Ze Yang – Curriculum Vitæ | CONTACT | Department of Computer Science | L +1 (647) 786-0934 | | | |-----------------------|---|---|-------------------|--| | Information | University of Toronto | | | | | | Toronto, ON, Canada | ♠ https://www.cs.torontc | .edu/~zeyang/ | | | RESEARCH
INTERESTS | ing. In particular, I am dedicated to with the purpose of creating <i>immersi</i> and evaluation of autonomous system and <i>cost-effective</i> manner. Towards the years, such as <i>reconstruction</i> spanning encompassing both rigid and dynamical data. Crucially, I investigate these tallenging <i>in-the-wild</i> settings where the | ersection of 3D computer vision, robotics, and machine learn-
uild scalable and realistic digital twins for real-world modeling,
e and controllable simulations that facilitate the development
ins, such as self-driving vehicles, in a safe, controlled, reactive,
his goal, I have delved into various areas over the past few
if from individual objects to large-scale scene, world modeling
the contents, and closed-loop simulation for camera and LiDAR
is not only in controlled environments but also in more chal-
resulting models will be deployed. During the earlier stages
ing flexible and structural representation for visual perception. | | | | EDUCATION | University of Toronto Department of Computer Science Ph.D., Supervisor: Raquel Urtasur | 1 | 2020/09 – Present | | | | Peking University School of Electronics Engineering and M.Sc., Supervisor: Liwei Wang Thesis: "Learning Representative I | · | 2017/09 - 2020/06 | | | | Xi'an Jiaotong University
Special Class for the Gifted Young
B.Eng., Electrical Engineering and A | utomation | 2013/09 – 2017/06 | | | Professional | Waabi Innovation, Toronto, ON, Car | nada | | | | Experience | Senior Researcher | | 2023/09 – Present | | | | Researcher II | | 2022/06 – 2023/09 | | | | Researcher Working on next-generation sensor Uber ATG, Toronto, ON, Canada | simulation for self-driving | 2021/03 – 2022/06 | | | | Research Scientist | | 2020/06 - 2021/02 | | | | Research Internship | deling and simulation for self-driving | 2019/10 – 2020/06 | | | | Microsoft Research Asia, Beijing, Cl | nina | | | | | | Dai, and Steve Lin on visual perception | 2018/12 – 2019/09 | | | | Sinovation Ventures , Beijing, China
Research Internship
Working on unmanned convenienc | e store project | 2017/06 – 2017/08 | | | | National University of Singapore , S
Research Internship | ingapore | 2016/09 – 2016/12 | | | | Working with Prof. Jiashi Feng on | generative model | | | # PEER-REVIEWED CONFERENCE PUBLICATIONS (*=equal contribution, †=interns) #### 2025 C1 GenAssets: Generating in-the-wild 3D Assets in Latent Space Ze Yang, Jingkang Wang, Haowei Zhang, Siva Manivasagam, Yun Chen, Raquel Urtasun In Conference on Computer Vision and Pattern Recognition (CVPR), 2025 #### 2024 C2 UniCal: Unified Neural Sensor Calibration **Ze Yang***, George Chen*†, Haowei Zhang, Kevin Ta, Ioan Andrei Bârsan, Daniel Murphy, Siva Manivasagam, Raquel Urtasun In European Conference on Computer Vision (ECCV), 2024 C3 G3R: Gradient Guided Generalizable Reconstruction Yun Chen*, Jingkang Wang*, **Ze Yang**, Siva Manivasagam, Raquel Urtasun In European Conference on Computer Vision (ECCV), 2024 C4 Copilot4D: Learning Unsupervised World Models for Autonomous Driving via Discrete Diffusion