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Abstract

Cardinality potentials are a generally use-
ful class of high order potential that affect
probabilities based on how many of D bi-
nary variables are active. Maximum a poste-
riori (MAP) inference for cardinality poten-
tial models is well-understood, with efficient
computations taking O(D logD) time. Yet
efficient marginalization and sampling have
not been addressed as thoroughly in the ma-
chine learning community. We show that
there exists a simple algorithm for comput-
ing marginal probabilities and drawing ex-
act joint samples that runs in O(D log2D)
time, and we show how to frame the algo-
rithm as efficient belief propagation in a low
order tree-structured model that includes ad-
ditional auxiliary variables. We then develop
a new, more general class of models, termed
Recursive Cardinality models, which take ad-
vantage of this efficiency. Finally, we show
how to do efficient exact inference in mod-
els composed of a tree structure and a car-
dinality potential. We explore the expressive
power of Recursive Cardinality models and
empirically demonstrate their utility.

1 Introduction

Probabilistic graphical models are widely used in ma-
chine learning due to their representational power and
the existence of efficient algorithms for inference and
learning. Typically, however, the model structure
must be restricted to ensure tractability. To enable
efficient exact inference, the most common restriction
is that the model have low tree-width.

A natural question to ask is if there are other, differ-
ent restrictions that we can place on models to ensure
tractable exact or approximate inference. Indeed, a

celebrated result is the ability of the “graph cuts” algo-
rithm to exactly find the maximum a posteriori (MAP)
assignment in any pairwise graphical model with bi-
nary variables, where the internal potential structure
is restricted to be submodular. Along similar lines,
polynomial-time algorithms can exactly compute the
partition function in an Ising model if the underlying
graph is planar (Fisher, 1961).

Extensions of these results have been a topic of much
recent interest, particularly for the case of MAP in-
ference. Gould (2011) shows how to do exact MAP
inference in models with certain higher order terms
via graph cut-like algorithms, and Ramalingham et al.
(2008) give results for multilabel submodular models.
Tarlow et al. (2010) provide efficient algorithms for a
number of other high-order potentials.

Despite these successes in finding the optimal config-
uration, there has been relatively less progress in effi-
cient high order marginalization and sampling. This
partially stems from the difficulty of some of the com-
putations associated with summation in these models.
For example, computing the partition function for bi-
nary pairwise submodular models (where graph cuts
can find the MAP) is #P-complete, so we do not ex-
pect to find an efficient exact algorithm.

One important high-order potential where such hard-
ness results do not exist is the cardinality potential,
which expresses constraints over the number of vari-
ables that take on a particular value. Such potentials
come up in natural language processing, where they
may express a constraint on the number of occurrences
of a part-of-speech, e.g., that each sentence contains at
least one verb. In computer vision, a cardinality po-
tential might encode a prior distribution over the re-
lationships between size of an object in an image and
distance from camera. In a conference paper matching
system, cardinality potentials could enforce a require-
ment that e.g. each paper have 3-4 reviews and each
reviewer receive 8-10 papers.



A simple form of model containing a cardinality poten-
tial is a model over binary variables, where the model
probability is a Gibbs distribution based on an energy
function consisting of unary potentials θd and one car-
dinality potential f(·):

−E(y) =
∑

d

θdyd + f(
∑

d

yd) (1)

p(y) =
exp {−E(y)}∑
y′ exp {−E(y′)}

, (2)

where no restrictions are placed on f(·). We call this
the standard cardinality potential model. Perhaps the
best-known algorithm in machine learning for comput-
ing marginal probabilities is due to Potetz and Lee
(2008); however, the runtime is O(D3 logD), which is
impractical for larger problems.

We observe in this paper that there are lesser-known
algorithms from the statistics and reliability engineer-
ing literature that are applicable to this task. Though
these earlier algorithms were not presented in terms
of a graphical modeling framework, we will present
them as such, introducing an interpretation as a two
step procedure: (i) create auxiliary variables so that
the high order cardinality terms can be re-expressed
as unary potentials on auxiliary variables, then (ii)
pass messages on a tree-structured model that includes
original and auxiliary variables, using a known efficient
message computation procedure to compute individual
messages. The runtime for computing marginal prob-
abilities with this procedure will be O(D log2D). This
significant efficiency improvement over the Potetz and
Lee (2008) approach makes the application of cardinal-
ity potentials practical in many cases where it other-
wise would not be. For example, exact maximum like-
lihood learning can be done efficiently in the standard
cardinality potential model using this formulation.

We then go further and introduce a new high or-
der class of potential that generalizes cardinality po-
tentials, termed Recursive Cardinality (RC) poten-
tials, and show that for balanced RC structures, ex-
act marginal computations can be done in the same
O(D log2D) time. Additionally, we show how the
algorithm can be slightly modified to draw an exact
sample with the same runtime. We follow this up by
developing several new application formulations that
use cardinality and RC potentials, and we demonstrate
their empirical utility. The algorithms are equally ap-
plicable within an approximate inference algorithm,
like loopy BP, variational message passing, or tree-
based schemes. This also allows fast approximate in-
ference in multi-label models that contain cardinality
potentials separately over each label.

Finally, we show that cardinality models can be com-
bined with a tree-structured model, and again assum-

ing a balanced tree, exact inference can be done in the
same O(D log2D) time (for non-balanced trees, the
runtime is O(D2)). This leads to a model class that
strictly generalizes standard tree structures, which is
also able to model high order cardinality structure.

