har-
mony with each other. If a constraint is satisfied (unsatisfied), this
could imply that another constraint is satisfied (unsatisfied). For
instance, if c3(|p1

t, p2
t, p3

t| < d) is satisfied, then it follows that
c4(|p1

t, p2
t| < d) is also satisfied. The conflicting and harmo-

nious relation is asymmetric. c2 is unsatisfied might not indicate
that c1 is satisfied. Also, even if c4 is satisfied, c3 might still be
unsatisfied. For the discussion below, we assume constraint c1 is
associated with object set P1 and constraint c2 is associated with
object set P2 etcetera.

Conflicting and harmonious relations for n-body constraints are
identified with a set of rules summarized in Table 1 (rules for n-

body static constraint can be derived in a similar fashion [25]). The
first and second column in the table are the description of two con-
straints, the third column are the conditions based on which the
conflicting and harmonious relation is identified. The last column
specifies the transit condition between the two constraints. For in-
stance, the relation among c3 and c4 (if c3 is satisfied, c4 is also
satisfied) is identified with the rule in Line 1, because c3 and c4

have the same alerting distance and the object set for c3 is a super-
set of the object set for c4.

Table 1: Conflicting and Harmonious Rules (Explanation in Text)
c1 c2 conditions transit condition

P1 < d1 P2 < d2 d1 ≤ d2, P1 ⊇ P2 c1 is satisfied →

P1 > d1 P2 > d2 d1 ≥ d2, P1 ⊆ P2 c2 is satisfied
P1 < d1 P2 > d2 d1 ≤ d2, P1 ⊇ P2 c1 is satisfied →

P1 > d1 P2 < d2 d1 ≥ d2, P1 ⊆ P2 c2 is unsatisfied
P1 > d1 P2 < d2 d1 < d2, P1 ⊇ P2 c1 is unsatisfied
P1 < d1 P2 > d2 d1 > d2, P1 ⊆ P2 → c2 is satisfied
P1 < d1 P2 < d2 d1 ≥ d2, P1 ⊆ P2 c1 is unsatisfied
P1 > d1 P2 > d2 d1 ≤ d2, P1 ⊇ P2 → c2 is unsatisfied

For the condition column, it must hold that the object set of one
constraint is the subset or the superset of the object set of another
constraint. If P1 is not a subset or a superset of P2 and yet their in-
tersection P1,2 (=P1 ∩P2) contains more than two objects, there is
still a potential dependency between these objects. Consequently,
the result of one constraint may be partially valuable for the eval-
uation of other constraints. To fully exploit the correlation of con-
straints with intersecting object sets, the notion of a virtual con-
straint is developed. A virtual constraint, cv , involves the intersect-
ing objects P1,2 (=P1 ∩P2). The rules that define the generation of
cv are given in Table 2. ε below denotes the smallest positive value
allowed by the computer. It is hardware dependent.

Table 2: Virtual Constraint Generation Rules
c1 c2 cv transit condition

P1 > d1 P2 > d2 P1,2 > max(d1, d2) cv is satisfied → c1
and c2 are satisfied

P1 < d1 P2 < d2 P1,2 > max(d1, d2) cv is satisfied → c1
and c2 are unsatisfied

P1 > d1 P2 > d2 P1,2 < max(d1, d2) cv is unsatisfied → c1

+ε(ε > 0) and c2 are satisfied
P1 < d1 P2 < d2 P1,2 < max(d1, d2) cv is unsatisfied → c1

and c2 are unsatisfied
P1 > d1 P2 < d2 P1,2 > max(d1, d2) cv is satisfied → c1 is

satisfied,but c2 is not
P1 > d1 P2 < d2 P1,2 < max(d1, d2) cv is satisfied → c1 is

+ε(ε > 0) satisfied,but c2 is not

To amortize the evaluation cost, a secondary graph structure is
used to index conflicting and harmonious constraints. This graph
structure is constructed and incrementally updated when new con-
straints are inserted or removed from the system. At the start,
to construct the graph structure, each constraint (including virtual
constraints) are regarded as nodes in the graph. Each constraint
connects to its associated conflicting and harmonious constraints
(other nodes) with unidirectional links (representing the asymmet-
ric relation). Each link is appropriately labeled with a transit condi-
tion, for example, satisfied → unsatisfied (shorthanded as s → u)
etcetera. The nodes with the same neighbors and same transit con-
dition labels are merged into a compound node. If a constraint is
removed, the corresponding node may need to be deleted.

In the evaluation stage, after the result for one of the indexed
constraints is computed, a breadth-first transversal of the graph
starting from that constraint is performed, immediately giving rise
to the results of associated constraints (i.e., represented by linked
nodes in the graph.) Virtual constraints are evaluated based on

adaptive space partitioning, just as an ordinary constraint, but they
have higher evaluation priority and will always be evaluated be-
fore the original constraints based on which they are constructed.
Conflicting and harmonious constraint management is orthogonal
to partition-based pruning performed by the indexes. The graph
index can prune uncertain constraints which space partitioning is
incapable of pruning.

In Fig. 5, we give an example of conflicting or harmonious con-
straints represented by our graph index. The five constraints being
indexed are shown in node N1, N3, N4 N5 and N6. The constraints
in node N3 and N4 share the same objects p2 and p3, therefore a
virtual node N2 representing constraint |p2, p3| > d is constructed
(rule in Line 2 of Table 2). If the virtual node N2 is satisfied, N3

and N4 are unsatisfied (unidirectional edge s → u from N2 to
both N3 and N4). Also, if N3 or N4 is satisfied, then N2 must
be unsatisfied (unidirectional edge s → u from both N3 and N4

to N2). Since the two unidirectional edges between N2 and N3

(N4) have the same label (s → u), they are combined as a single
bi-directional edge. Observe that N3 and N4 are connected with
the edges of the same label to other nodes, therefore they can be
combined to form a compound node. All the other transit edges are
based on the rules listed in Table 1.

