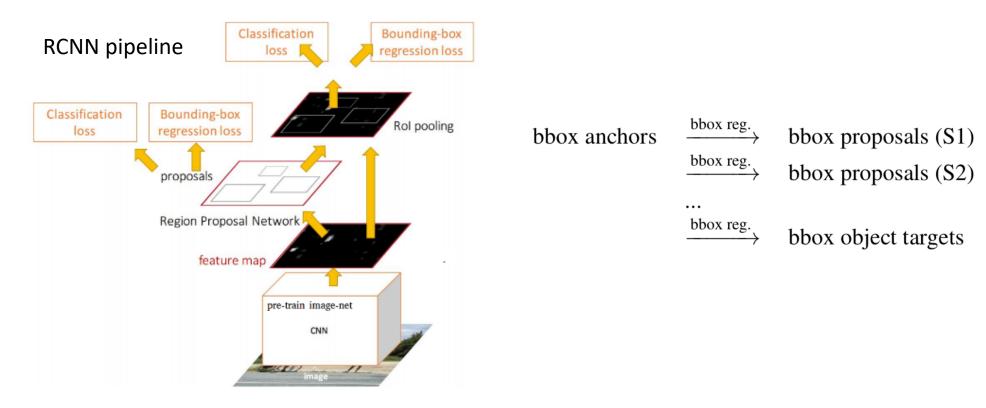


Dense RepPoints: Representing Visual Objects with Dense Point Sets

Ze Yang^{1*}, Yinghao Xu^{2*}, Han Xue^{3*}, Zheng Zhang⁵, Raquel Urtasun⁴, Liwei Wang¹, Stephen Lin⁵, Han Hu⁵

Current framework for visual perception system.



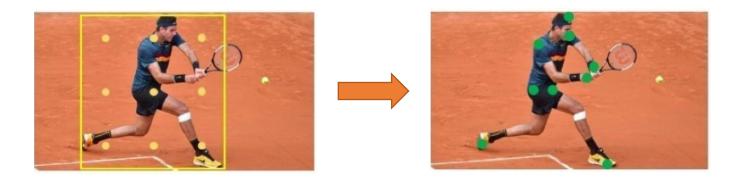
Use bounding box as intermediate representation

Why bounding box?

- •Bounding box is convenient to annotate with little ambiguity.
- Easy feature extraction.

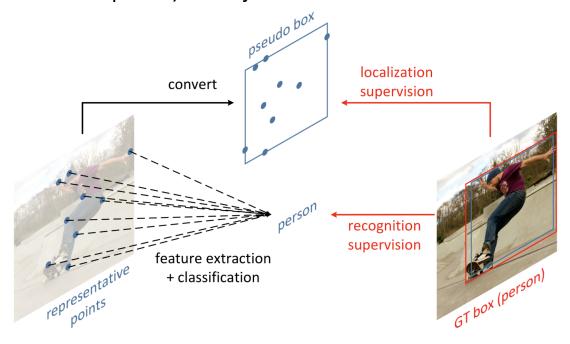
Limitations.

- •Coarse object feature extraction.
- •Unable to tackle irregular object, e.g. roads.



Better geometric/semantic aligned representation for recognition?