2 Related Work

2.1 Applications of Cardinality Potentials

Cardinality potentials have seen many applications, in
diverse areas. For example, in worker scheduling pro-
grams in the constraint programming literature, they
have been used to express regulations such “each se-
quence of 7 days must contain at least 2 days off” and
“a worker cannot work more than 3 night shifts every
8 days” (Régin, 1996). Milch et al. (2008) develop car-
dinality terms in a relational modeling framework, us-
ing a motivating example of modeling how many peo-
ple will attend a workshop. In error correcting codes,
message passing-based decoders often use constraints
on a sum of binary variables modulus 2 (Gallager,
1963). Another application is in graph problems, such
as finding the maximum-weight b-matching, in which
the cardinality parameter b constrains the degree of
each node in the matching (Huang & Jebara, 2007),
or to encode priors over sizes of partitions in graph
partitioning problems (Mezuman & Weiss, 2012).

More recently, cardinality potentials have become pop-
ular in language and vision applications. In part-of-
speech tagging, cardinalities can encode the constraint
that each sentence contains at least one verb and noun
(Ganchev et al., 2010). In image segmentation prob-
lems from computer vision, they have been utilized
to encourage smoothness over large blocks of pixels
(Kohli et al., 2009), and Vicente et al. (2009) show that
optimizing out a histogram-based appearance model
leads to an energy function that contains cardinality
terms.

2.2 Maximization Algorithms

As noted previously, there is substantial work on per-
forming MAP inference in models containing one or
more cardinality potentials. In these works, there is
a division between methods for restricted classes of
cardinality-based potential, and those that work for
arbitrary cardinality potentials. When the form of the
cardinality potential is restricted, tractable exact max-
imization can sometimes be performed in models that
contain many such potentials, e.g., Kohli et al. (2009);
Ramalingham et al. (2008); Stobbe and Krause (2010);
Gould (2011). A related case, where maximization
can only be done approximately is the “pattern poten-
tials” of Rother et al. (2009). For arbitrary functions
of counts, the main approaches are that of Gupta et
al. (2007) and Tarlow et al. (2010). The former gives



a simple O(D logD) algorithm for performing MAP
inference, and the latter gives an algorithm with the
same complexity for computing messages necessary for
max-product belief propagation.

2.3 Summation Algorithms

Relatively less work in the machine learning commu-
nity has examined efficient inference of marginal prob-
abilities in models containing cardinality potentials.
The best-known approach is by Potetz and Lee (2008)
(here PL). Also related is the line of work including de
Salvo Braz et al. (2005) and Milch et al. (2008), but
these works assume restrictions on unary potentials,
and it is not clear that they are efficient in the case
where there are many distinct unary potentials.

PL works with potentials θ(y; w) = f(y ·w), where y
and w are real-valued vectors. This is a general case
that is more involved than cardinality potentials, re-
quiring a clever strategy for representing messages,
e.g., with adaptive histograms. However, if y is binary
and w is the all-ones vector, then f(·) is a standard
cardinality potential.

The starting point for PL is to to write down the ex-
pression for a sum-product message from f to, say, the
last variable yD:

mfD(yD)=
∑

y\{yD}

f(
∑

d

yd)
∏

d′ 6=D

md′f (yd′)

 . (3)

Next, PL defines a change of variables into a new set
of integer-valued variables, z, as follows:

z1 =y1 z2 =z1 + y2 . . . zD−1 =zD−2 + yD−1.

Eq. (3) can then be expressed in terms of z as∑
z\{zd}

[
f(yD + zD−1)

∏
d′ 6=dmd′f (zd′ − zd′−1)

]
.1 Fi-

nally, the sums can be pushed inwards as in variable
elimination, and the internal sums can be computed
from inside outwards naively in time O(D2). There
are D summations to perform, so computing one mes-
sage takes O(D3) time. As observed by Felzenszwalb
and Huttenlocher (2004) and noted by PL, the inter-
nal sums can be performed via FFTs in O(D logD)
time. Computing all D messages or marginals, then,
requires O(D3 logD) time.

3 Other Summation Algorithms

Here, we review lesser-known work from the statistics
and reliability engineering literature, where efficient
algorithms for very similar tasks have been developed.

The idea of a recursive procedure that sums configura-
tions in a chain-structure i.e. by using a definition of z

1For notational convenience, assume we have z0 = 0.

variables similar to that of PL, dates back at least to
Gail et al. (1981). In this work, the algorithmic chal-
lenge is to compute the probability that exactly k of D
elements are chosen to be on, given that elements turn
on independently and with non-uniform probabilities.
Naively, this would require summing over

(
D
k

)
config-

urations, but Gail et al. shows that it can be done in
O(Dk) time using dynamic programming.

A similar task is considered by Barlow and Heidtmann
(1984) and Belfore (1995) in the context of reliability
engineering. The task considered computing the prob-
ability that exactly k elements are chosen to be on,
or the probability that between k and l elements are
chosen to be on. Belfore gives a divide-and-conquer
algorithm that recursively calls an FFT routine, lead-
ing to an O(D log2D) algorithm. This algorithm is
very similar to the approach we take in this work, and
in the case of ordinary cardinality potentials (i.e. not
RC potentials), it is equivalent to the upward pass of
message passing that we will present in Section 5.

Finally, there is work in statistics on Poisson-Binomial
(PB) distributions, which are the marginal distribu-
tions over cardinalities that arise if we have a model
that contains only unary potentials. These distribu-
tions have been used in several applications in the
statistics literature. We refer the reader to Chen and
Liu (1997) and references therein for more details on
applications.

