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Abstract
We propose an approach to building topological maps of environments based on image sequences. The central
idea is to use manifold constraints to find representative feature prototypes, so that images can be related to
each other, and thereby to camera poses in the environment. Our topological map is built incrementally,
performing well after only a few visits to a location. We compare our method to several other approaches
to representing images. During tests on novel images from the same environment, our method attains the
highest accuracy in finding images depicting similar camera poses, including generalizing across considerable
seasonal variations.

1. INTRODUCTION

Consider the problem faced by a tourist in a new town. After wandering around all day with no map, fatigue
sets in, and she wants to head back to her hotel, or at least to a pub. She stands at a street corner and
looks around for something familiar so she can try to plan a route. This scenario is a central problem for
vision-based mobile robots, as they need to know where they are through visual sensors in order to navigate
autonomously in large-scale environments.

A key step for localizing oneself is to construct an internal map of the environment. Depending on
the information available, we can form maps with different levels of granularity. If the images are fully
labeled with camera pose information (e.g., latitude, longitude, viewing angle), we can build a metric map
predicting 3D pose parameters from images. On the other hand, given only monocular intensity images with
no additional labels, we instead expect to build a topological map based on image similarity. Motivated by
the lost tourist, we consider a slightly extended version of the latter problem, in which the system has access
not only to the monocular images gathered during an excursion, but also to the temporal sequence of these
images. The task of the system then is to associate some new image with a location on the topological map,
by finding one or a small set of similar images. This is an instance of the global localization problem (Thrun
et al., 2005), in which location is estimated for a single test image rather than a dynamic estimate based on a
sequence of test images.

The fundamental problem faced by such a system involves building an appropriate distance function,
such that images from similar camera poses are considered nearby, while images from distant poses are seen
as far from each other. In most outdoor settings, images from similar poses can be very different, as many
objects can move in and out of the image, and image features may also change due to lighting and seasonal
variations. Consider for example the two images shown in Figure 1, which look very different but in fact
were taken from almost identical camera poses. Instead of relying on a complicated matching procedure to
handle this difficulty, we explicitly construct a new representation space of images, such that using simple
distance metrics, such as Euclidean distance, the manifold formed by all the images of a specific environment
can be viewed as a topological map of the corresponding camera poses.
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Figure 1: The camera poses of these two images are very similar despite the very different appearances of
the images. Our aim is to construct an image representation that is robust to all the differences,
such as the extraneous objects, and seasonal and lighting variations.

We formulate the representation learning problem as one of finding a set of prototype image features that
are useful to represent any image within the environment. The new feature-based image representation also
brings us another advantage: it reduces the dimensionality of input images significantly, potentially leading to
good scaling properties of the method. Our approach utilizes information in the temporal sequence of images
to guide the learning, as the system constructs a manifold in the learned feature space, such that images
that are nearby in time are mapped to representations that are nearby in feature space. Given this manifold
constraint, we propose an incremental learning framework that finds robust and distinctive prototype features
for representing images.

The rest of the paper is organized as follows. In Section 2, we discuss related work. Our approach is
presented in Section 3, including details of how we represent an image in terms of prototype features, and the
method of learning these prototypes. In Section 4, we describe experiments applying our method to a set of
real world image sequences, and comparisons to other methods of representing the images.

2. RELATED WORK

The vision-based map learning and localization approaches can be categorized into supervised and unsuper-
vised based on whether pose information is available or not. Our work falls into the unsupervised class,
in which most work focuses on learning a topological or contextual map. Takeuchi and Hebert (Takeuchi
and Hebert, 1998) proposed a method that performs localization by recognizing visual landmarks, which are
constructed by grouping images with similar color and edge distributions, in an offline learning stage. Ulrich
and Nourbakhsh (Ulrich and Nourbakhsh, 2000) presented a system that uses an omnidirectional camera and
color histograms to perform topological localization. Wolf et al. (Wolf et al., 2002) present a system that com-
bines an image retrieval system with standard Monte-Carlo localization. Grudic and Mulligan (Grudic and
Mulligan, 2005) use spectral clustering to build a manifold-based topological map. Bradley et al. (Bradley
et al., 2005) utilize SIFT descriptors from the entire input image, and build a real-time topological localiza-
tion system. Se et al. (Se et al., 2005) propose a global localization approach that uses a stereo camera, and
stores all the SIFT features as the map representation. Unlike our method, these methods utilize the appear-
ance of full images, or all features extracted from an image. Methods that do not include any form of feature
selection would have difficulty scaling up to very large environments, as the number of stored features would
pose severe storage and search requirements.