RepPoints (representative points) for object detection

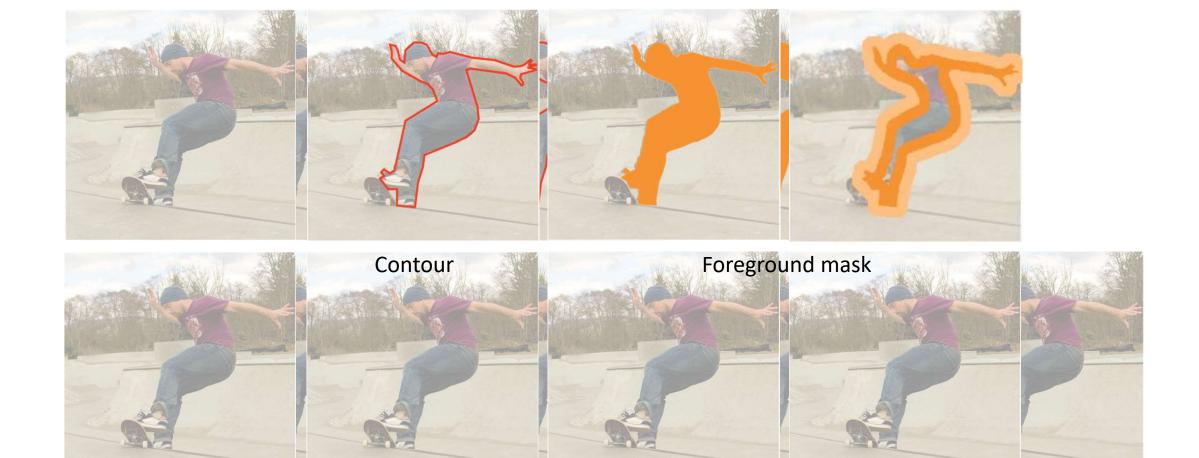


RepPoints is a set of points connecting stages. It serves as:

- 1) flexible geometric 2D representation
- 2) semantically aligned feature extraction.

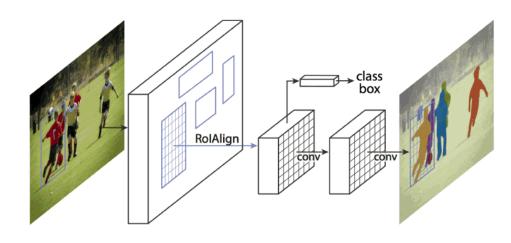
SoTA detector

Can we extend representative points to dense segmentation tasks?



Instance segmentation representation

Foreground Mask Representation

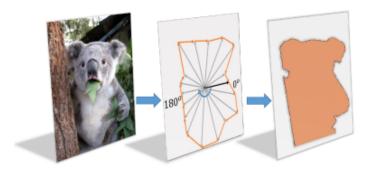


RCNN framework

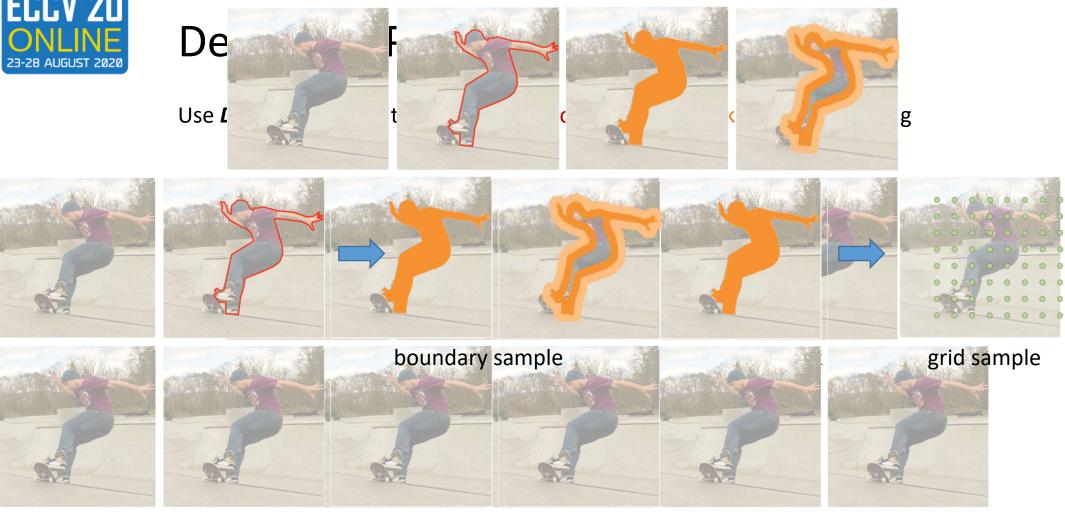
- 1. Detect rectangular regions
- 2. Pixel-wise verification inside rectangular regions