An example of constraint processing is that when the object p2

updates its location, the virtual constraint |p2, p3| > d in N2 will
be evaluated first (given it is uncertain) because a virtual node has
higher evaluation priority. If it is unsatisfied, then the constraint
in N1 is satisfied because the transit condition from N2 to N1 is
u → s. Since there is no edge coming out from N1 labeled with
s → ∗, the transversal terminates. On the other hand, if the con-
straints in N2 is satisfied, then constraints in N3, N4 and N5 must
be unsatisfied (s → u).

s

u

s

u

s

u

s

u

s

s

u

u

u

u
s

s

|p
 , p
 , p
 |<d

d
 > d
u
:
unsatisfied
 s
:
satisfied

Virtual Node

Combound node

b
i
d
i
r
e
c
t
i
o
n
a
l

e
d
g
e

|p
 , p
 |<d

u

s

u u

u

u

s

s

N
3

+

+

s s

2
 3

|p
 , p
 |>d

2
 3

|p
 , p
 |>d

4
 5
1
 2 3

|p
 , p
 , p
 |<d

2
 3 4

|p
 , p
 , p
 , p

p |<d

1
 2 3 4

5

s

u

N
4

N
5

N
6

N
1

N
2

Figure 5: Index for Conflicting and Harmonious Constraints

2.4 Location Update Policy
The location update policy manages the consistency between the

last position assumed by the constraint solver and the actual posi-
tion of the moving object. Each location update exerts certain load
onto the system (e.g., network, power, compute resources, and eco-
nomical. The location update policy is the rule that specifies when
the update should be scheduled. The policy balances the trade-off
between the resources consumed and the accuracy represented in
the system and achievable in the results.

In practice, there are many different ways to obtain location data
and power is a concern that requires the location update policy to be
adjusted to the characteristics of the mobile device. Here, we adopt
the notion of a safe region to define a device-dependent location up-
date policy [9]. The objectives are to maintain up-to-date constraint
results, and reduce wireless communication and re-evaluation cost.

We assume that the mobile devices are able to track their posi-

tion and are capable of simple computation for checking whether
coordinates are inside a certain partition (rectangular region).2

If the current result of the constraint based on the partition in-
formation is satisfied, we set a circle with the alerting distance as
the diameter such that it covers the maximal number of partitions
including all the partitions containing involved objects. Then, the
partitions covered by this circle are regarded as a safe region and
returned to the device, which does not need to update its location
as long as it is moving within the safe region, because in this case
the constraints are always satisfied (see Fig. 6(A)).

If the result is unsatisfied, we first identify the objects pi and
pj (called sentinel objects) that are located inside two partitions
with a distance greater than the alerting distance. Then, a bisect-
ing stripe is set. It is defined as a stripe with width equal to the
alerting distance. It bisects the distance between the two partitions
(see Fig. 6(B)). As long as each sentinel object is moving within
the partitions on its side of the stripe (regarded as safe region), the
constraints are unsatisfied. Therefore, pi and pj track their own
position and do not need to update their location unless they go be-
yond the safe region on their sides. At the same time, all the other
objects wait for their position probe. Upon notification that either
pi or pj are outside the safe region, the constraint matcher forces all
the involved objects to update their locations, and validates the new
sentinel objects and the stripe. It is possible that such sentinel ob-
jects do not exist. In this case, the device updates its location with
some default rate. This safe region policy is very cost effective in
that it captures most constraint matches with significant reduction
of the required location updates.

Mobile Object

Alerting distance

p
3

p

2

p

1

Safe region

Safe region for p
 i

Safe region for p
 j

Stripe bisecting the distance bw.

partitions containting p
 i
 and p
 j

p

j

p

i

A

l
e

r
t

i
n

g

d
 i

s
t

a
n

c
e

(A)
 (B)

Figure 6: Safe Region Computation

2.5 Extended Constraints
In this subsection we illustrate how the partition-based evalua-

tion algorithm can be applied to other constraints. The illustration
is based on a continuous reverse range query (CRR) and a con-
tinuous reverse k-nearest neighbor query (CRKNN), which are
defined as follows:

1. Given a rectangular region R, a Continuous Reverse Range
query, CRR(R, pi) continuously checks whether a moving
objects pi is inside R.

2. Given a static point A, a Continuous Reverse k-Nearest Neigh-
bor query, CRKNN (A, pi), continuously checks whether
A is one of the k nearest neighbors of pi.

In the discussion below we refer to these queries as constraints to
emphasize the continuous character of the problem, i.e., given a
potentially large set of constraints and changing object location in-
formation, we are looking for the matched constraints. As in the
previous subsection, the objective of the partition-based evaluation

2The device could either obtain its location via GPS or request it
from the networking infrastructure. Both are viable models in prac-
tice.

is to reduce the number of constraints that have to be evaluated
against precise position information.

Without loss of generality, suppose that pi is located inside par-
tition Spi . The partition-based evaluation for CRR(R, pi) works
as follows. If Spi is disjoint with R, the constraint is unsatisfied.
If Spi is completely enclosed by R, the constraint is satisfied. Oth-
erwise (Spi intersects R), it is uncertain. Fig. 7 shows three range
queries, R1, R2 and R3. Since partition S53, which accommo-
dates p1, is disjoint with R1, the constraint CRR(R1, p1) must
be unsatisfied. CRR(R2, p1) is satisfied since S53 is completely
inside R2 and CRR(R3, p1) is uncertain since R3 partially inter-
sects S53.

r

t
h
e

n
e
a
r
e
s
t

d
i
s
t
a
n
c
e

b
w
.

S
1
1
 a
n
d

S
4
7

1

u
n

i
t

1
 2
 3
 4
 5
 6
 7

1

2

3

4
 S
51

S
11

S
15

S
47

p
2

R
1

R
2

R
3

p
1

A
2

A
1

A
3

A
4

5
 S
53

Mobile point

Static point

CRR
(R
1
 ,p)(
unsatisfied
)

CRR
(R
2
 ,p)(
satisfied
)

CRR
(R
3
 ,p)(
uncertain
)

CR2NN
(A
1
 ,p)(
satisfied
)

CR2NN
(A
3
 ,p)(
uncertain
)

CR2NN
(A
4
 ,p)(
unsatisfied
)

1

2

1

2

1

2

S
11
 O
r

O
r

t
h
e

n
e
a
r
e
s
t
(
f
u
r
t
h
e
s
t
)

d
i
s
t
a
n
c
e

b
w
.