One method of scaling up the range of images is to decide a priori on a specific type of feature. Robertson
and Cipolla (Robertsone and Cipolla, 2004) propose an interesting approach, relying on facades of buildings,
and their associated geometry, to characterize locations in a large outdoor environment. Our method instead
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chooses more generic features, and applies an explicit feature selection method to winnow down the feature
set.

Supervised methods provide an alternative method of scaling up the range of images, and forming a
more specific map, by utilizing location or pose information during learning. Kosecka and Yang (Kosecka
and Yang, 2004) demonstrate the utility of scale-invariant keypoints for the purpose of location recognition.
Sim and Dudek (Sim and Dudek, 2001) learn image-domain features that appear reliably in sequences, and
use these to compute a maximum-likelihood pose for each image. They also suggest an iterative approach to
learn the image features and an interpolant pose model when ground truth is only partially available in a small
environment (Sim and Dudek, 2004). Recently, Sala et al. (Sala et al., 2004) propose a landmark selection
scheme based on visibility of the features in a static and small environment . Formulating it as a region
decomposition problem, they show it is NP-complete and present several approximation algorithms. Ham
et al. (Ham et al., 2005) present a novel nonlinear dimensionality reduction method to recover camera pose
from panoramic images, in which the raw intensity images from a simulated environment are used. These
methods all rely on knowing some location information during map learning.

Unsupervised methods may be used jointly with supervised ones to build Markov localization systems
on low-dimensional image manifolds. Kuipers and Beeson (Kuipers and Beeson, 2002) suggest to cluster
the images into distinctive states first, on which a topological map is defined. A supervised method then
is used to learn the mapping from image space to the state space. Bowling et al. (Bowling et al., 2005)
construct a subjective frame of reference by embedding images into a low-dimensional space, which respects
the temporal order of inputs and action labels; within the frame of reference, input images are localized by a
Monte Carlo localization approach. Rahimi et al. (Rahimi et al., 2005) combine semi-supervised regression
with a Markovian dynamical system to learn a low-dimensional state space from input video and partially
labeled frames.

Our work bears some relation to the extensive body of work on Simultaneous Localization and Mapping
(SLAM) (Se et al., 2002, Davison, 2003). However, our problem formulation differs from the standard SLAM
problem, in that we do not consider the filtering version of localization in which the estimate builds up over
time, but instead attempt to localize a single isolated test image. Also, we do not learn the location of the
environment features, which may be hard for outdoor environments, since the visible features may in fact be
quite far from the camera location.

Our approach also relates to research on a different problem, object recognition (Lowe, 2004). In par-
ticular, feature-based approaches to object recognition also attempt to select distinctive and robust features
that permit recognition under various viewing conditions (Carneiro and Jepson, 2005). An important differ-
ence between our work and the standard object recognition approaches is that our camera pose recognition
problem is unsupervised, in that the system does not know the pose information for each image. Further,
we formulate our pose recognition problem not in terms of a discrete set of locations, analogous to different
objects, but instead as a continuous one, in which the aim is to form a distance-preserving manifold.

3. OUR APPROACH

3.1 Overview of Our Method

We formulate the map building problem as a manifold learning task, in which a mapping from visual input
I to an intermediate representation R = f(I) is constructed. The objective is that the distance between
any pair of representations reflects the difference between the locations of those images, which we define to
be the position and orientation of the camera when an image was acquired (see Figure 2). The underlying
assumption is that the mapping between the input images and the poses is one-to-one; in environments such
as building corridors or dense forests this assumption may not hold, but it is generally reasonable for natural
outdoor environments.

Our approach consists of two stages: representation learning, and localization. During the learning phase,
we search for a new representation of images that is defined by a set of stable and distinctive image feature
prototypes, as well as a set of global weighting coefficients associated with these prototypes, such that the
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Figure 2: Left: The outline of our framework, which is consists of a learning stage (bottom part) and a
localization stage (top part). Right: The graphical representation of the cost function in manifold
learning. The pi∗ is the target distribution for the image Ii at time ti and any other image. The
cost function maps the images neighboring in time to nearby points, and images far apart in time
to distant points in R space.