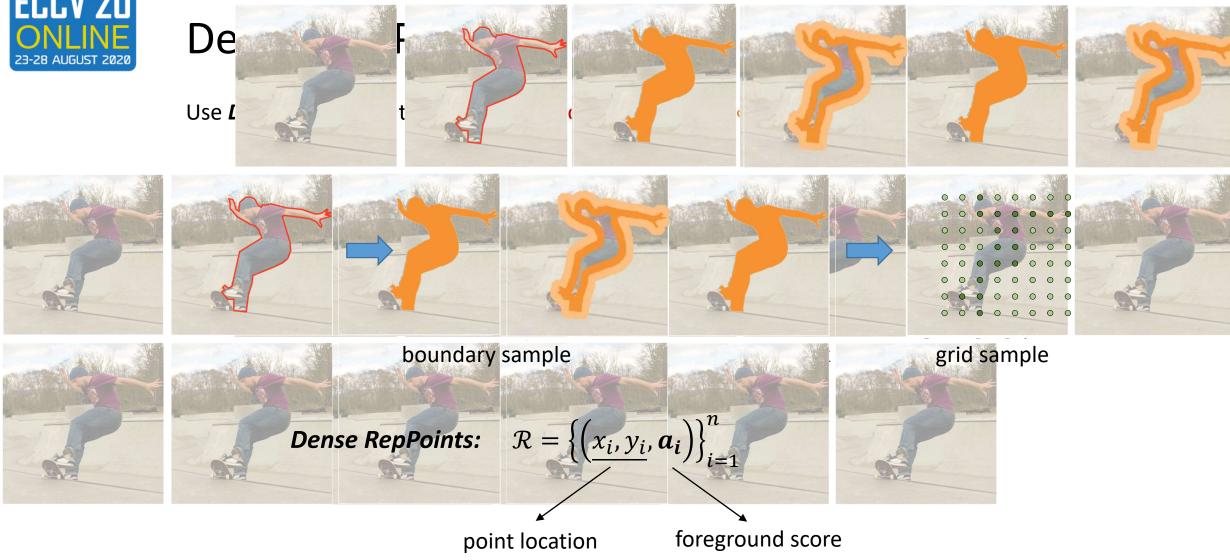
Contour Representation

Energy minimization framework



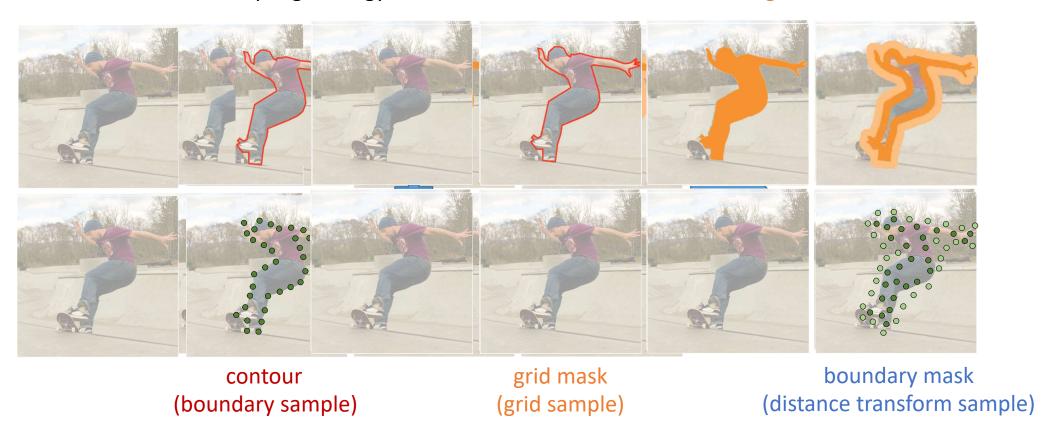
Learning contour regression





Dense RepPoints

A new sampling strategy, combines merits of both contour and grid mask.



efficient as contour, strong as grid mask

Learning point set coordinates.