Lunjun Zhang, Yuwen Xiong, **Ze Yang**, Sergio Casas, Rui Hu, Raquel Urtasun In International Conference on Learning Representations (ICLR), 2024 #### 2023 C5 LightSim: Neural Lighting Simulation for Urban Scenes Ava Pun*+, Gary Sun*+, Jingkang Wang*, Yun Chen, **Ze Yang**, Siva Manivasagam, Wei-Chiu Ma, Raquel Urtasun In Neural Information Processing Systems (NeurIPS), 2023 C6 Real-Time Neural Rasterization for Large Scenes Jeffrey Yunfan Liut, Yun Chen*, **Ze Yang***, Jingkang Wang, Sivabalan Manivasagam, Raquel Urtasun In *International Conference on Computer Vision (ICCV)*, 2023 C7 Towards Zero Domain Gap: A Comprehensive Study of Realistic LiDAR Simulation for Autonomy Testing Sivabalan Manivasagam*, Ioan Andrei Bârsan*, Jingkang Wang, **Ze Yang**, Raquel Urtasun In *International Conference on Computer Vision (ICCV)*, 2023 C8 UniSim: A Neural Closed-Loop Sensor Simulator **Ze Yang***, Yun Chen*, Jingkang Wang*, Siva Manivasagam*, Wei-Chiu Ma, Anqi Joyce Yang, Raquel Urtasun In Conference on Computer Vision and Pattern Recognition (CVPR), 2023 (Highlight) C9 Reconstructing Objects in-the-wild for Realistic Sensor Simulation Ze Yang, Siva Manivasagam, Yun Chen, Jingkang Wang, Rui Hu, Raquel Urtasun In International Conference on Robotics and Automation (ICRA), 2023 #### 2022 C10 CADSim: Robust and Scalable in-the-wild 3D Reconstruction for Controllable Simulation Jingkang Wang, Siva Manivasagam, Yun Chen, **Ze Yang**, Ioan Andrei Bârsan, Anqi Joyce Yang, Wei-Chiu Ma, Raquel Urtasun In Conference on Robot Learning (CoRL), 2022 C11 RBGNet: Ray-based Grouping for 3D Object Detection Haiyang Wang, Shaoshuai Shi, **Ze Yang**, Rongyao Fang, Qi Qian, Hongsheng Li, Bernt Schiele, Liwei Wang In Conference on Computer Vision and Pattern Recognition (CVPR), 2022 #### 2021 C12 S3: Neural Shape, Skeleton, and Skinning Fields for 3D Human Modeling Ze Yang, Shenlong Wang, Siva Manivasagam, Zeng Huang, Wei-Chiu Ma, Xinchen Yan, Ersin Yumer, Raquel Urtasun In Conference on Computer Vision and Pattern Recognition (CVPR), 2021 #### 2020 C13 Recovering and Simulating Pedestrians in the Wild Ze Yang, Siva Manivasagam, Ming Liang, Bin Yang, Wei-Chiu Ma, Raquel Urtasun In Conference on Robotic Learning (CoRL), 2020 (Spotlight) C14 Dense RepPoints: Representing Visual Objects with Dense Point Sets Ze Yang*, Yinghao Xu*, Han Xue*, Zheng Zhang, Raquel Urtasun, Liwei Wang, Steve Lin, Han Hu In European Conference on Computer Vision (ECCV), 2020 #### 2019 C15 RepPoints: Point Set Representation for Object Detection Ze Yang*, Shaohui Liu*, Han Hu, Liwei Wang, Steve Lin In International Conference on Computer Vision (ICCV), 2019 C16 Learning Relationships for Multi-view 3D Object Recognition Ze Yang, Liwei Wang In International Conference on Computer Vision (ICCV), 2019 #### 2018 and before C17 Learning to Navigate for Fine-grained Classification Ze Yang, Tiange Luo, Dong Wang, Zhiqiang Hu, Jun Gao, Liwei Wang In European Conference on Computer Vision (ECCV), 2018 C18 Single Image Super-Resolution with a Parameter Economic Residual-Like Convolutional Neural Network Ze Yang, Kai Zhang, Yudong Liang, Jinjun Wang In International Conference on Multimedia Modeling, 2017 (Oral) #### PREPRINTS & TECH REPORTS R1 SaLF: Sparse Local Fields for Multi-Sensor Rendering in Real-Time Yun Chen, Matthew Haines, Jingkang Wang, Krzysztof