Euclidean distance of image data in the new representation space is consistent with the underlying camera
poses. Unlike many methods, we only assume that the temporal information of the training image sequences
is available.

Given the new representation space of images, we view the continuous manifold of images in that space
as the topological map of the environment. The global localization of any new image involves mapping it into
that intermediate space, and finding neighboring points on that manifold, based on Euclidean distance in that
space (see Figure 2). Potential neighboring points can comprise images collected during training excursions
in the environment. If the neighbors’ absolute pose (camera pose in world coordinates) are known, we can
further describe the new image’s pose in the world coordinate system; otherwise, its pose can only be defined
relative to its neighbors. We investigate both of these below.

3.2 Manifold Learning Framework

Let each image I be described by a set of features S with potentially different number of features per image.
The whole feature space is denoted by F so that S ⊂ F . Given a set of prototype features {l1, ..., lK} ∈ F ,
we define the intermediate representation R based on Radial Basis Functions (RBFs) that are centered at
those prototypes and have fixed variances in feature space. Each of the k elements of the intermediate
representation R can be expressed as

Rk = wk exp(−min
s∈S

||s− lk||2/σ2) = wkBk (1)

where σ provides a distance scale, and wk is the weighting coefficient for the importance of the prototype lk.
The RBF functions {Bk} describe the likelihood of those prototypes’ presence in a given image, which can
be viewed as a soft quantization of the feature space with respect to the prototype set. While each image may
have a different number of features, the vector R provides a uniform way to represent inputs. We denote the
new representation space as R.
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Given the representation R, we use the Euclidean metric in R to measure the distance between images:

dw(Ri,Rj) = ||Ri − Rj||2 =
K∑

k=1

w2
k(Bi

k − Bj
k)2 (2)

where Ri and Rj are the new representations for images Ii and Ij . To learn the new representation, we
search for the set of RBF centers and their weighting coefficients in the distance function that optimize some
objective function.

Because we do not assume knowledge of absolute camera pose during learning, the objective is based
on the relative locations of images. These relative locations are expressed probabilistically. We define the
similarity of two representations Ri and Rj in R space based on their Euclidean distance

qij =
exp(−dw(Ri,Rj))∑

j′ �=i exp(−dw(Ri,Rj′))
, (3)

where the normalization term includes all the data points except the ith one. The similarity qij describes the
probability that the stochastically selected neighbor of input i would be j. The learning objective aims to
preserve the neighborhood distribution defined based on some set of target distances dij :

pij =
exp(−dij)∑

j′ �=i exp(−dij′ )
(4)

The consistency of these neighbor distributions is measured naturally by their KL divergence:

F =
∑

i

∑

j �=i

pij [log pij − log qij ] (5)

This criteria was previously proposed for manifold learning (Hinton and Roweis, 2002). The original proposal
concerned an embedding problem, and the procedure manipulated arbitrarily-assigned positions of inputs in
feature space in order to maintain neighbors defined based on distance in input space. We have adapted this
criteria, modifying it in a number of ways. First, our manifold may not be low-dimensional, as K may be
large. In addition, our aim is to localize new images, which means determining the location of novel inputs on
the manifold. Standard manifold learning methods do not naturally generalize to new points, as they typically
need to be re-run with the new points, or else some mapping procedure can be defined after the manifold is
constructed (but see (Bengio et al., 2004)). Instead, our method directly constructs this feature space, and
forms a well-defined, explicit mapping from images to the manifold. This has clear advantages in terms of
testing with novel images. Finally, we use target distances other than input space distances as the constraints
on the manifold. Ideally, for the problem of vision-based map learning, the true underlying distance between
the images can be derived from camera positions and orientations. However, we desire a learning method
that does not depend on this information being available. Instead, we resort to side information to construct
target distances.

One simple form of side information that can be used as a proxy for camera pose distance is temporal
order. We construct the target distances {dij} in Equation 4 by exploiting the temporal information in the
continuous training sequences, under the assumption that neighboring images in the sequence should be
similar to each other. In addition, if the motion path does not repeatedly cover the same ground frequently,
we can also expect that images separated in time should be less correlated. Thus we use the following target
distance for any j within a neighborhood N(i) of i:

dij = (ti − tj)2/τ2
ij (6)

where ti and tj are the time locations of image Ii and Ij in the training sequence and τij is the scale of
distance, which may vary from image to image due to non-uniform sampling in the sequence. For any j not
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in the neighborhood N(i), we set dij such that pij = 0. Note that the asymmetry of the KL objective F is
appropriate in this setting: it strongly enforces the constraint that neighboring images in time are mapped to
nearby points in R space, and enforces less strongly the constraint that non-neighboring images in time are
mapped to distant points in R space, as the pij for these latter points will go to zero.