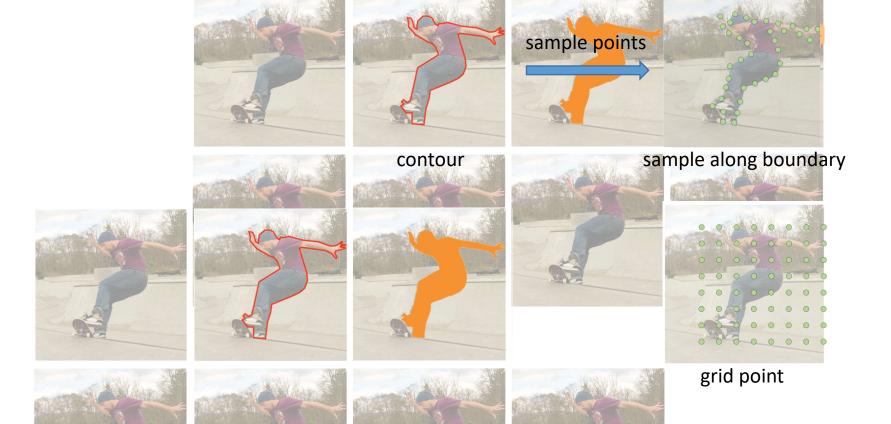
Learning per points foreground probability

Learning instance class from point set

Learning point set coordinates.

Learning point set coordinates.

1. Sample points from GT object annotation



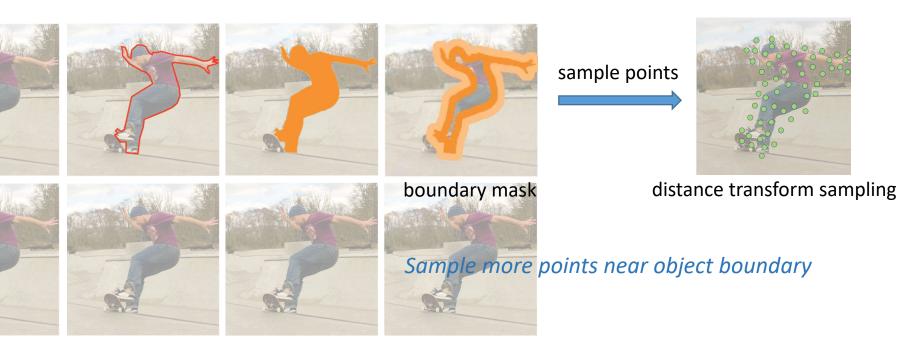
sample few points

sample more points

Learning point set coordinates.

Learning point set coordinates.

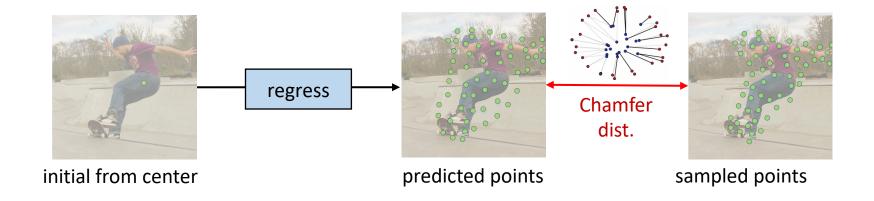
1. Sample points from GT object annotation



efficient sample

Learning point set coordinates.

2. Optimize the point set loss between predicted points and sampled points .



Dense RepPoints Regression:

$$\mathcal{R}_p = \{(x_i, y_i, \boldsymbol{a_i})\}_{i=1}^n$$

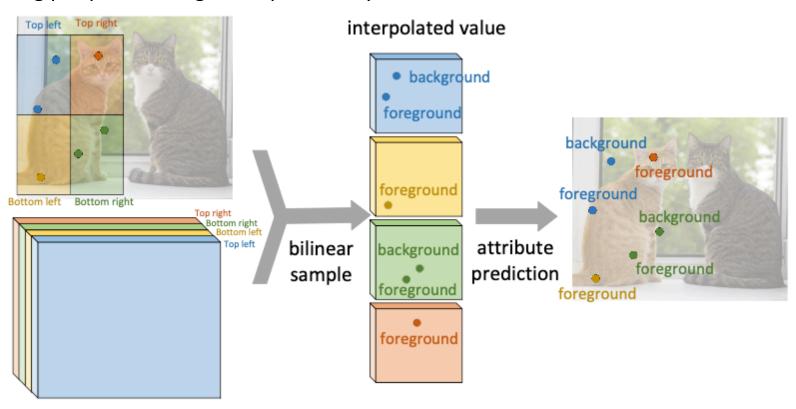
$$\mathcal{R}_{reg} = \{(x_i + \Delta x_i, y_i + \Delta y_i, \boldsymbol{a_i})\}_{i=1}^n$$

