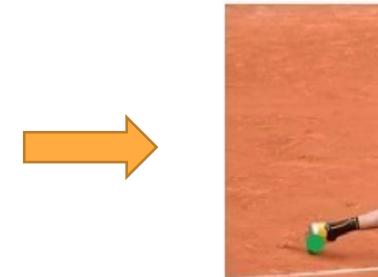
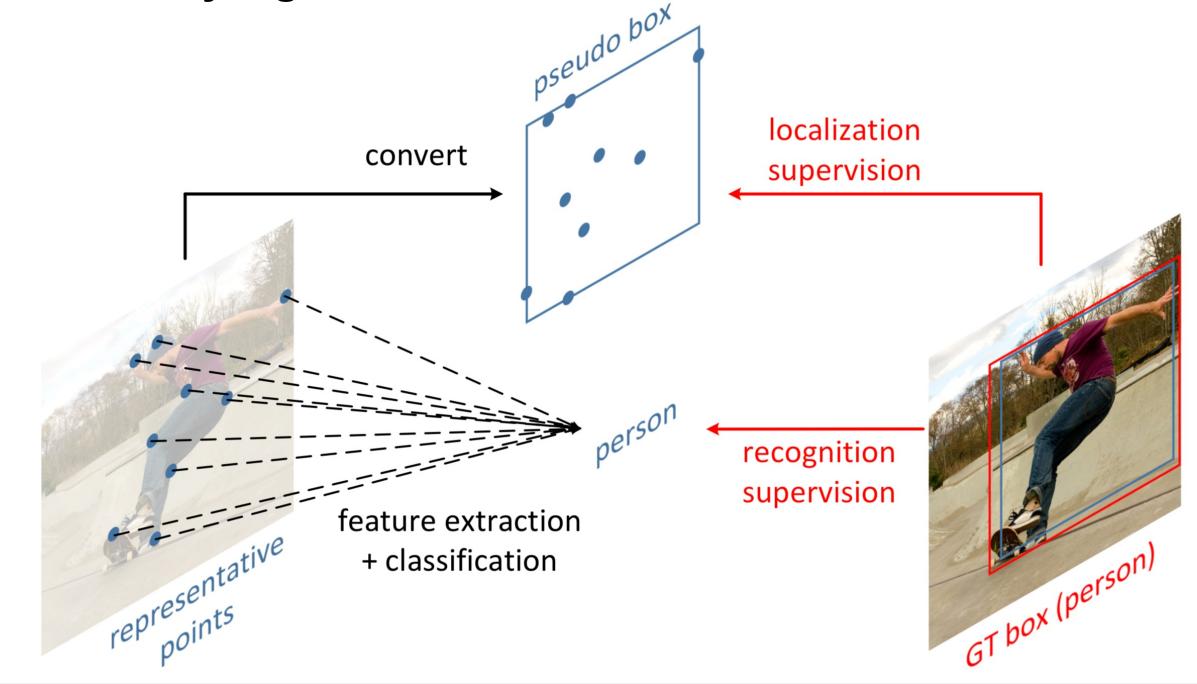


Motivation

Why bounding box?


- Bounding box is convenient to annotate with little ambiguity.
- It is convenient to use the bounding box representation to facilitate feature extraction.

Limitations.


- Coarse object feature extraction.
- Unable to tackle irregular object (like road).

semantic + geometric representation

RepPoints is a new representation for object detection that consists of a set of points which indicate the **spatial extent** of an object and semantically significant local areas.