S
1
1
 a
n
d

S
1
5

Figure 7: CRR Query and CRKNN Query

The partition-based evaluation for CRKNN(A, pi) works as
follows. Suppose A is inside the partition SA and pi is located in
Spi . The system maintains a current list of kNNs and the partitions
where they are located(suppose they are Slj (1 ≤ j ≤ k).) If the
nearest distance between Spi and SA is greater than the furthest
distance between Spi and Slj , or more formally, infp∈Spi

,q∈SA

||p, q||2 > max1≤j≤k supp∈Spi
,q∈Slj

||p, q||2, then A can not

be one of the k nearest neighbors of pi, and CRKNN(A, pi) is
unsatisfied. Let r = supp∈Spi

||p, A||2 and Or is a circle with r as
the radius. Then if the Minkowski sum of Spi and Or(Spi ⊕ Or) 3

contains at most k neighbors, CRKNN(A, pi) must be satisfied.
If a constraint is neither unsatisfied nor satisfied, it is uncertain.

In Fig. 7, suppose the current two nearest neighbors of moving
object p2 are A1 and A2. Since infp∈S11,q∈S47

(p, q) =
√

29 >
max(supp∈{S22,S15},q∈S11

||p, q||2) =
√

26, A4 cannot be one
of p2’s 2 nearest neighbors, CR2NN(A4, p2) is unsatisfied. How-
ever, constraint CR2NN(A1, p2) must be satisfied, because A1 is
the only neighbor inside the region S11 ⊕Or where r = supp∈S11

||p, A1||2. And it can be verified that the constraint CR2NN(A3,
p2) is uncertain. In fact, if p2 is moving to the bottom-left of S11,
A3 will replace A2 to be the second nearest neighbor of p2. The
result of constraint CR2NN(A3, p2) is truly undetermined unless
the precise position of p2 is given.

Bear in mind that for location change within the partition, ex-
plicit computation is only required for the constraints previously
classified as uncertain and the constraint classification only hap-
pens in response to a partition update.

3. ANALYTICAL MODEL
In this section, we develop an analytical model for the cost of

evaluating n-body constraints. The analysis for n-body static con-
straints is similar. In our model, a total of c constraints is associated

3M1 ⊕M2 = {p+ q|p ∈ M1, q ∈ M2}, where p+ q is the vector
sum of the vectors p and q.

with a total of o moving objects. Suppose that each constraint is
associated on average with o objects and among the c constraints,
u are uncertain. The model estimates the matching cost for in-
memory and I/O-incurring environments and formalizes algorith-
mic properties. Due to space limitations, the proofs of all the the-
orems and lemmas below are omitted. They can be found in the
technical report [25].

3.1 Cost for In-memory Processing
All computations are done in main memory and no disk I/O is in-

curred. On average each object is associated with co/o constraints
and uo/o of them are uncertain. Since the frequency of the parti-
tion adjustment processes is much lower than the location update
frequency, the cost for maintaining the index data structure is ig-
nored. The constraint evaluation cost is comprised of two factors:
the cost for evaluating a constraint based on precise location posi-
tion information (denoted as Costlu) and the partition-based evalu-
ation cost when an object updates its partition (denoted as Costpu).
Suppose that for a time duration, t, a total of l location updates are
received, p of which incur partition updates. If each evaluation
based on new location data takes approximately α processing time,
then the cost for a location update during one unit of time equals
(uo/o)αl

t
. Note that l

ot
is the average update frequency (denoted as

f). With this, the above location update cost can be simplified to:
Costlu = uoαf (1)

When the object is moving into a new partition, all the con-
straints it is associated with are subjected to partition-based eval-
uation. If partition-based evaluation incurs β processing time, the
cost of a partition update per unit of time is (co/o)βp

t
. p/l is the

probability of an object updating its partition (denoted as Ppu) and
the partition update cost can be rewritten as:

Costpu = coβfPpu (2)
The value of α and β depend on the hardware used and can be

estimated experimentally. From Eq. 1 and Eq. 2, it follows that the
average cost per unit of time for the adaptive algorithm is given by:

Costadapt = Costlu + Costpu = uoαf + coβfPpu (3)
The per unit of time cost for the naı̈ve approach is simply the

cost for evaluating all constraints:
Costnäıve = coαf (4)

In Eq. 3, if Ppu is small, the second term can be ignored, and the
cost can be approximated to:

Costadapt ≈ uoαf =
u

c
Costnäıve (5)

Discussion: Our algorithm outperforms the naı̈ve approach when
Costadapt < Costnäıve. However, with static space partitioning,
this can not be guaranteed. For instance, if the majority of the con-
straints are uncertain (larger u) or Ppu is too high, then the perfor-
mance of the algorithm degenerates. Given a static space partition-
ing, Ppu depends only on the movement pattern (e.g., the velocity
and the position) of the objects while the number of uncertain con-
straints depends on the correlation of the position of objects. There
is no direct relationship between Ppu and the number of uncertain
constraints. Also, deriving the optimal partition scheme is difficult,
because there is no direct dependency between Ppu and the parti-
tion scheme. For example, even if the space is partitioned sparsely,
the object could still generate a large number of partition updates by
moving back-and-forth across a splitting line. On the other hand, an
object could move fast without generating any partition updates in
a densely partitioned region by remaining inside a single partition.
We address this challenge in the next subsection.

3.2 Determining the Optimal Partition Size
In this section we develop a model to estimate the optimal parti-

tion size. The idea is to sample a number of partition schemes and

select the best one (i.e., the one that leads to a smaller Costadapt.)
This is what our algorithm does by tentatively splitting and merg-
ing partitions to determine a partition change that ultimately re-
duces the overall cost. The change aims to reduce both Ppu and
the number of uncertain constraints, and aims to balance the trade-
off between them. Our analytical model is based on the following
assumptions:

1. All objects follow the random movement pattern. As a result,
the distribution of the objects on the plane is uniform.

2. The partitions are equal-sized squares with the length of each
side equal to a, which is much smaller than the extent 4 of the
whole space s (a � s).