Bounding Box Regression:

$$\mathcal{B}_p = (x_p, y_p, w_p, h_p)$$

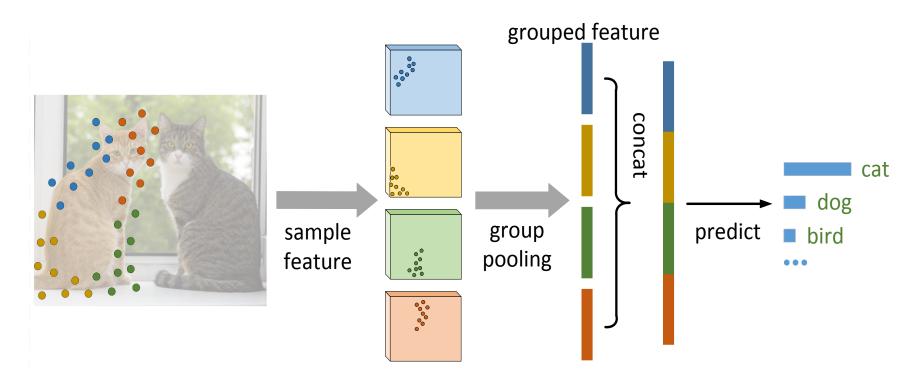
$$\mathcal{B}_{reg} = \left(x_p + w_p \Delta x_p, y_p + h_p \Delta y_p, w_p e_p^{\Delta w_p}, h_p e_p^{\Delta h_p}\right)$$

Learning per points foreground probability



We use position-sensitive map similar to R-FCN and TensorMask.

Classifying the instance category from point set



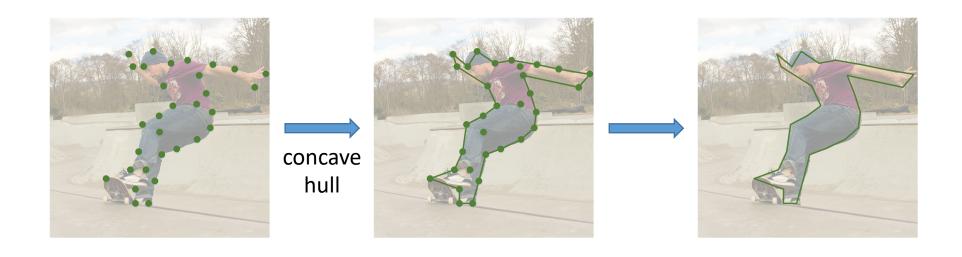
We use group pooling to reduce the computation to constant time.