One algorithm for computing the cumulative distri-
bution function (CDF) of the PB distribution that
uses an FFT was proposed in Fernandez and Williams
(2010) and analyzed by Hong (2011). The idea is to
first compute the characteristic function of the distri-
bution, and then directly apply the inverse FFT in or-
der to recover the CDF. The benefit of this approach
is that the FFT only needs to be applied once, how-
ever computing the characteristic function still takes
O(D2) time.

For further discussion of other algorithms similar to
the ones discussed above, we recommend Hong (2011)
and references therein.

4 Recursive Cardinality Potentials

4.1 Model Structure

The first contribution in this paper is to generalize the
structure of the cardinality potential to the Recursive
Cardinality potential. Recursive Cardinality poten-
tials are defined in terms of a set of subsets S of a
set of D binary variables. The joint probability over
vector y is defined as

p(y) ∝
∏

sk∈S
fk(

∑
yd∈sk

yd), (4)
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Figure 1: Examples of nested and non-nested subsets.

where the only constraint is that S is nested, as illus-
trated in Fig. 1. We call a set of subsets S nested if for
every pair of subsets in S, either they are disjoint or
one is a subset of the other. Each fk can be arbitrary,
and different per k. By defining subsets over single
variables, we can represent unary potentials, so we do
not explicitly separate them out here.

This new construction extends the standard cardinal-
ity potential to handle multiple scales, ranging from
purely local (e.g., for a pair of variables) to global,
and potentially including all scales in between.

4.2 Example Cardinality Potentials

Cardinality potentials can be applied in diverse ways
in order to capture a variety of interesting properties.
Here we give some examples, and note that this list is
far from exhaustive.

4.2.1 Ordinary Cardinality Potentials

Noisy-OR: Consider a set of D binary variables y
along with a single binary variable t that depends on y:
P (t = 1|y) = 1−(1−ε)

∏D
d=1(1−λd)yd . For the special

case where each λd is equal, we can represent this as
a conditional model with a cardinality potential:

P (t = 1|y) =1− (1− ε)(1− λ)
PD

d=1 yd (5)

This is simply a function of
∑

d yd, and can therefore
be viewed as a cardinality potential.

Smoothness and Competition: Note that even
unimodal cardinality potentials have interesting prop-
erties. A convex cardinality potential is related to
smoothness: it will tend to favor configurations where
all of the variables are either on together or off to-
gether. In a similar manner, a concave function will
cause competition amongst the binary variables.

4.2.2 Recursive Cardinality Potentials

Group and structured sparsity: By placing a car-
dinality potential over subsets of variables consisting
of a uniform distribution over counts (or any general
distribution) along with a spike at 0, one can repre-
sent the preference that variables should tend to turn
off together in groups. Indeed, one can represent hi-
erarchical sparsity using a recursive model. This gives
an interesting alternative to the traditional approaches

of `0 and `1 priors, as well as their group counterparts
that are commonly used in structured sparsity (Zhao
et al., 2006).

Hierarchical CRFs: A common approach to image
segmentation in the computer vision literature is to
construct a hierarchy of increasingly coarse segmen-
tations, then to perform the segmentation jointly at
the different levels of coarseness. To enforce consis-
tency across levels of coarseness, a widely-used form
of potential is the Pn (Kohli et al., 2009) potential,
which encourages sets of variables to all take on the
same label. If the segmentations at different levels of
granularity have a nested structure, then this model
can be represented using an RC potential, and thus
exact marginal inference (and therefore learning) can
be done efficiently.

5 Fast Sum-Product Formulation

Overview. Here, we present the fast FFT algorithm
as an auxiliary variable method, where auxiliary vari-
ables are invented in such a way that the distribution
over y remains unchanged, but inference in the ex-
panded model can be done very efficiently. In other
words, we are defining an augmented model q(y, z)
that has the property that

∑
z q(y, z) = p(y), but

where computing all marginals in q (for both y and
z variables) can be done more efficiently than directly
computing marginals for each y in the original p(y) (at
least by using any existing method).

More specifically, the algorithm can be described as
follows: auxiliary variables z will be integer-valued
variables that represent the count over subsets of origi-
nal variables y. The auxiliary variables are structured
into a binary tree, as illustrated in Fig. 2, with orig-
inal y variables at leaves of the tree, so z variables
at higher levels of the tree represent sums of increas-
ingly large subsets of y. There is one auxiliary variable
at every internal binary tree node, so with a balanced
tree structure, the joint model over y and z is a tree of
depth logD. The utility of this formulation is that we
can now represent cardinality potentials over subsets
of y variables as unary potentials over z variables.

Having constructed the auxiliary variable model, the
algorithm will be simply to run an inwards and out-
wards pass of sum-product belief propagation. The
key computational point is that due to the structure of
potentials over auxiliary variables, sum-product mes-
sages can be computed efficiently even when z vari-
ables have large cardinality, by using FFTs.

5.1 Detailed Description

The algorithm takes as input a binary tree T with
D leaf nodes, where each leaf corresponds to one yd
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Figure 2: Each internal node z represents the count
over the subset of original y variables that are descen-
dants of the internal node. Cardinality potentials on
the subset then can trivially be added as unary poten-
tials on internal nodes. Here, in addition to a standard
cardinality potential f7, we add subset cardinality po-
tentials f2, f3, f5, and f6.

variable. To instantiate latent variables z, traverse up
the tree from leaves to root, associating a z variable
with each internal node. When instantiating a new
variable zp, set a deterministic relationship between
it and its two children, zl and zr, as zp = zl + zr. In
graphical model terms, for each parent in the tree, add
a deterministic potential gp(zp, zl, zr) = 1{zp=zl+zr} to
the model. With these definitions, we can define the
distribution q as,

q(y, z) ∝ p(y)
∏
p∈P

1{zp=zl(p)+zr(p)}, (6)

where P is the set of parent nodes in T , and l(p) and
r(p) are indices of the left and right children of zp.