3. All the constraints have a unique alerting distances, denoted
as d (d � s).

First, we establish that the size of the diameter of the smallest circle
enclosing a set of objects is uniformly distributed. Therefore, the
probability of a constraint being uncertain (satisfied or unsatisfied)
is an expression of the partition size, space size and the alerting
distance. This is captured in Lemma 1.

LEMMA 1. Under random movement of objects in Euclidean
2D space, the distribution of the size of the diameter of the smallest
circle enclosing a set of objects is uniform. Therefore, a constraint
is unsatisfied with probability 1 − add/ae

s
, is satisfied with proba-

bility abd/ac
s

and is uncertain with probability a
s

.

Based on Lemma 1 and the aforementioned assumptions, we can
estimate the optimal size of the partition that minimizes the evalu-
ation cost. This is stated in the following theorem.

THEOREM 1. Under random movement of objects in Euclidean
2D space, there exists a unique local (therefore also global) optimal
partition size, which is kvβs

α
for some constant k. (recall that α and

β are the average cost for evaluation based on precise position and
partition information, respectively.)

Discussion: If the movement pattern is not random, we can not
compute a globally optimal partition size. However, if we inter-
pret a local distribution as random, then there still exists a local
optimum, which gives us a locally optimal partitioning. We ap-
proximate this local optimum by rescheduling the partitioning in
the area that is not yet optimized based on the merging and split-
ting algorithm, introduced in the previous section.

We say a partition scheme, ps, is the ancestor of a partition
scheme, ps′, (ps′ is the descendant of ps), if ps′ can be reached
from ps by adding splitting lines. This descendant relationship is
denoted as ps′ � ps. In Section 2.2, to reduce the computation, we
mentioned that the uncertain constraints after the splitting (merg-
ing) process must be a subset (superset) of the uncertain constraints
before the splitting (merging). This property is formally captured
in Lemma 2. Proof details can be found in the technical report [25].

LEMMA 2. If ps′ � ps, then an unsatisfied constraint in ps is
also an unsatisfied constraint in ps′; a satisfied constraint in ps is
also a satisfied constraint in ps′; and an uncertain constraint in ps′

is also an uncertain constraint in ps.

The intuition behind Lemma 2 is that with a more precise approxi-
mation (with ps′), more constraints can be resolved as satisfied and
unsatisfied by the partition-based evaluation. The splitting process
aims at a reduction of the number of uncertain constraints at the
cost of a slight increase in the partition update rate. On the other
hand, the merging process aims at a reduction of the partition up-
date rate at the cost of a slight increase in the number of uncertain
4The extent of the space is defined as the maximum possible dis-
tance between two points inside the space.

constraints. By continuous adjustment, the algorithm adapts to a
non-uniform environment and evolves with the change of the move-
ment patterns and reaches a locally optimal partitioning.

3.3 Cost under Secondary Storage Access
For applications that need to manage a large number of loca-

tion constraints with a large number of moving objects, secondary
storage access cost of the algorithm may become a performance de-
grading factor. For instance, objects may be associated with large
profiles, as is common in telecommunication applications, or the
application may be collocated with other applications, thus not have
exclusive access to main memory. The I/O cost for accessing data
in secondary storage is typically orders of magnitude higher than
accessing data residing in main memory and it becomes the ma-
jor overhead. Therefore reducing the number of secondary storage
accesses becomes a primary concern in this environment.

For every secondary storage access, data is fetched in pages rather
than in records and each access to secondary storage transfers a
constant amount of data into memory. The I/O cost is measured as
the number of accesses to the data on the secondary storage device.
For optimizing secondary storage accesses, our algorithm aims at
holding as many uncertain constraints as possible in main memory
because they are the most frequently accessed data. Constraints
that do not fit into main memory reside on disk and are brought in
on demand. The following theorem quantifies the cost (the number
of I/O accesses per time unit) of our algorithm relative to the naı̈ve
approach. A proof can be found in [25].

THEOREM 2. If all the uncertain constraints can be held in
main memory, the cost of the matching algorithm is the partition
update probability (Ppu) times the cost of the naı̈ve approach (Co-
st

I/O
adapt = Ppu * Cost

I/O
näıve).

This result is somewhat surprising, it means that even with lim-
ited memory, reducing the partition update rate by some proportion
causes the evaluation cost to be reduced with the same proportion,
given that all uncertain constraints are held in memory. Under the
random movement pattern, the number of uncertain constraints is
only a small portion of the total number of constraints (a

s
as stated

in Lemma 1). It can therefore often fit into main memory, even for
large constraint loads going beyond main memory capacities. Also
an efficient algorithm should stop further reducing the number of
uncertain constraints by splitting as long as they all fit into mem-
ory. Merging in that case may actually dampen the partition update
rate and help to lower the I/O access cost further.

4. SYSTEM IMPLEMENTATION

App. Controller &

Logging
 P&S Staging

Data Link

Proxy Server

Notification

Engine

Location

Position Server

Notification

Server

LBS

Application

Server

Location Constraint

Matching Engine

Openwave SDK

Database

Location

Update

Manager

Cell phone

WAP Push Request for

Notification

(User ID, Service

Related MSG)

(User ID, Constraint ID)

Bootstrap

Loading

P&S

Logging

P&S

Publications & Subscriptions

Position query

& reply

W

 A

 P

B

 r
o
w

 s
e
r

(
W

 A

 P

2
.
0
)

(long. lat. alt.)
N

 o
t
i
f
i
c
a
t
i
o
n

Phone Network Carrier

represents data flow

Figure 8: End-to-end System Architecture (fully implemented)

We have developed a complete end-to-end location-based ser-
vice prototype incorporating the location constraint matcher de-

scribed in this paper. More information about an earlier version of
the prototype is summarized in [23] and is known as the Location-
based Toronto Publish/Subscribe System (L-ToPSS). The system
was deployed as a proof of concept on a mobile cellular network.
The overall system architecture is shown in Fig. 8.