Defining targets based on temporal distance imposes stability and distinctiveness constraints on the feature
prototypes of R: (1). They are stable under small viewpoint changes and scene dynamics (e.g., car and
pedestrian motion); (2). Nearby scenes should have more similar representations than distant scenes. Note
that when we minimize the criterion F , we essentially build a mapping from the high-dimensional image
pixel space to a relatively low-dimensional space defined by our physical world. However, in our case this is
not a global metric mapping to our 3D world, which is quite difficult without pose information and with only
a single image as input. Here, we seek only to retain the local topology (neighborhood relations).

3.3 Incremental Feature Learning

The nonsmooth RBF-based image representation and the high dimensionality of common image features
make the simultaneous learning of many parametrized RBFs very difficult. Instead, given a training image
set and their image features, we formulate the learning as an iterative feature prototype selection procedure,
in which a set, or vocabulary of prototypes is selected from a large candidate feature library during successive
rounds, and the corresponding weight in the distance metric is computed. We propose a functional gradient
descent algorithm to incrementally grow our prototype vocabulary by selecting the most effective features
from the candidates.

More specifically, the feature prototype learning includes two phases. In the first phase, the candidate
feature library is built using features extracted from the training images. Any feature that cannot be found in
2 consecutive images is treated as unstable and discarded. The remaining features are clustered by a merge-
based clustering procedure such that the variance within each cluster is less than a predefined threshold that
is set to σ2 (see Equation 1). Those cluster centers are used as the candidate features.

In the second phase, we further select a set of feature prototypes from the candidate set. Assume that
we have M candidates, denoted by {fm, m = 1, ..., M}, and denote the representation of an image i w.r.t.
those candidates as {Ri

m, m = 1, ..., M}. We aim to select an optimal subset of prototypes from {fm} and
compute the weight wm that optimizes the cost function. Note that the cost function F is a functional of
the distance function dw(Rx,Ry) between any representation Rx and Ry , (cf. Equation 2); this distance
function is a simple sum over prototypes. We can thus view the feature selection as constructing an additive
function dw(Rx,Ry) from a candidate function set:

C = {(Bx
m − By

m)2, m = 1, ..., M} (7)

Just as in boosting methods (Mason et al., 2000), we adopt a functional gradient descent approach to
incrementally build the distance function dw(Rx,Ry) by selecting prototype features from the candidate set.
More specifically, if dnew

w = dold
w + εg, we can expand the cost function as follows

F (dnew
w ) − F (dold

w ) = ε < ∇F (d), g > +o(ε||g||) (8)

In our problem, g is constrained to be a candidate function in C. If gm = (Bx
m − By

m)2, it can be shown that
the functional gradient is

< ∇F (d), gm >=
∑

i

∑

j �=i

(pij − qij)(Bi
m − Bj

m)2 (9)

The resulting functional gradient descent algorithm includes the following two steps: 1) Search over the
candidate set for gk that maximize the negative gradient − < ∇F (d), gk > and add fk into prototype set; 2)
Given gk and the gradient, find the optimal weight w∗

k by minimizing the cost function F (dold + w2
kgk) over

wk. This can be done by gradient descent:

Δwk ∝ wk

∑

i

∑

j �=i

(pij − qij)(Bi
k − Bj

k)2 (10)
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Figure 3: Left: Four segments of an image sequence from the training dataset. The camera pose of con-
secutive images changes slowly so that two neighboring images share some features. Right: The
satellite map of the whole region for taking image data, overlapped with the trajectory of the cam-
era. ( c©Google Maps, Imagery c©DigitalGlobe).

The above method has a similar form to the Grafting algorithm (Perkins et al., 2003) which utilized a func-
tional gradient descent approach to feature selection, but focused on classification problems.