Baron-Lis, Sivabalan Manivasagam, Ze Yang, Raquel Urtasun arXiv preprint arXiv:2507.18713, 2025 R2 On the Anomalous Generalization of GANs Jinchen Xuan, Yunchang Yang, Ze Yang, Di He, Liwei Wang arXiv preprint arXiv:1909.12638, 2019 R3 Single Image Super-resolution via a Lightweight Residual Convolutional Neural Network Yudong Liang, Ze Yang, Kai Zhang, Yihui He, Jinjun Wang, Nanning Zheng arXiv preprint arXiv:1703.08173, 2017 #### **PATENTS** - P1 Learning Unsupervised World Models for Autonomous Driving via Discrete Diffusion Lunjun Zhang, Yuwen Xiong, Ze Yang, Sergio Casas Romero, Raquel Urtasun US Patent App. 18/900,601, 2025 - P2 Deferred Neural Lighting in Augmented Image Generation Ava Pun, Gary Sun, Jingkang Wang, Yun Chen, Ze Yang, Sivabalan Manivasagam, Raquel Urtasun US Patent App. 18/666,728, 2024 - P3 Three Dimensional Object Reconstruction for Sensor Simulation Ioan Andrei Bârsan, Yun Chen, Wei-Chiu Ma, Sivabalan Manivasagam, Raquel Urtasun, Jingkang Wang, Ze Yang US Patent App. 18/209,609, 2023 - P4 Real World Object Reconstruction and Representation Ze Yang, Sivabalan Manivasagam, Yun Chen, Jingkang Wang, Raquel Urtasun US Patent App. 18/182,491, 2023 - P5 Systems and Methods for Simulating Dynamic Objects Based on Real World Data Ming Liang, Wei-Chiu Ma, Sivabalan Manivasagam, Raquel Urtasun, Bin Yang, **Ze Yang** *US Patent App.* 17/388,372, 2022 | | US Patent App. 17/388,372, 2022 | | |--------------------------|--|---| | TEACHING
ASSISTANT | University of Toronto◆ CSC 490: Making Your Self-driving Car Perceive the World | 2021 Winter | | | Peking University • EECS 04831210: Information Theory | 2018 Spring | | SELECTED AWARDS | Ontario Graduate Scholarship, University of Toronto Vector Institute Research Grant, University of Toronto May 4th Scholarship, Peking University Merit Student, Peking University 1st Place in Alibaba TianChi AI Competition for Healthcare (lung nodule detection) | 2024
2020 - 2024
2019
2019
n) 2017 | | Professional
Service | Journal Reviewer: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) IEEE Transactions on Multimedia (TMM) | | | | Conference Reviewer: Conference on Computer Vision and Pattern Recognition (CVPR) International Conference on Computer Vision (ICCV) European Conference on Computer Vision (ECCV) Asian Conference on Computer Vision (ACCV) Winter Conference on Applications of Computer Vision (WACV) Conference on Neural Information Processing Systems (NeurIPS) International Conference on Learning Representations (ICLR) International Conference on Machine Learning (ICML) AAAI Conference on Artificial Intelligence (AAAI) International Conference on Robotics and Automation (ICRA) International Conference on Intelligent Robots and Systems (IROS) ACM International Conference on Multimedia (ACM-MM) | 2020 - 2024
2021 - 2025
2022 - 2024
2020, 2024
2021 - 2024
2023 - 2024
2025
2025
2025
2024
2023
2024
2023
2023 | | OPEN SOURCE
SOFTWARES | Learning to Navigate for Fine-grained Classification. GitHub: https://github.com/yangze0930/NTS-Net RepPoints: Point Set Representation for Object Detection. GitHub: https://github.com/microsoft/RepPoints Dense RepPoints: Representing Visual Objects with Dense Point Sets. GitHub: https://github.com/justimyhxu/Dense-RepPoints MMDetection. GitHub: https://github.com/open-mmlab/mmdetection/pull/1256 | | | Invited Talks | T1 Toward Scalable World Modeling and Simulation for Autonomy