In our implementation, the system uses the cellular network to
obtain location position information of subscribers. The network
exports location tracking capabilities via a Web service. Location
position data is retrieved through a location position server over
the Internet. Both the server and the subscriber can initiate posi-
tion requests. When the location update streams into the constraint
matching engine, it is evaluated against the location constraints
stored in the system and the matches are communicated back to
the subscribers via the notification server on the carrier’s side. Dif-
ferent solutions for obtaining location position data are available in
practice. In our case, the operator combined GPS, network trian-
gulation, and cell site location technologies to position subscribers,
aiming to provide the most accurate position for a required preci-
sion, specified as part of the location request input. A brief eval-
uation of the accuracy of the system under different experimental
conditions is summarized in [22].

5. EXPERIMENTS
In this section, we present the experimental results that demon-

strate the performance of the algorithms. All experiments were
conducted on a Pentium 4 with 2GHz and 2G RAM) running un-
der Linux. In the experiments we simulate mobile objects moving
in a test field of size 40km ×40km. We model two movement
patterns, random movement and clustered movement. The random
movement pattern maintains a uniform distribution of the objects in
the test field. The clustered pattern maintains a number of clusters
of objects in the test field, where the position of the object in the
cluster follows a normal distribution with mean, µ, as a randomly
selected point in the test field. We vary the standard deviation, σ,
of the distribution to model different degrees of skewness. In the
extreme case, where the standard deviation is sufficiently large, the
clustered movement pattern is reduced to the random movement
pattern. To model the movement of clusters, µ is determined as a
function of time, t.

Prior to the experiment, constraints are generated; each con-
straint is associated with n bodies among all the moving objects
in the field. The alerting distances are uniformly distributed with
a certain mean (e.g., 500m). By changing the mean, the matching
load 5 can be adjusted. The velocity of the moving objects follows
a normal distribution with a given mean (5 m/s or as specified).

The partition adjustment is performed once every minute to op-
timize the partition scheme as needed. For sake of fairness in the
comparison, we maintain the same adjustment speed for both in-
dexes by splitting and merging the same number of candidate par-
titions.

5.1 Effect of Adaptation
This experiment is conducted under random movement pattern

where the objects are uniformly distributed. It shows how AKDT
and AMLG adapt to the random movement patterns. The results are
compared against a non-adaptive solution (w = 0). With 100,000
constraints and 10,000 uniformly distributed objects, we measure
the matching time and the average partition size over time. Fig. 9(A,
B) shows the results during the first 12 minutes of the experiment
when the initial partition size is 25km2. The static index (w = 0)

5The matching load is the ratio between the average number of
satisfied constraints and the total number of constraints.

does not evolve at all over time to better accommodate the move-
ment pattern, the matching time for both AKDT and AMLG is
around 250ms and the partition size is 25km2. When the win-
dow size (which controls the speed of adjustment) is adjusted to
25, AKDT and AMLG actively evolve to lower the evaluation load
through splitting. Within seven minutes, the matching time of both
indexes is reduced by 60% and stabilizes below 100ms, and the
partition size is adjusted to around 5km2. This performance gain
comes about through the pruning of large numbers of uncertain
constraints (by about 60%) at the cost of a moderate increase in
partition updates (to about 5%) (graphs omitted due to space lim-
itation). This shows that the adaptive algorithms find the optimal
partition size through self-adjustment.

On the other hand, if the initial partition size is set to 1km2

(Fig. 9(C,D)), partition adjustment (w = 25) evolves to merge the
partitions to an average size of about 5km2. The average matching
time is reduced from 350ms to below 100ms (by about 70%). This
performance gain is due to the reduction in the partition update rate
(by about 90%) of the merge process. The matching time resulting
from the naı̈ve approach, where all the constraints are evaluated
without partition-based pruning, is an order of magnitude higher
(not shown in the graphs for clarity.)

In Fig. 10(A), we vary the mean of the velocity (v = 5, 10, 15)
and run the data set against adaptive indexing with different win-
dow sizes. (For clarity of presentation, we only show results for the
AKDT; results for AMLG are similar.) The figure shows that the
adjustment cost (the overhead of splitting and merging) increases
linearly as the window size increases for different velocities. How-
ever, the adjustment cost is negligible compared to the time for
constraint evaluation. To obtain the same evaluation time in the
three scenarios shown, a larger window size is required for higher
velocity.

Given the distribution of the velocity, the optimal partition size
can be found with the steepest descent method (SDM [7]) by sam-
pling different partition sizes approaching the optimum, which based
on Theorem 1 is unique. In Fig. 10(B), we validate the relationship
between the average velocity of the objects and the optimal par-
tition size and show that the optimal partition size obtained with
SDM is nearly proportional to the average velocity of the objects
(as confirmed by Theorem 1). Moreover, the figure shows that the
adaptive processing eventually results in a partition scheme that is
close to the optimum.

In Fig. 10(C), we evaluate the adaptation of the algorithm with
the evolution of the clustered movement pattern. 50 clusters are
generated with constant standard deviation (400), the means of
these clusters are moving with random speed (uniform in the range
[20,50]) and direction. As evident from the moving cluster work-
load, the static index cannot keep up and performance deteriorates.
The matching time is not only high but also very unstable with
many spikes resulting from large partition update overhead when
the clusters move across splitting lines. AKDT and AMLG han-
dle this situation well. The matching time is relatively low and
much more stable. When we adjust the skewness of the cluster (by
varying the standard deviation σ), we obtain similar results, except
that higher skewness (smaller σ) exacerbates the instability for the
static indexing. Fig. 10(D) shows the superiority of the adaptive
indexing for the CRR and CRKNN constraints. Compared with
the basic processing without constraint pruning, the matching time
is greatly reduced (to 14% for CRKNN and to 9% for CRR) for
the adaptive partition-based approach.