Define the set of leaf node descendants of zp as sp =
{yd | zp is an ancestor of yd}. For any setting of z to
have nonzero probability, it clearly must be the case
that zp =

∑
yd∈sp

yd. Thus, a high order potential
over subset sp can equivalently be represented as a
unary potential on zp. Expanding the definition of
p from within Eq. (6), the computational benefit be-
comes clear, as we can rewrite all high order potentials
as unary potentials:

q(y, z)∝
∏

k|sk∈S

fk(
∑

yd∈sk

yd)
∏
d

θd(yd)
∏
p∈P

1{zp=zl(p)+zr(p)}

=
∏

k|sk∈S

fk(zk)
∏
d

θd(yd)
∏
p∈P

1{zp=zl(p)+zr(p)} (7)

The following proposition justifies correctness and
makes the relationship between p and q precise:
Proposition 1. For all y, p(y) =

∑
z q(y, z).

Proof. There is exactly one joint setting of z with
nonzero probability for each joint setting of y. To

see this, observe that given a setting of y, the one and
only setting of z that satisfies all the deterministic re-
lationships is for each zp to set zp =

∑
yd∈sp

yd. The
proposition then follows directly.

5.2 Aligning Nested Subsets with T
We have shown how adding auxiliary variables z en-
ables us to convert high order cardinality potentials
fk(
∑

yd∈sk
yd) into a unary potential on an individual

zk variable. However, this transformation only works
if there is an internal z variable for each subset sk that
we wish to put a cardinality potential over. This re-
striction is what leads to the nested property that we
require of sets of subsets S. For any nested set of sub-
sets S, however, it is possible to construct a binary tree
T such that an internal node in the tree is created for
every subset sk. A question for future work is whether
a weaker condition than nestedness can be enforced
while still guaranteeing efficient exact inference.

Finally, all that remains is to show how sum-product
messages can be computed efficiently.

5.2.1 Upward Messages

Let g(zp, zl, zr) be a factor that enforces the determin-
istic relationship zp = zl + zr between parent zp and
children zl and zr. The upward message vectors that
we need to compute take the following form:

mg,zp
(zp) =

cl∑
zl=0

cr∑
zr=0

g(zp, zl, zr)mzl,g(zl)mzr,g(zr)

=
cl∑

zl=zp−zr

mzl,g(zl)mzr,g(zp − zl).

Expressed in this way, it becomes clear that the entire
message vector (the above quantity, for all values of
zp ∈ {0, . . . , cp}) can be computed as a 1D discrete
convolution. Since 1D discrete convolutions of vectors
of length N can be computed in O(N logN) time us-
ing FFTs, these message vectors can be computed in
O(cp log cp) time.

5.2.2 Downward Messages

Let g(zp, zl, zr) be a factor that enforces the deter-
ministic relationship zp = zl + zr between parent zp

and children zl and zr. The downward message vec-
tors that we need to compute take the following form
(assume w.l.o.g. that the message is to zl):

mg,zl
(zl) =

cr∑
zr=0

mzp,g(zl + zr)mzr,g(zr).

This also can be computed as a 1D discrete convolu-
tion, after reversing the message vector mzr,g.



5.2.3 Asymptotics

Assuming balanced binary trees, the algorithm runs
in O(D log2D) time. This can be seen by us-
ing the Master theorem to solve the recurrence
T (n) = 2T (n/2) + n log n. If binary trees are not bal-
anced, the worst case runtime can be O(D2). The
algorithm uses O(D logD) space.

5.3 Minor Extensions

We argue that a main benefit of the auxiliary variable
formulation is that it allows for several variants and
elaborations. We discuss some of them in this section,
to illustrate the range of other similar models models
where learning and inference can be done tractably.

Drawing a Joint Sample. Given the auxiliary
variable formulation, drawing a joint sample from a
RC model is straightforward: pass messages inward to
the root as before; compute the belief at the root,
which is a distribution over global counts, and draw
the value for the root variable from that distribu-
tion; now proceed outwards from the root towards the
leaves. The one non-triviality is that values for the two
children given a parent must be drawn simultaneously.
To do this, first construct the belief at the trinary fac-
tor f(zp, zl, zr) conditioned on the value of zp, which
has been sampled already. Given zp, there is a diago-
nal along the belief matrix corresponding to the values
of zl and zr such that zl + zr = zp. To draw the joint
sample for zl and zr, normalize this diagonal to sum
to 1, then draw a value from that distribution. This
gives the values for zl and zr. Recurse downwards.

Other minor extensions appear in the Appendix.

5.4 Major Extension

Up until now, we have presented RC models as if
the modeler who desires efficient exact inference must
choose between standard pairwise trees or RC models.
In fact, this is not necessary. It is possible to do exact
inference in the following model in O(D log2D) time:

p(y) ∝
∏

(d,d′)∈E

θdd′(yd, yd′)
∏

sk∈S(E)

fk(
∑

yd∈sk

yd), (8)

where E is an acyclic set of edges over variables y,
and S(E) is a set of nested subsets with subset struc-
ture that is “compatible” with E . In other words, the
modeler can choose the structure of either E or S(E)
arbitrarily, and there is some non-degenerate choice of
the other that allows for efficient inference, but not all
combinations of trees and subset structures are com-
patible. Note that this structure cannot be represented
by a standard Recursive Cardinality potential, because
having e.g., edges (d, d′) and (d′, d′′) would violate the
nested subset structure requirement. The approach is

similar to the base algorithm, but it involves construct-
ing a junction tree that has separator sets involving
one y variable and one z variable. We give details in
the Appendix.