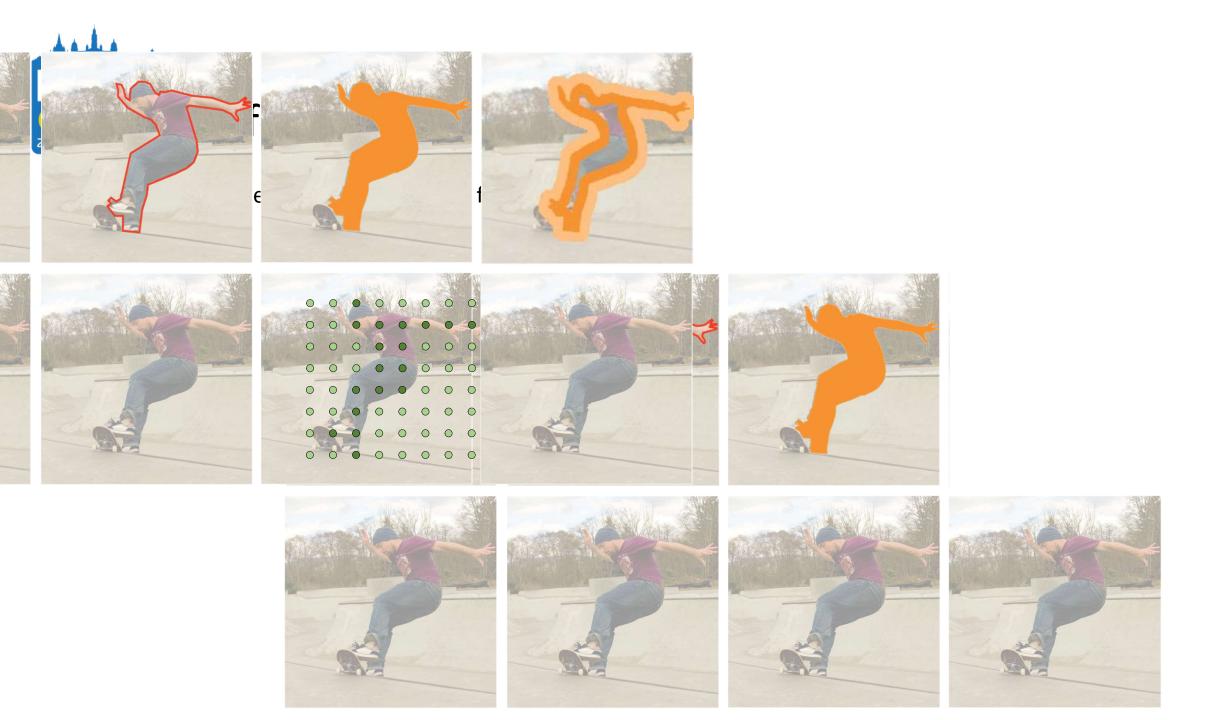
Infer segments from Dense RepPoints

Infer from contour sampling
Infer from grid points sampling
Infer from distance transform sampling