Fig. 11(A) demonstrates the cost of indexing for different lo-
cation update loads (i.e., number of location updates incurred.)
With static indexing (w = 0), for AKDT with backtracking op-

0 2 4 6 8 10 12
50

100

150

200

250

300

m
at

ch
in

g
tim

e
(m

s)

time (minutes)

(A)

AKDT(w=0)
AMLG(w=0)
AKDT(w=25)
AMLG(w=25)

0 2 4 6 8 10 12
0

5

10

15

20

25

pa
rt

iti
on

 s
iz

e
(k

m
2)

time (minutes)

(B)

AKDT(w=0)
AMLG(w=0)
AKDT(w=25)
AMLG(w=25)

0 2 4 6 8 10 12
50

100

150

200

250

300

350

400

m
at

ch
in

g
tim

e
(m

s)

time (minutes)

(C)

AKDT(w=0)
AMLG(w=0)
AKDT(w=25)
AMLG(w=25)

0 2 4 6 8 10 12
1

2

3

4

5

6

7

pa
rt

iti
on

 s
iz

e
(k

m
2)

time (minutes)

(D)

AKDT(w=0)
AMLG(w=0)
AKDT(w=25)
AMLG(w=25)

Figure 9: Adaptation to the Uniform Movement Pattern

5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

700

800

900

tim
e

(m
s)

window size

(A)

adjustment(v=5)
adjustment(v=10)
adjustment(v=15)
evaluation(v=5)
evaluation(v=10)
evaluation(v=15)

5 10 15 20
6

8

10

12

14

16

18

20

22

24

26
pa

rt
iti

on
 s

iz
e

(k
m

2)

average velocity (m/s)

(B)

optimal size
AKDT(w=25)
AMLG(w=25)

0 20 40 60 80 100 120
0

100

200

300

400

500

600

m
at

ch
in

g
tim

e
(m

s)

time (minutes)

(C)
AKDT(w=0)
AMLG(w=0)
AKDT(w=25)
AMLG(w=25)

1 2 3 4 5 6 7

x 10
5

0

2000

4000

6000

8000

10000

12000

14000

16000

m
at

ch
in

g
tim

e(
m

s)

number of constraints

(D)
CRR
CRR AKDT(w=25)
CRR AMLG(w=25)
CRKNN
CRKNN AKDT(w=25)
CRKNN AMLG(w=25)

Figure 10: Adjustment Cost (A), Optimal Partition Size (B), Adaptation to Clustered Pattern (C), and CRR/CRKNN queries (D)

timization, 6 the overhead is reduced by 50% as compared to non-
backtracking-based indexing. For adaptive indexing (w = 25), the
cost of AKDT (with or without backtracking) is very close to that
of AMLG, because adaptive space partitioning avoids high parti-
tion update rates and the maintenance difference between AKDT
and AMLG is small. Both cost are about 10% of the cost of static
indexing.

We also observe in Fig. 11(B) that the matching time decreases
linearly as the percentage of the conflicting and harmonious con-
straints increases. These constraints are pruned directly through
the secondary graph-structured index and do not need to be re-
evaluated.

Fig. 11(C) shows the adaptation of the algorithms to different
constraint sets. Three constraint sets are deliberately generated
such that for static indexing (w = 0), the sets contain different
number of uncertain constraints (set 1 < set 2 < set 3), there-
fore, we observe an increase in matching time from constraint set 1
to set 3. With adaptive indexing (w = 25), the matching time
stabilizes around 100ms for all sets, because the partition scheme
evolves to reduce the uncertain constraints to the same level.

Now, with all the constraint matches detected, we compare the
number of location updates issued by the safe region policy with
the frequency-based policy. The location update frequency of the
frequency-based policy is adjusted (to around 1/s) such that all
the matches are detected (with lower frequency, some matches are
missed). Fig. 11(D) shows that, for all three constraint sets, the
safe region policy is the most cost effective in that it detects the
same number of matches with only 10% of the location update cost
of the frequency-based policy. This is a significant saving that can
directly translate to dollar value.

6The search backtracks level-by-level up the k-d-tree from the orig-
inal leave node where the object is located until the node is found
that contains the object. Insertion proceeds down from this node,
rather than from the root of the tree. This approach avoids the top-
bottom scan of the tree for a location update.

5.2 Effect of Secondary Storage Access
In this subsection we measure the number of disk accesses re-

quired for processing 10,000 objects and 100,000 2-body constraints,
with strict limits imposed on the available memory. We assume that
the indexing structure, the position information of the objects and
a certain number of location constraints are held in memory. Other
location constraints have to be paged in and out of memory on de-
mand (we assume the LRU page replacement policy and a page size
of 4k). The algorithm tries to store as many uncertain constraints
in memory as possible, so that disk access is minimized.

Fig. 12(A) plots the number of secondary storage accesses against
available memory. For this experiment, we test the AKDT and
AMLG indexes against objects with various movement patterns.
Fig. 12(A) shows that the number of disk accesses for both indexes
are much lower than for the naı̈ve algorithm. This is because there
are fewer constraints that need to be accessed due to the pruning
capabilities of the indexes. The partition-based algorithms exhibit
a point in memory use after which the number of disk accesses
is nearly proportional to the disk accesses for the naı̈ve approach
(around 80 pages for w = 25, 120 pages for w = 12 and 160 pages
for w = 0). This is the point where the available memory suffices
to load all uncertain constraints. The adaptive algorithms with win-
dow size 25 reduce the uncertain constraints (by 60%), therefore
less memory is required to store them. If the page number exceeds
this amount, the number of disk accesses equals PpuCost

I/O
näıve, as

predicted by Theorem 2. The graph for the adaptive algorithms
(w > 0) is much flatter than the non-adaptive one (w = 0) after
this point. Based on Theorem 2, we can deduce that the adaptive
algorithms have partition update rates that are much lower (about
60% lower for w = 25 and 30% lower for w = 12) than the
non-adaptive algorithms. Therefore, the adaptive algorithms out-
perform the non-adaptive ones, also in I/O incurring environments.