University of Maryland @ Iribe Center for Computer Science, College Park, MD, USA | 2025/07 | | | T2 Toward Scalable World Modeling and Simulation for Autonomy
Cross Future AI Summit, Vancouver, BC, Canada | 2025/07 | | | T3 Toward Scalable World Modeling and Simulation for Autonomy | 2025 /0/ | Wallenberg AI, Autonomous Systems and Software Program (WASP Sweden), Online T4 Toward Scalable World Modeling and Simulation for Autonomy Princeton Computational Imaging Lab, Online 2025/06 2025/05 | T5 | Learning in-the-wild Sensor Simulation for Autonomous Driving
Mila Robot Learning Seminar, Online | 2023/12 | |-----|--|---------| | Т6 | Learning in-the-wild Sensor Simulation for Autonomous Driving
OpenDriveLab @ Shanghai AI Lab, Online | 2023/07 | | T7 | Learning in-the-wild Sensor Simulation for Autonomous Driving
Toronto Computational Imaging Group @ UofT, Toronto, ON, Canada | 2023/07 | | Т8 | Learning 3D Reconstruction in the Wild for Realistic Sensor Simulation
ByteDance Research, Online | 2022/10 | | Т9 | Deformable Asset Reconstruction and Animation for Sensor Simulation
CVPR21 Tutorial: All about Self-Driving, Online | 2021/06 | | T10 | Learning Fine-grained Regions for Long-tail Visual Perception
Microsoft Research Asia, Beijing, China | 2019/09 | | T11 | Representing Objects as Point Sets for Visual Perception
Noah's Ark Lab, Shenzhen, China | 2019/07 | | T12 | Learning Representative Regions for Fine-grained Classification
Noah's Ark Lab, Shenzhen, China | 2018/11 | ## MENTORSHIP AN SUPPORT MENTORSHIP AND George Chen (University of Waterloo Undergrad & Waabi Internship) • Working on Neural Sensor Calibration project Jeffrey Liu (University of Waterloo Undergrad & Waabi Internship) • Working on Neural Scene Rasterization project Ava Pun (University of Waterloo Undergrad & Waabi Internship) Gary Sun (University of Waterloo Undergrad & Waabi Internship) • Working on Neural Light Simulation project Haiyang Wang (Peking University Ph.D.) • Working on Ray-based Grouping for 3D Object Detection project Shengcao Cao (Peking University Undergrad) • Working on Video Object Detection project *Jinchen Xuan (Peking University Undergrad)* • Working on Anomalous Behaviour of GANs project #### PRESS COVERAGE - Simulator Realism: The New Safety Standard for the AV Industry. Waabi Blog [link]. 2025/03. - Waabi's Game-Changing Approach to Self-Driving Trucks. Fox News [link]. 2024/07. - Waabi's GenAI promises to do so much more than power self-driving trucks. TechCrunch [link]. 2024/06. - In It for the Long Haul: Waabi Pioneers Generative AI to Unleash Fully Driverless Autonomous Trucking. Nvidia Blog [link]. 2024/03. - Introducing Copilot4D: A Foundation Model for Self-Driving. Waabi Blog [link]. 2024/03. - Accelerating AVs through the next generation of Generative AI. Waabi Blog [link]. 2023/09. - Introducing UniSim, one of the core groundbreaking technologies powering Waabi World. Waabi Blog [link]. 2023/06. - Solving Self-Driving with Waabi World. Radical Ventures [link]. 2022/02. - Welcome to Waabi World, the "ultimate simulator" for autonomous vehicles. The Verge [link]. 2022/02. - Getting a better visual: RepPoints detect objects with greater accuracy through flexible and adaptive object modeling. Microsoft Research Blog [link]. 2019/10.