4. EXPERIMENTAL EVALUATION

4.1 Data Set

In the following experiments, we use two image sets from an urban region, one in summer and one in winter.
The whole region has an area of 150 meters × 220 meters. The two runs followed similar paths through
the region, and obtained a sequence of images covering the scenes in that area. The images have a size
of 320 × 240 pixels. The consecutive images are taken with small changes of the camera’s position and
orientation so that the scenes in them share features. We also recorded the camera positions using a GPS
receiver. The camera’s orientation is fixed with respect to the heading direction so that each location is
associated with a single view of the scenes. The images include buildings, streets, and vegetation, as well
as moving objects such as pedestrians and cars. We divide the data into a training set with 464 images and
a test set with 254 images. The training data are selected by sampling adaptively the whole image sequence
such that the transitions between consecutive images are smooth. Note that this training set selection satisfies
the assumption of small variations in time that underlies our training criterion, but may handicap the test
performance. Both data sets are grey-level images and contain images from both seasons. In the training
data, the temporal ordering of the image is maintained. In Figure 3, we show some consecutive images from
the data set and the satellite map of that region.

4.2 Experiment Setup

We use SIFT (Scale Invariant Feature Transform) features (Lowe, 2004) as our image features, although it is
easy to include other types of features. Originally developed for object recognition, SIFT features provide
distinctive local image features, as well as local descriptors that are invariant to changes in scale, camera

7



orientation, contrast, and illumination. Those properties of SIFT feature make it a good candidate for lo-
calization tasks. We extract and store the normalized SIFT features from every image, with roughly 1000
produced per image. We then construct the candidate library from the training images by discarding any
unstable features, and clustering the remaining features. The final cluster centers are stored as the prototype
candidates.

Given a large dataset, in order to make the learning tractable, we exploit the redundancy of data, and
simplify the procedure by using only a sampled subset of images as target images, denoted by T . This target
set is obtained by sampling every 3rd image of each training sequence. The objective is maximized solely
based on these images, rather than every image in the training set. Thus the final objective function used in
the experiment can be written as F =

∑
t∈T

∑
j∈N(t) ptj log ptj

qtj
, where pij and qij are defined in Equations

4 and 3, respectively. The training images that are not used in the objective function are used as a validation
set, to determine when to stop the incremental learning.

In following experiment, we set σ in Equation 1 as 0.5, which is estimated based on the variance of
matched SIFT features in neighboring image frames. Using the number of matched SIFT features between
images, we also estimate the temporal scale τij from the training image sequence. Only the images with
enough matched features are treated as ‘close’. We get approximately τij = 3 for the summer data and 4
for the winter data; this slightly different temporal scale is due to different moving speed of the camera, but
the results are not sensitive to this minor variation. The target image set has 132 images selected from the
training data. The feature candidate set includes 7500 SIFT features after pre-processing and clustering; from
this set, our method chose 100 prototypes. We will denote our method as LF, for Learned Features, in the
experimental results below.

We perform two types of comparisons of our approach to other methods. We first investigate whether
dimensionality reduction is likely to aid matching of novel images. This comparison is motivated by Se et
al. (Se et al., 2005) suggesting that all SIFT features can be stored and searched efficiently using kd-trees
(Beis and Lowe, 1997). We therefore compare our method for representing images based on a set of feature
prototypes to methods that utilize the whole image:

A1. Raw-Image: This first comparison method uses the pixel intensity of grey-level images.

A2. All-Feature: The second uses all the stable SIFT features from the training dataset as the prototypes,
without feature learning. We compute the R vector with respect to that large prototype set as the
alternative image representation, which has 40K dimensions.

A second set of comparisons focuses on different forms of dimensionality reduction:

B1. PCA: The low-dimensional representation of pixel images is constructed using Principal Components
Analysis. Each image is linearly projected into the space spanned by 100 eigen-images.

B2. CL-Hist: We extract color histograms of the images as a description of its global statistics. Each color
band of every image is summarized by a histogram with 35 bins, so that each image is represented as a
105-bin color histogram.

B3. HS-Feat: We select a subset of features heuristically from the prototypes in the All-Feature method.
We found that random selection of features, or using the most frequently appearing features, both lead
to very poor results. Hence instead we choose a set of “distinctive” features that span around 6 frames
in the training sequences. Each of those features appear only around one location.

In the following, we investigate the effectiveness of our image representation, compared to these other
representations, for topological mapping and localization using different measures:

• We localize test images by finding the nearest neighbors in terms of Euclidean distance in the training
dataset. Using the GPS information associated with those images, we can evaluate the accuracy of the
localization.
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Figure 4: Left: Comparison between Raw-Image, All-Feature and our prototype-based (LF) approach.
Right: Comparison between PCA, color histograms, and our prototype-based (LF) approach. The
bar plots show the matching accuracy of the first 4 nearest neighbors.