Furthermore, in Fig. 12(B), we suppress the splitting process as
soon as the memory can hold all the uncertain constraints. This
means, if memory is available, the algorithm deliberately increases
the uncertain constraints in order to reduce the partition update rate

0.5 1 1.5 2

x 10
5

0

200

400

600

800

1000

1200

1400

1600

1800

2000

in
de

xi
ng

 c
os

t(
m

s)

number of location updates

(A)
AKDT(w=0,bktk)
AKDT(w=0,no bktk)
AMLG(w=0)
AKDT(w=25)
ALMG(w=25)

0 20 40 60 80 100
50

100

150

200

250

300

350

m
at

ch
in

g
tim

e
(m

s)

percentage of conflicting/harmonious constraints

(B)

AKDT
AMLG
AKDT(graph index)
AMLG(graph index)

0

100

200

300

400

500

600

m
at

ch
in

g
tim

e(
m

s)

constraint set

(C)
AKDT(w=0)
AMLG(w=0)
AKDT(w=25)
AMLG(w=25)

set 1 set 2 set 3
0

10

20

30

40

50

60

70

80

90

lo
ca

tio
n

up
da

te
s

pe
r

m
in

ut
e

constraint set

(D)
frequency−based Policy
Safe Region Policy

set 1 set 1 set 3

Figure 11: Indexing Cost (A), Graph Pruning (B), Adaptation to Constraint Set (C), and Location Update Policy (D)

(with merge). We observe that suppressing the splitting process
reduces the number of I/O accesses even further. The number of
I/O access is close to zero after memory capacity exceeds 120 pages
(w = 25) or 200 pages (w = 12). The AMLG case is omitted for
the sake of clarity in presentation. It’s results are similar.

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18
x 10

4

se
co

nd
ar

y
st

or
ag

e
ac

ce
ss

number of pages in memory

(A)
naïve
AKDT(w=0)
AMLG(w=0)
AKDT(w=12)
AMLG(w=12)
AKDT(w=25)
AMLG(w=25)

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12
x 10

4

se
co

nd
ar

y
st

or
ag

e
ac

ce
ss

number of pages in memory

(B)
AKDT(w=12)
AKDT(w=12, sup. split.)
AKDT(w=25)
AKDT(w=25, sup. split.)

Figure 12: Secondary Storage Access Cost

6. RELATED WORK
In this section we put our work in perspective to constraint data-

bases [12], nearest neighbor problems [8, 15, 26], kinetic data
structures [4], and various applications [18, 24]. Most of the re-
lated approaches solve a problem very different from the problem
addressed in this work.

Constraint databases (CDB) [12] aim at representing large or in-
finite sets in compact ways. A constraint can be a linear or polyno-
mial equation. CDB are applied to the modeling and integration of
spatial and temporal data [6]. However, current work on CDB does
not address the efficient indexing of constraints or data to support
moving objects that involve frequent updates.

Determining the geometric relationship among, either a set of
mobile, or static entities has received wide attention in the litera-
ture (for example, [8, 15, 26].) Corral et al. [8] study the prob-
lem of determining the k closest pairs between two spatial sets of
static points. Their approach is similar to a join query and discov-
ers the k smallest distances between two sets of points. Different
from location constraint matching, Corral et al. do not consider a
close to relation involving more than two points, the points evalu-
ated are partitioned into two static sets, and distances between pairs
of points from the same set are not considered in the evaluation.

The nearest neighbor problem determines the nearest object(s)
to a given point among all the objects in the space [15, 26]. This is
a different query type from the location constraint matching prob-
lem, we are looking at, which determines whether a specific set of
objects are in a given spatial constellation to each other at a given
point in time.

Continuous range queries [21] are queries that answer which
moving objects are currently located inside the boundaries of the
query. The authors’ implementation takes advantage of incremen-
tal changes in object locations to continuously process the range

query with the covering tile-based query index (CTQI). The ap-
proach differs from our continuous reverse range query (CRR) in
that the CTQI retrieves the objects inside the query range, whereas
our CRR continuously monitors whether an object is located inside
a specific range or not. CTQI is designed to support a small num-
ber of range queries over a comparatively large number of moving
objects. The complexity of maintaining tiles increases significantly
as the number of range queries increases. Our approach is inde-
pendent of the number of objects and queries (constraints) and is
designed to support large numbers of queries and moving objects.
Also, the CTQI algorithm is designed for a main memory environ-
ment and is not also optimized for I/O incurring environments.

Kinetic data structures (KDS) [4] are used to keep track of dy-
namic properties of continuously changing data. KDS are based on
maintaining and enforcing geometric relations (referred to as cer-
tificates) over incremental changes of moving objects. KDS do not
employ space or query pruning techniques. Many KDS approaches
assume a fixed rate of change (i.e., constant movement velocity),
which is difficult to enforce for the application scenarios we target,
as future behavior is unpredictable in many scenarios. KDS are of-
ten used in scenarios where data change is highly predictable, such
as animations.

The buddy tracking application [18] is the only work known to
us that is looking at a problem statement similar to the location
constraint matching problem. Their solution exclusively looks at
a 2-body problem. The approach is based on a distributed algo-
rithm. It assumes that the mobile objects communicate with each
other directly to solve a 2-body constraint matching problem by ex-
changing messages. The optimization objective is to reduce com-
munication cost (i.e., reduce the messages exchanged between mo-
bile entities.) A non-distributed quadtree-based algorithm is also
sketched, without an experimental evaluation. The algorithm only
works for 2-body constraints and does not support adaptive space
partitioning. We therefore expect it to behave similarly to the static
space partitioning scheme, used as the baseline in our experiments,
which performs poorly under a skewed or clustered movement pat-
tern. Moreover, the solution applied in the buddy tracking appli-
cation is restricted to one global alerting distance for all registered
constraints, which is not feasible for many of the applications we
advocate.

In prior work [24] we have built a location-based service and
supporting constraint matching infrastructure for processing prox-
imity relations based on a simpler form of the more general loca-
tion constraints defined in this paper. The system is based on a
non-adaptive, static indexing solution that does not adapt to chang-
ing movement patterns or constraint load variations and requires
knowledge of object clusters in advance to setup the index struc-
tures. The approach developed in this paper address these limi-
tations and generalizes the constraint language, also accommodat-

ing conflicting and harmonious constraints in the index. In other
prior work [22], we evaluated the precision of available location
positioning technologies, and offered a solution for constraint eval-
uation under position uncertainty. The work focused on develop-
ing lower and upper bound for the assessment of the probability
of match for a single location constraint. The results of that work
complement the indexing approach in this paper, where uncertainty
of position information is not considered as a variable in the algo-
rithm.
7. CONCLUSIONS

Location constraint processing is essential for location-based ap-
plications that aim at tracking, correlating, and filtering information
about moving entities. Application scenarios include friend and
family tracking in cellular networks, multi–player online gaming
support, security-sensitive area protection in cities and indoor envi-
ronments, and collision avoidance for air-traffic control. We enable
location-aware constraint processing for these kind of applications
by defining two classes of location constraints, the n-body con-
straints and the n-body static constraints, which capture proximity
relations among sets of moving objects and sets of moving objects
and a static point of demarcation in the environment, respectively.
Our constraint language can express close-by relations, no-closer-
than relations, continuous reverse range queries, and continuous
reverse kNN queries. Moreover, our constraint language and al-
gorithms support the resolution of conflicting and harmonious con-
straints registered with the constraint matcher. We develop an adap-
tive space partitioning approach implemented by the AKDT and the
AMLG indexes. Using partition update information derived from
the moving objects, only the constraints that are likely satisfied (yet
uncertain) are chosen for further consideration, others are pruned
from search by the index.