6 Experiments

In this section, we empirically explore the properties
of the RC model, and demonstrate its usage in sev-
eral interesting scenarios. Code will be made available
implementing the convolution tree algorithm for com-
puting marginals over y and z, and for joint sampling.

6.1 Chain vs Tree as D grows

The version of the RC algorithm that we presented in
Section 5 is the most efficient that we have discovered.
There are, however, other approaches that are more
efficient than O(D3 logD), but which are less efficient
than the algorithm with the best asymptotic runtime.
In this section, we compare the runtime of our algo-
rithm (the “FFT Tree”) against two baselines, both
of which are improvements over the PL algorithm re-
viewed in Section 2.3.

The first baseline introduces auxiliary variables in a
chain rather than tree structure. If we then follow
the approach as in Section 5, this would lead to a
O(D2 logD) algorithm. It turns out that in this case,
messages can be computed via a summation of two
arrays, so using FFTs is unnecessary. This yields a
O(D2) algorithm equivalent to that of Barlow and Hei-
dtmann (1984), which we term the “Chain” algorithm.
A drawback of this algorithm is that it also requires
O(D2) space. However, we note that if cardinalities
greater than k are disallowed by the cardinality poten-
tial, then this algorithm can be made to run in O(Dk)
time, and it is perhaps the best choice.

The second baseline is the fast algorithm where FFTs
are not used to compute messages, and instead we use
an efficient but brute-force computation of the 1D con-
volutions required inside the message computations.
We refer to this as the “Tree” algorithm. Solving the
recurrence T (n) = 2T (n/2)+n2 using the Master the-
orem, we see that the runtime is again O(D2). The
space usage is O(D logD).

We run these algorithms on problems of size up to 219

variables with a single random cardinality potential.
The runtimes are reported in Fig. 3. The Chain al-
gorithm fails after D = 16000 due to memory limits.
The Tree algorithm is faster than the chain algorithm
for larger D, but its quadratic time usage causes it to
become quite slow once D nears 100k. The FFT Tree
algorithm behaves nearly linearly in practice, running
on problems with half a million variables in less than
100 seconds. We note that in practice, for large values



Figure 3: Runtimes of the different algorithms versus
problem size. For very small D, the Chain algorithm is
slightly faster, but it runs out of memory after around
D = 15000, due to its quadratic memory usage. The
FFT Tree algorithm runtime grows near linearly up
through all experiments.

of D, care must be taken to avoid numerical issues for
certain settings of model parameters.

6.2 Generalized Bipartite Matching

We have variables y = {yij}(i,j)∈DI×DJ
, where DI is

the number of rows, and DJ is the number of columns.
Here, we consider the Gibbs distribution defined by the
following energy function:

E(y) =
∑
ij

θijyij +
∑

i

fc(
∑

j

yij) +
∑

j

fr(
∑

i

yij),

where fr and fc are functions of row and column
counts. Note that if a constraint is placed on each row,
saying that exactly one binary variable in each col-
umn can be on, then this formulation can also be used
to represent cardinality potentials for multilabel prob-
lems. One motivation for this model comes from the
problem of paper-to-reviewer matching, where yij rep-
resents the event that paper i is matched to reviewer j.
The row and column functions can then be used to en-
force the constraints that each paper should be given
to e.g., 3 to 4 reviewers, and each reviewer should be
assigned e.g., 6 to 8 papers. Note that the energy func-
tion can clearly represent the bipartite matching prob-
lem (by constraining row and column counts to be ex-
actly 1), so computing marginals is #P-complete. Our
approach will be to perform approximate inference us-
ing loopy belief propagation (LBP), where messages
are computed using the FFT tree algorithm.

We compare against several baselines on small and
medium-sized problems where we constrain columns
to have 1 or 2 variables labeled 1, and rows are con-
strained to have 2 or 3 variables labeled 1. The first,
“Node Marginals” is a naive approximation that sim-
ply ignores the constraints and computes marginals
under the factorized distribution consisting of just the

(a) 3x6 Grid (b) 20x40 Grid

Figure 4: Mean absolute error between inferred
marginals and ground truth marginals.

node potentials. The second is to find the exact MAP
solution to the problem using a linear program (LP)
and assume that the marginals are 0 or 1. The final
baseline, which we take as the ground truth for the
intractable medium-sized problem, is to use a block
Gibbs sampler where blocks are chosen as the four vari-
ables yi1,j1 , yi1,j2 , yi2,j1 , yi2,j2 for some choice of rows
i1 and i2 and columns j1 and j2. To find a valid initial
configuration, we initialize the sampler with the LP
solution. We attempted multiple runs using random
parameter settings. The results in Fig. 4 show that
LBP achieves a low bias in a relatively short amount
of time. For small problems, the constraints do not
always greatly influence the marginals, as exhibited
by the low bias of the naive approach in some runs;
however, they clearly influence the larger problems.
Finally, the LP method tends to be slower than LBP,
becomes relatively slower on larger problems, and ex-
hibits significant bias. We have run our algorithm on
larger problems, and it converges quickly even on e.g.,
100x100 problems, but we are unable to measure accu-
racy, because accurate baselines are prohibitively slow.

It is worth mentioning that this is a hard problem, and
designing sampling schemes for many cases is nontriv-
ial. Indeed, the Gibbs sampler we used will not be
ergodic for disjoint cardinality constraints (e.g. only
3 or 10). By contrast, our method is relatively fast,
accurate, and applies to a wide variety of constraints.