RepPoints: Point Set Representation for Object Detection

Ze Yang* yangze@pku.edu.cn

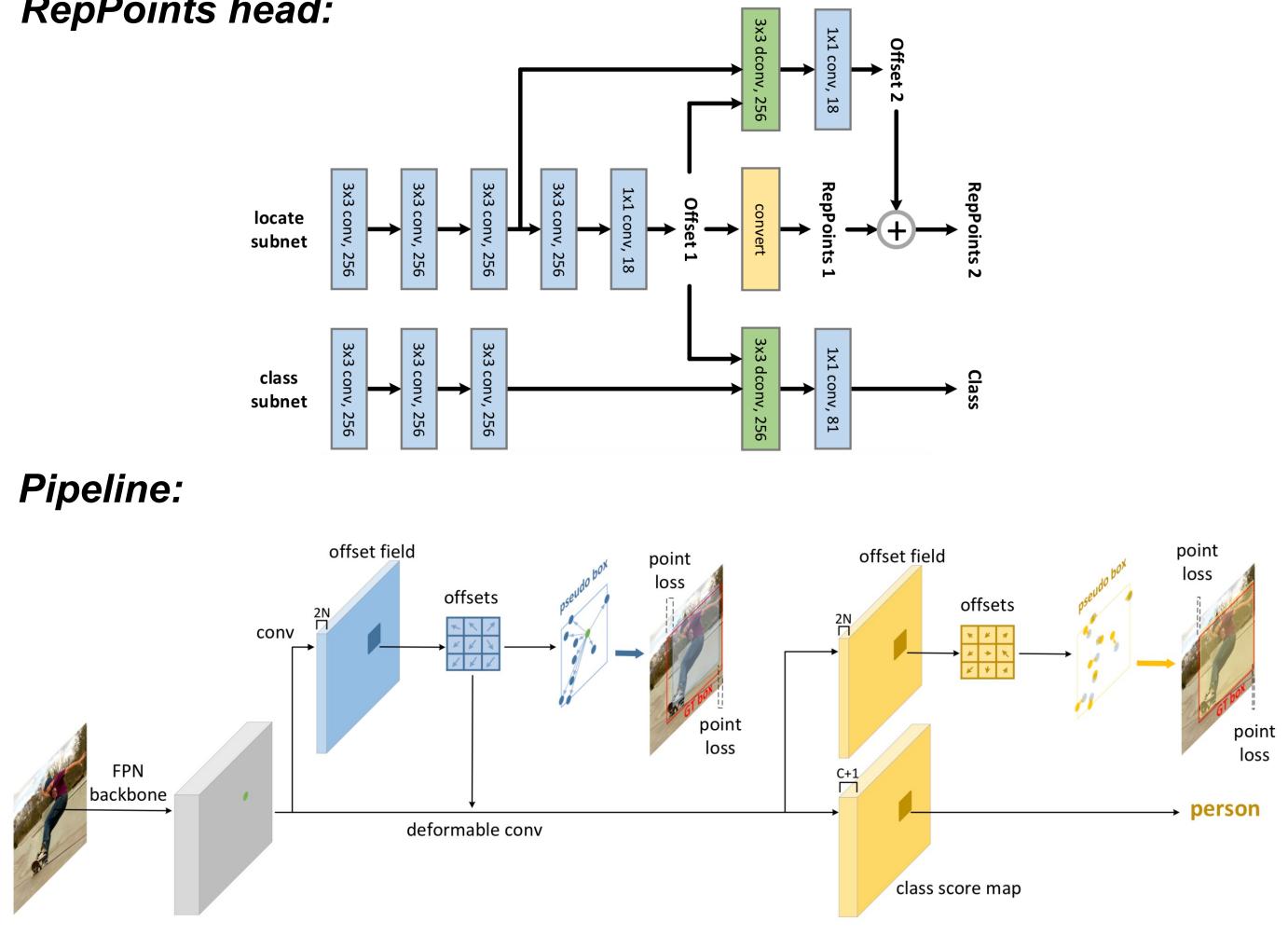
Shaohui Liu* b1ueber2y@gmail.com

Han Hu

hanhu@microsoft.com

Code link: https://github.com/microsoft/RepPoints

Methodology


How to transform point set to bounding box?