We experimentally validate our theoretical finding that with a
random movement pattern, our adaptive approach determines the
optimal space partitioning, with a partition size proportional to the
average velocity of the moving objects. The experiments also show
that the AKDT and AMLG index adapt themselves to movement
patterns and constraint load variations. The resulting partition sche-
me also approximates the partitioning one can determine manually
for a non-adaptive index with a static workload. With an additional
graph-structured index for managing conflicting and harmonious
constraints, the constraint matching time decreases linearly with
the percentage of conflicting and harmonious constraints that can
be identified.

We further show experimentally that our approach is well suited
for large constraint loads that go beyond capabilities of main mem-
ory processing. If main-memory is sufficiently large to hold all
uncertain constraints, the number of disk accesses is proportional
to the partition update probability. Experimental results also show
that compared to a non-adaptive index, adaptive indexing reduces
the number of uncertain constraints and the partition update rate by
up to 60%.

In future work, we intend to study the constraint matching prob-
lem on road networks where the objects are moving on the edges
of a road network graph. In this context the constraint evaluation
must use a network distance metric (network hops or link weight)
rather than the Euclidian distance.

8. REFERENCES[1] New and enhanced features of fedex insight.
http://www.fedex.com/us/.

[2] Radio frequency identification systems (RFID).
http://www.ti.com/rfid/.

[3] P. K. Agarwal, L. Arge, and J. Erickson. Indexing Moving
Points. In Proc. ACM PODS, 2000.

[4] Julien Basch. Kinetic data structures. Ph.D. thesis, Stanford
University, Computer Science Dept., 1999.

[5] Jon Louis Bentley. Multidimensional binary search trees
used for associative searching. In Communications of the
ACM., pages 18:509–517, 1975.

[6] Elisa Bertino, Barbara Catania, and Boris Chidlovskii.
Indexing Constraint Databases by Using a Dual
Representation. In Proc. ICDE, 1999.

[7] Richard L. Burden and J. Douglas Faires. Numerical
analysis. Brooks/Cole Publishing Company, 2000.

[8] A. Corral, Y. Manolopoulos, Y. Theodoridis, and
M. Vassilakopoulos. Closest pair queries in spatial databases.
In Proc. ACM SIGMOD, pages 189–200, 2000.

[9] Haibo Hu, Jianliang Xu, and Dik Lun Lee. A Generic
Framework for Monitoring Continuous Spatial Queries over
Moving Objects. In Proc. ACM SIGMOD, 2005.

[10] D. R. Karger. Finding Nearest Neighbors in
Growth-restricted Metrics. In ACM Symposium on Theory of
Computing (STOC), 2002.

[11] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing
mobile objects. In Proc. ACM PODS, 1999.

[12] Gabriel Kuper, Leonid Libkin, and Jan Paredaens. Constraint
databases. Springer Verlag, 2000.

[13] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid
file: An adaptable, symmetric multikey file structure. In
ACM Trans. Database systems, 1984.

[14] S. Prabhakar, Y. Xia, D. Kalashnikov, W. A., and S. E.
Hambrusch. Query indexing and velocity constrained
indexing: Scalable techniques for continuous queries on
moving objects. IEEE Transactions on Computers, 2002.

[15] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In Proc. ACM SIGMOD, 1995.

[16] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A.
Lopez. Indexing the Positions of Continuously Moving
Objects. In Proc. ACM SIGMOD, 2000.

[17] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The R-Tree:
A Dynamic Index for Multi-Dimensional Objects. In The
VLDB Journal, 1987.

[18] A. Amir. A. Efrat. J. Myllymaki. L. Palaniappan. K.
Wampler. Buddy tracking - efficient proximity detection
among mobile friends. In INFOCOM, 2004.

[19] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The Active
Badge Location System. In ACM Transactions on
Information Systems (TOIS), 1992.

[20] E. Welzl. Smallest Enclosing Disks (Balls and Ellipsoids). In
New Results and New Trends in Computer Science. Springer,
1991.

[21] Kun-Lung Wu, Shyh-Kwei Chen, and Philip S. Yu. Efficient
Processing of Continual Range Queries for Location-Aware
Mobile Services. In Information Systems Frontiers, 2005.

[22] Z. Xu and H. A. Jacobsen. Evaluating proximity relations
under uncertainty. In Proc. ICDE, 2007.

[23] Z. Xu and H. A. Jacobsen. Efficient constraint processing for
highly personalized location based services. In Proc.
VLDB04, 2004.

[24] Z. Xu and H. A. Jacobsen. Efficient constraint processing for
location-aware computing. In 6th International Conference
on Mobile Data Management, 2005.

[25] Z. Xu and H. A. Jacobsen. Proximity Relation Processing
With Evolving Environment. Technical Report, University of
Toronto, www.cs.toronto.edu/∼zhengdao/report/
CSRG-552.pdf, 2007.

[26] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-Nearest
Neighbor Queries over Moving Objects. In Proc. ICDE,
2005.

[27] Jun Zhang, Manli Zhu, Dimitris Papadias, Yufei Tao, and
Dik Lun Lee. Location-based spatial queries. In Proc. ACM
SIGMOD, 2003.

[28] Y. Zhao. Standardization of mobile phone positioning for 3G
systems. IEEE Communication Magazine, 2002.