• Based on the Euclidean metric in image representation space, we visualize the image manifold by
mapping the image data into 2D space, which is compared to the ground-truth GPS coordinates.

• Assuming we know the GPS coordinates for the training data, we build a nearest neighbor regression
model that maps the image representations into the coordinates, and evaluate its prediction perfor-
mance.

4.3 Results: Nearest neighbor retrieval

For topological mapping, we evaluate the quality of the representation by checking whether the locations of
the k nearest neighbors of a test image as defined by the learned image representation and distance metric are
consistent with its location. We calculate the true distance between matched images based on their ground-
truth GPS positions (only utilized during testing). A matching is labeled correct if the true distance of matched
image to the query image is less than a pre-defined threshold; here we set the threshold to be 20 meters, which
includes 6% of the training images on average.

We first compare the nearest neighbor retrieval performance of our our approach with the two represen-
tations that use information from the entire image, the Raw-Image and All-Feature representations. The left
plot of Figure 4 shows the matching accuracy of the first 4 nearest neighbors in those methods. We can see
that using feature learning leads to better result than using all features, due to the learned distinctive features
and less noise. Besides, our RBF-based representation needs much less memory to store and time to compute
the similarity between images, and will therefore be able to scale to larger image sequences.

We also compare the same performance with three dimensionality reduction techniques for image repre-
sentation: PCA, color histograms, and heuristically selected features. The accuracy shown in the right-hand
plot of Figure 4 demonstrates the advantage of our method, which not only reduces the dimensionality of the
image space, but keeps a better topological structure for the localization task than other methods. Our method
is robust with respect to viewpoint changes, as the accuracy of the other methods fall off quickly after the first
neighbor. Note that the training sequences have a low frame rate with respect to the camera velocity. Two
neighboring images usually span 5 meters along the route. We expect the results to improve significantly with
a higher frame rate, such as in video.

Our method also tolerates changes of illumination, and some other significant changes in the scene from
a given position, due to the prototype-based approach. Examples of this can be seen in Figure 5. Here we
see that the system can match images of similar poses even under considerable variations, such as: objects
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moving into or out of view (c.f., the cars in the 4th and 5th columns); different seasons (in 1st, 3rd, 4th and
5th columns); and small pose changes (in every column). Note that the prototypes we learned can be viewed
as visual landmarks for the localization task.
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Figure 5: The image matching results, with the top matching prototypes for each image shown for the sake of
visualization. We visualize the instantiations of prototypes by the boxes centered at their locations
in the image, where the box size indicates the feature’s scale. Only features with R values larger
than 0.5 are shown.

The relatively poor result by heuristically-selected prototypes verifies the effectiveness of our prototype
selection procedure. Figure 6 shows how the performance of our method on the test data improves when
the number of RBFs increases, which is compared to the All-Feature method but with many fewer feature
prototypes.

Despite the good matching performance of our method, we may not be able to match every frame per-
fectly. Due to strong occlusion, some frames lack distinctive features. As such, these individual images
can not be matched properly without information from context, such as several test images in a sequence.
Additionally, some errors are inherited from the instability of the input features.
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Figure 6: Test performance for the prototype-based approach with an increasing number of prototypes. The
performance metric is matching accuracy evaluated based on the nearest neighbor.

Average error Raw-Image All-Feature HS-Feat PCA CL-Hist LF
meters 32.0 26.4 27.5 28.7 16.6 13.2

Table 1: Error in camera pose predictions averaged across test images, based on six different image repre-
sentations.

4.4 Results: Mapping image representation to camera pose

When the pose information of the training set is available, an alternative way to evaluate the effectiveness of
the learned representation is building a k-nearest neighbor regression model predicting the camera pose. We
use a simple local regression model in this part, which outputs a weighted linear combination of the poses of
nearest neighbors in the training data. More specifically, given a new image Inew, we first find its neighboring
images in the training dataset {Ik, k ∈ N(Inew)} based on a specific representation, where N(Inew) is the
index set of the neighbors. Let the pose of the training image Ik be xk, then we estimate the pose xo of Inew

as

xo =

∑
k∈N(Inew) e−d2(Inew,Ik)/σ2

sxk

∑
k∈N(Inew) e−d2(Inew,Ik)/σ2

s

(11)

where d2(Inew , Ik) is the squared Euclidean distance of images in the corresponding representation space,
and σs is the space scale. We estimated σs from the training data by computing the mean of the neighboring
images’ distances, and chose |N(Inew)| = 3 nearest neighbors in this experiment. Other neighborhood
sizes yield similar but slightly worse performance. Table 1 shows the residual errors of all the methods
we examined in the previous sections. We can see that our prototype-based method achieves the best pose
prediction performance among the various image representations.