6.3 Multiple Instance Learning

In multiple instance learning (MIL), we are given
“bags” of instances, which are labeled as either “pos-
itive” (at least one instance in the bag is positive) or
“negative” (all instances in the bag are negative). This
can be framed as a problem of learning with weak la-
bels, where the weak labels take the form of a cardinal-
ity potential over individual instance labels. Indeed,
MIL models where bag labels are modeled as noisy-
OR can be seen as exactly this formulation, using the



form of noisy-OR from Eq. (5). However, given the fast
algorithms for Recursive Cardinality potentials devel-
oped in this work, it becomes tractable to assert other
forms of the distribution over within-bag counts. In
this section, we experiment with this alternative.

More formally, for variables y appearing in a bag la-
beled as t = 0 (negative) or t = 1 (positive), we can
rewrite the likelihood of a label as

∑
y p(t,y), where

p(t,y) ∝ f (t)(
∑

d

yd)
∏
d

exp{θd · yd}, (9)

where f (t) is some cardinality function that imposes a
preference on the number of binary variables turned on
for bags labeled as t, and θd is a unary potential. All of
the required quantities for learning can be computed
in two calls to our algorithm (corresponding to t = 0
and t = 1).

The standard data set for evaluating MIL learners is
the Musk dataset from Dietterich et al. (1997). In the
data, bags molecules are labeled as to whether they are
“musks.” A molecule is considered to be a musk if any
low energy conformations of the molecule is a musk.
The bags in this data set correspond to molecules, and
the instances are features of many different low en-
ergy conformations. We compared two methods on
the musk1 version of the dataset: a standard Noisy-
OR model, and a “Normal” model, where f (0)(c) =
exp{−( c

D )/2σ2} and f (1)(c) = exp{−(µ− c
D )/2σ2}.

As is common in the MIL literature, we divide the
data into 10 evenly-sized folds and run 10-fold cross-
validation. We use 20% of bags for validation, and
10% for testing in each split. To set an L1 regulariza-
tion parameter, and to choose the σ and ε parameters
in the Normal and Noisy-OR models, respectively, we
do a grid search and choose the setting that produced
the best average validation error across folds. Fig. 5
(a) reports results showing how error varies as a func-
tion of the µ and λ parameters for Normal and Noisy-
OR, respectively. We note that the musk1 dataset has
only 92 instances, and the standard deviation of errors
across validation folds was high, so these results are
not statistically significant. However, we do see a trend
where varying the f functions can affect performance,
and that a Normal cardinality potential out-performs
the standard Noisy-OR. For this problem, it appears
that setting the µ parameter to be large is beneficial
for learning, but in general this should be a parame-
ter that is set via prior knowledge or cross validation.
Also note that Gehler and Chapelle (2007) enforced a
similar bias on bag counts within an SVM formulation,
and their results also suggested that encouraging the
model to turn on more binary variables within posi-
tive bags improved performance on the musk1 data.
In Fig. 5 (b), we show how parameter values in the

(a) Error (b) # on in Positive Bags

Figure 5: Multiple instance learning results.

cardinality potential affects the expected number of
instances labeled as “on” within positive bags. The
trend in this plot shows that varying f does indeed
affect how many instances within a positive bag that
the model chooses to label as positive examples.

6.4 Generative Image Models

In this set of experiments, we attempt to distinguish
between the representational abilities of pairwise tree-
structured graphical models, and the RC model. We
consider a synthetic dataset that has been sampled
from an Ising model near the critical temperature re-
sulting in images with highly correlated regions. The
pairwise edges form a grid structure, and the result-
ing data consists of 1000 16 × 16 images. In order to
compare the pairwise tree and the RC models we first
learn their parameters on each dataset using nonlin-
ear conjugate gradients to minimize the negative log-
likelihood. After learning each model, we generate the
same number of samples as the original dataset and
use these to compare statistics. After learning, the
log-likelihoods for the pairwise tree model was 145.22,
while the log-likelihoods for the RC model was 146.78.
We hypothesize that this difference is because the pair-
wise tree model is able to do a better job at directly
capturing pairwise statistics, however the RC model is
better at capturing long-range, higher-order statistics.
We demonstrate this in our experiments below.

Heuristic choice of transformation structure.
For each dataset, in order to determine the structure
of the nested cardinality potential, we run hierarchical
agglomerative clustering on images, where the simi-
larity between pixels is determined by how often they
take the same label. This gives us a full tree struc-
ture over the pixels, which we then directly use to give
the nested subset structure. We leave a study of other
ways for choosing trees to future work.

Pairwise statistics. We analyze the pairwise statis-
tics of the learned distributions in comparison to the
original datasets. Fig. 6 shows the pairwise correla-



(a) Actual data (b) Pairwise tree (c) RC

Figure 6: Zoomed pairwise correlation matrices from
the Ising dataset.

tions between each pixel, with lighter shading corre-
sponding to stronger correlation. The Ising model en-
forces strong correlation between neighbouring pixels,
and this is reflected in the banded nature of the corre-
lation matrix. Visually, we can see that the RC model
does a better job of capturing long range correlations
corresponding to the more faded bands away from the
main diagonal.