Inference

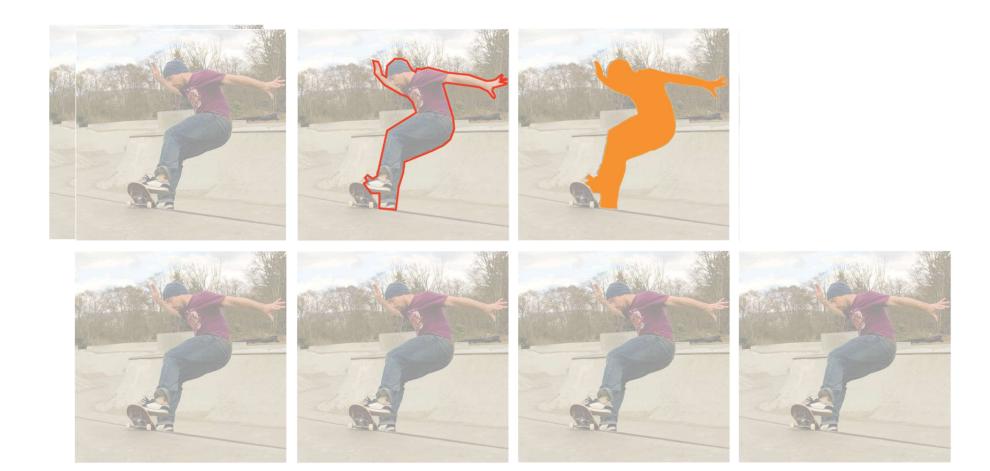
Inference contour using concave hull





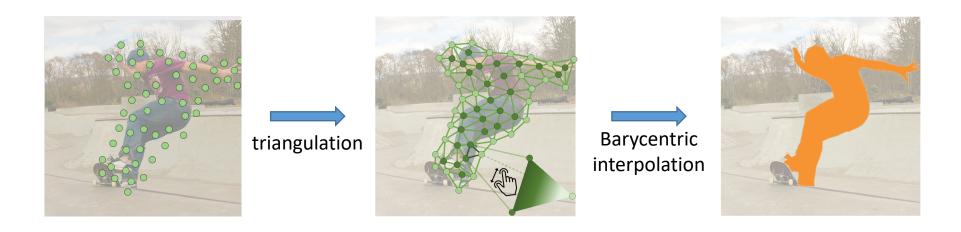
Inference

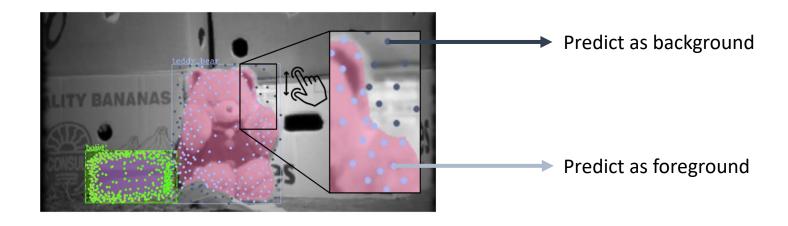
Inference foreground mask from boundary points



Inference

Inference foreground mask from boundary points





Visualization

Top: The learned points (225 points) is mainly distributed around the object boundary.

Bottom: The foreground masks generated by triangulation post-processing.

Experiments

Ablation study
State-of-the-art comparison

Ablation Study

Different representation of object segments

number of points	9	25	81	225	729
Contour	19.7	23.9	26.0	25.2	24.1
Grid points	5.0	17.6	29.7	31.6	32.8
Boundary points	13.9	24.5	31.5	32.8	33.8

"boundary sampling" is efficient at both small and large number of points

Number of points

number of points	81	225	441	729
AP	31.5	32.8	33.3	33.8
				54.8
AP@75	32.7	34.4	35.2	35.9

Performance increase consistently with number of points, "densify" is important

Experiments

Instance segmentation performance

Method	Backbone	epochs	$_{ m jitter}$	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Mask R-CNN [18]	ResNet-101	12		35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN [18]	ResNeXt-101	12		37.1	60.0	39.4	16.9	39.9	53.5
TensorMask [7]	ResNet-101	72	\checkmark	37.1	59.3	39.4	17.4	39.1	51.6
SOLO [42]	ResNet-101	72	✓	37.8	59.5	40.4	16.4	40.6	54.2
ExtremeNet [50]	HG-104	100	✓	18.9	-	-	10.4	20.4	28.3
PolarMask [45]	ResNet-101	24	✓	32.1	53.7	33.1	14.7	33.8	45.3
Ours	ResNet-101	36	✓	39.1	62.2	42.1	21.8	42.5	50.8

+1.3 improvement over state-of-the-art

Experiments

Object detection performance

Method	Backbone	epochs j	itter	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Faster R-CNN[27]	ResNet-101	12		36.2	59.1	39.0	18.2	39.0	48.2
Mask R-CNN[18]	ResNet-101	12		38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN[18]	ResNeXt-101	12		39.8	62.3	43.4	22.1	43.2	51.2
RetinaNet[28]	ResNet-101	12		39.1	59.1	42.3	21.8	42.7	50.2
RepPoints[47]	ResNet-101	12		41.0	62.9	44.3	23.6	44.1	51.7
ATSS[48]	ResNeXt-101-DCN	24	✓	47.7	66.5	51.9	29.7	50.8	59.4
CornerNet[25]	HG-104	100	✓	40.5	56.5	43.1	19.4	42.7	53.9
ExtremeNet[50]	HG-104	100	\checkmark	40.1	55.3	43.2	20.3	43.2	53.1
CenterNet [49]	HG-104	100	✓	42.1	61.1	45.9	24.1	45.5	52.8
Ours	${\bf ResNeXt\text{-}101\text{+}DCN}$	36	✓	48.9	69.2	53.4	30.5	51.9	61.2

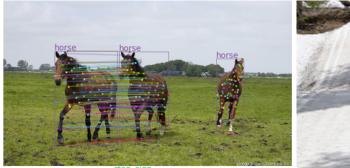
+1.2 improvement over state-of-the-art

Insights

Unstructure data representation for 2D visual tasks, especially for high-definition media.



Unsupervised keypoints/correspondence learning from video, simulation.





Box-free visual perception task, e.g. key-point estimation, video tracking, etc.