- *Min-max function*: Min-max operation over both axes are performed to acquire rectangular box.
- *Moment-based function*. The first-order moment statistics are used to estimate the center points. The second-order moment statistics are used to estimate the scale of rectangular box, where the scale is multiplied by globally shared learnable multipliers.

Refinement: RepPoints vs Bounding Box.

 $\mathcal{R}_r = \{(x_k + \Delta x_k, y_k + \Delta y_k)\}_{k=1}^n \quad \mathbf{VS} \quad \mathcal{B}_r = (x_p + w_p \Delta x_p, y_p + h_p \Delta y_p, w_p e^{\Delta w_p}, h_p e^{\Delta h_p})$ 2N degree of freedom

RepPoints head:

Stephen Lin

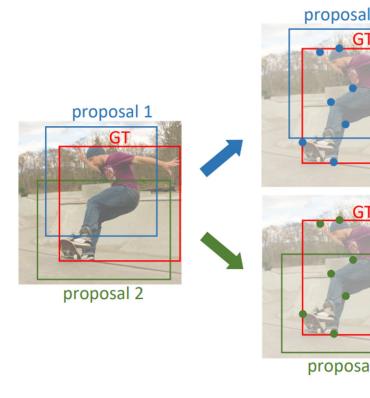
stevelin@microsoft.com

Liwei Wang wanglw@cis.pku.edu.cn

4 degree of freedom

Quantitative.

	Backbone	Anchor-Free	$AP \ AP_{50} \ AP_{75}$	$AP_S AP_M AP_L$
Faster R-CNN w. FPN [24]	ResNet-101		36.2 59.1 39.0	18.2 39.0 48.2
RefineDet [46]	ResNet-101		36.4 57.5 39.5	16.6 39.9 51.4
RetinaNet [25]	ResNet-101		39.1 59.1 42.3	21.8 42.7 50.2
Deep Regionlets [44]	ResNet-101		39.3 59.8 -	21.7 43.7 50.9
Mask R-CNN [13]	ResNeXt-101		39.8 62.3 43.4	22.1 43.2 51.2
FSAF [50]	ResNet-101		40.9 61.5 44.0	24.0 44.2 51.3
Cascade R-CNN [2]	ResNet-101		42.8 62.1 46.3	23.7 45.5 55.2
CornerNet [21]	Hourglass-104	\checkmark	40.5 56.5 43.1	19.4 42.7 53.9
ExtremeNet [48]	Hourglass-104	\checkmark	40.1 55.3 43.2	20.3 43.2 53.1
RPDet	ResNet-101	\checkmark	41.0 62.9 44.3	23.6 44.1 51.7
RPDet	ResNet-101-DCN	\checkmark	42.8 65.0 46.3	24.9 46.2 54.7
RPDet (ms train)	ResNet-101-DCN	\checkmark	45.0 66.1 49.0	26.6 48.6 57.5
RPDet (ms train & ms test)	ResNet-101-DCN	\checkmark	46.5 67.4 50.9	30.3 49.7 57.1


Comparison with state-of-the-art

Qualitative.

Visualization of the learnt RepPoints and the induced bounding boxes on several examples from the COCO [26] minival set (using the pseudo box converting function T₁). In general, the learned RepPoints are located on extreme or semantic keypoints of objects

Relation to deformable Rol pooling

ICCV 2019 Seoul, Korea

Experiments

method	backbone	ms train	ms test	AP
RPDet	R-50			38.6
	R-50	\checkmark		40.8
	R-50	\checkmark	\checkmark	42.2
	R-101			40.3
	R-101	\checkmark		42.3
	R-101	\checkmark	\checkmark	44.1
	R-101-DCN			43.0
	R-101-DCN	\checkmark		44.8
	R-101-DCN	\checkmark	\checkmark	46.4
	X-101-DCN			44.5
	X-101-DCN	\checkmark		45.6
	X-101-DCN	\checkmark	\checkmark	46.8

Comparison with different backbone

Future direction: denser and finer