Higher-order statistics. As a final comparison, we
analyze the ability of both models to capture higher-
order statistics in the data. Specifically, we test the
ability of the RC model to capture higher-order count
statistics over subsets that it does not directly encode.
To do this, we first build a nested tree over the vari-
ables using hierarchical clustering. Using this tree, we
look at the count distributions of subsets and compare
the empirical and model distributions. In Fig. 7, we
show the root mean squared error between the empiri-
cal and model distributions as a function of the number
of variables in a subset for the Ising dataset. We com-
pare both models on nested trees constructed from two
heuristics: the first is the same scheme we use to pa-
rameterize the RC model, which we call adaptive clus-
tering. For the second, we attempt to create a “worst
case” clustering by taking the distance values used for
the adaptive method and negating them before clus-
tering; we call this scheme anti-clustering. We also
tried random clusterings, however the results were not
qualitatively different from the anti-clustering scheme.
Our results show that the RC model does a better
job than the pairwise tree model at capturing higher-
order count statistics, even if it does not encode them
directly. Particularly interesting is that for the adap-
tive tree, the pairwise model does significantly worse
than the RC model. This is due to the confluence of
two effects: first, the hierarchical clustering that de-
termines the RC structure seeks to choose subsets of
variables that are highly correlated to merge into a
subset; second, the spanning tree is unable to model
this “all-or-none” effect, and instead tends towards a
binomial-like distribution with mode near the 50% full
point. This leads to large errors.
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(a) Adaptive clustering
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(b) Anti-clustering

Figure 7: Error in higher-order count statistics be-
tween the empirical and model distributions as a func-
tion of the number of variables in a subset.

7 Discussion

We have presented a new class of high order model
where exact inference can be done very efficiently. This
model can be used on its own, and it is already able to
capture a mix of high and low order statistics that
would be difficult for other tractable models. The
model can also be used as a subcomponent within
outer approximate inference procedures, allowing ef-
ficient approximate marginal inference for hard prob-
lems that few other approaches are able to tackle.

The general approach—of adding a set of auxiliary
variables with highly structured interactions so as to
guarantee efficient message passing inference—leads to
efficient exact inference in other extended models such
as tree structured models augmented with a cardinal-
ity potential, and we believe the approach to extend
even beyond that.

Finally, we have presented a diverse set of applications
and shown how many problems that are not naturally
thought of in terms of cardinality potentials can be
cast as such. We believe that the highly efficient algo-
rithms discussed here will only increase the number of
applications where cardinality potentials are useful.
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Appendix for Fast Exact Inference for
Recursive Cardinality Models

More Minor Extensions

Minus Signs. In some cases, we may wish to express
a function over binary variables in terms of the Hamming
distance between an assignment and a given reference as-
signment. This sort of interaction arises e.g., in pattern
potentials (Rother et al., 2009). This can be expressed
with a cardinality potential by relabeling variables, so that
a value of 1 corresponds to “different” and a label of 0 cor-
responds to “same”. To accomplish this in an RC model by
flipping the meaning of all binary variables under a given
internal node. In fact, this can be done for any subset of
internal nodes, and the effect is like defining relationships
between parents and children as zp = ±zl ± zr.

Count Agreements. Suppose we have disjoint sets of

variables y ∈ {0, 1}D and y′ ∈ {0, 1}D
′
, and RC potentials

F (y) and F ′(y′) defined over the two subsets. We can

add a global potential G(y,y′) that enforces
PD

i=1 yi =PD′

i=1 y
′
i. Let zr be the root auxiliary variable correspond-

ing to F , and z′r′ be the root auxiliary variable correspond-
ing to F ′. Assume for notational simplicity that D = D′.
Then we add a pairwise factor between zr and z′r′ , and the
message that gets sent from z′r′ to zr (and vice versa) is
simply the belief that would be computed at z′r′ when do-
ing inference solely for F (y). Intuitively, after the inwards
pass on both trees, the posterior over count values for one
tree is multiplied by the count potential for the other tree,
then the outward pass continues as before on both trees.

Relative Counts. A similar idea can be used to en-
force constraints on the relative counts of binary variables
turned on in disjoint subsets. Suppose we have disjoint sets
of variables y1, . . . ,yK and corresponding RC potentials
F 1(y1), . . . , FK(yK). We then wish to define a total or-

dering
PD(1)

i=1 y
(1)
i ≤

PD(2)

i=1 y
(2)
i ≤ . . . ≤

PD(K)

i=1 y
(K)
i . This

creates a chain structure over root z variables. Pairwise
messages can be computed in linear time, by computing a
cumulative sum over count posteriors at the root z vari-
ables. So after an inward pass done independently on each
tree, we make a forward and backward pass over root z
variables, then follow with independent outward passes on
each tree.

Representational Power

For the past several years, the dominating design strategy
for undirected graphical models has been to think in terms
of pairwise potentials. An important question regarding
Recursive Cardinality-based models, then, is whether they
add representational power beyond what is achievable with
pairwise models. Specifically, we would like to under-
stand what types of probability distributions can be distin-
guished via different parameters in these models and which
ones cannot. Here we show that these two classes of model
are indeed disjoint. That is, while there is a set of distri-
butions that both models can represent exactly, there are
also distributions that the RC models can represent but
pairwise models cannot, and vice versa.

We begin by considering distributions over three binary
variables, y1, y2, and y3. Even with only three variables, it

Figure 8: Illustration of different possible choices for
f (0) (top) and f (1) (bottom). Computation of p(t) in
Eq. (9) for OR and Noisy-OR models is tractable with
existing algorithms; for all other count distributions,
including the “Normal” class illustrated here, p(t) can
be computed using our new algorithm.

is possible to construct distributions which Recursive Car-
dinality potentials can capture, but that pairwise graphical
models cannot — and vice versa. For example, among the
eight possible configurations, it might be desirable to spec-
ify a distribution with a strong but uniform preference for
exactly one of the binary variables to be on. That is, as-
signing probability (1 − ε)/3 to each of (1, 0, 0), (0, 1, 0),
and (0, 0, 1), with probability ε/5 for all other outcomes.
A pairwise graphical model cannot capture this kind of
exclusive-or type relation without additional hidden vari-
ables, but the cardinality potential can achieve it easily by
assigning low energy to configuration in which the sum is
one. (This also generalizes to “exactly two”’ and similar
distributions.) Graphical models without explicit cardinal-
ities would require terms of the same order as the set under
consideration; in this case, it would be necessary to have
higher-order potentials.