4.5 Results: Visualization of the manifold

In this part, we visualize the learned topological map by embedding the new image representation space into
a 2-dimensional space, so that we can compare it with the ground-truth position information. We applied
several embedding algorithms, such as LLE and ISOMAP; we show the results from the ISOMAP algorithm
(Tenenbaum et al., 2000), because it provides the clearer manifold structure for our data.
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We compare embedding results using the whole images and other dimensionality reduction approaches,
including A1-2 and B1-3. The same embedding approach is applied to each representation, based on the
Euclidean distance in the respective image representation space. Figure 7 shows the results of embedding.
As is often the case with embedding methods, the map tends to collapse in sections. In the situation here,
these collapses are due to images from quite different sections of pose space being mapped onto each other,
and any single such incorrect mapping leads to a catastrophic collapse in the 2-dimensional representation.
While the figure shows that all the methods suffer from this problem, our new image representation produces
a more faithful topological relationship between images.

Raw-Image All-Feature LF

PCA CL-Hist HS-Feat

Ground-truth Map

Figure 7: Embedding results obtained by applying ISOMAP to the the ground-truth map, and the represen-
tations learned by the various methods.
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The more detailed structure of our manifold is shown in Figure 8. Here we have zoomed in on three
different sections of the manifold, and connected the images according to their temporal order, in order to see
how the successive images have been mapped. The result shows that the embedding maintains the temporal
structure quite faithfully in those sections.

Figure 8: The details of the embedded manifold. Three sections of the manifold are shown separately, in
which the neighboring data points in time are connected.

5. DISCUSSION

In this paper we have considered the difficult problem of vision-based localization in an outdoor dynamic
environment. We proposed to construct a manifold using the distinctive image features, which preserves the
topological structure of the viewer’s locations based on the temporal information. To overcome the variations
from illumination change and moving objects, we use a feature learning framework in the form of prototype
selection for choosing distinctive image prototype features. Once the prototypes have been learned, images
can be represented by a lower-dimensional and robust feature vector. This lower dimensional representation
requires minimal memory storage and allows for highly efficient matching-based localization. Unlike other
globe localization methods, our approach does not require any assumption about the camera or its calibration.
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The empirical results show the effectiveness of our learning approach, and the advantage of our feature-based
representation.

The learning problem we addressed in this paper bears several similarities to embedding or manifold
learning. Indeed, the learning objective used here was first proposed for the embedding problem (Hinton and
Roweis, 2002). The fundamental difference is the focus herein on generalization. Embedding algorithms
must be re-run to handle novel inputs whereas our algorithm instead constructs an explicit mapping from
image space to feature space.

The ultimate goal of our system is to learn the manifold from sequences of image frames, and generalize
to any new sequence obtained within the same environment. However, it is hard to learn a generalizable man-
ifold from only a few training sequences, without other prior knowledge. In this paper we presented results
on only two sequences, taken under quite different conditions (different seasons, and weather conditions).
We are currently expanding our data set, including sequences in other weather and lighting conditions, to
build better, more robust manifolds. Also, since our method can scale up easily, we are exploring a larger
area, with a denser set of runs, taking multiple paths through the same environment.

We are also extending the work in other directions. First of all, we may exploit the temporal informa-
tion during the test so that the match of a novel image can be smoothed out by incorporating continuity
constraint. Additionally, the assumption that an image can be represented as a bag of features leads to a
simple representation of images. However, it ignores the spatial relationships between these features, which
conveys considerable location information. We are currently exploring methods of including this geometric
information in the learning criterion.

Furthermore, we note that some data points on the manifold can easily collapse into a tight cluster, due
to noise in the learned representation, or local minima in the embedding procedure. This problem can be
improved in two aspects: first, a larger image feature vocabulary can be used by including other types of
features so that we can find better image representation; second, we can augment the cost function with more
constraints (other side information) to avoid such embedding singularities.
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