Naturally, there are also distributions which cannot be ex-
actly captured by the Recursive Cardinality model but can
be easily expressed by the pairwise graphical model. With
the three-variable model, we can achieve this by specifying
unique pairwise potentials for each of the three pairs. Our
highest level of granularity in this case is to place two vari-
ables in a single inner set and then nest this within an outer
set that also includes the third variable. The cardinality
potential for the inner set can match the local pairwise po-
tential perfectly, but if only one of the inner variables is on,
the outer potential cannot identify which one it is. That
is, with a nesting of the form ((y1, y2), y3), the cardinality
potential can differentiate between ((0, 0), ?) and ((1, 1), ?)
but not between ((0, 1), ?) and ((1, 0), ?). Nevertheless,
these potentials can be approximated by upper or lower
bounds on the energy.

Visualizing Alternative Cardinality
Potentials for Multiple Instance
Learning

In order to build some intuition for the kinds of cardinal-
ity potentials that can be used in our generalized multiple
instance learning framework, we plot several examples in
Fig. 8.
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Figure 9: (a) Original tree + cardinality model. (b)
Adding z counting variables. (c) Regions for cluster
graph. (d) Cluster tree.

Major Extension

Here we sketch the procedure for computing exact
marginals under a model that includes a tree structure over
binary variables y in addition to a cardinality potential.

Basic Formulation and Definitions. We assume that
we are given a tree structured set of edges T , and define
the associated pairwise distribution over binary variables
y as follows:

p(y) ∝
Y

ij∈T

θij(yi, yj). (10)

We choose an arbitrary root node r, and direct edges out-
ward away from the root. Denote the parent of node d
as pa(d), and the set of children of d as ch(d). See Fig. 9
(a) for an example tree + cardinality model. Here, we will
choose y11 to be the root.

Adding Counting Variables. The first step of the
algorithm is to add counting auxiliary variables z. Define
Λd to be the set of all original y variables that occur in
the subtree of T rooted at d, excluding d. For example, in
Fig. 9 (b), Λ8 corresponding to the subtree rooted at y8 is
{y3, y4}. For each non-leaf variable yd, add two auxiliary
counting variables, z and z′, where z =

P
i∈Λd

yi, and

z′ = z + yd. In the example in Fig. 9 (b), for internal
variable y8, the new z is labeled z2, and the new z′ is
labeled z5. As in the basic algorithm, and as illustrated
Fig. 9 (b), auxiliary variables z are defined in terms of
each other when possible, so that the structure over z is
also a tree.
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Figure 10: (a) Cluster tree region of interest. (b) Same
sub-model, but expressed as a factor graph. (c) After
conditioning on the parent y variable, the factor graph
simplifies significantly. (d) Adding intermediate vari-
ables so that tree becomes binary.

Next, as illustrated in Fig. 9 (c) and (d), create a junction
tree over the model that includes y and z variables. This
can be done such that each separator involves a single y and
a single z variable. Note that there can be large regions,
particularly when the degree of some node in the original
tree T is large, so inference in this junction tree is still
not obviously efficient. However, we will now show that
necessary messages can be computed efficiently.

Efficient Message Computation.

All that remains is to show how to efficiently compute mes-
sages in the junction tree created in the previous section.
The only new idea is that by conditioning on one y vari-
able within each message computation, a context-specific
independence is revealed, making inference reduce to the
basic algorithm presented in the main body.

We focus on the seemingly difficult region created by the
procedure in the previous section. Fig. 10 (a) shows the re-
gion and marks the upward message that we wish to com-
pute with a red arrow. Now, observe that the message
m(z7, y10) that we wish to compute is equal to the joint
marginal distribution over z7 and y10 in the factor graph
shown in Fig. 10 (b). Fig. 10 (c) illustrates the result of
conditioning on the parent y variable, y10. Doing so sim-
plifies the pairwise potential between parent and children
variables into unary potentials over the children. Now, for
the two possible values of the parent variable, there are now
two types of messages that need to be computed: first, the
messages to the z′ variables from the subtree beneath them
(for example, from z = z2 and y = y8 to z′ = z5 in Fig. 10
(c)):

m{y,z,z′}→z′(z′) =
X
y,z

g(y, z, z′)m(z, y)f(y) (11)

=
X

y

m(z′ − y, y)f(y), (12)

which requires summing two values per value of z′, so all



messages can be computed in linear time; second, we need
to compute the messages from the set of z′ variables cor-
responding to a set of children up to the z variable cor-
responding to their parent. This, however, can be done
with the basic algorithm from the main body of the paper
after introducing intermediate variables to create a binary
tree, as illustrated by the introduction of zint in Fig. 10
(d). Downwards messages can be computed using the same
ideas as for the upwards messages, so we omit further de-
tails.

The runtime of this algorithm is asymptotically the same
as inference in an RC model that has the same structure
over z variables but that does not have edges between y
variables.

Also, the same basic approach could be taken if instead of
starting with a tree-structured model, we started with a
junction tree.

Experiments on Caltech Silhouettes

In order to get a sense of the properties of the pairwise
tree and RC model, we conducted further experiments on
a more realistic dataset. We chose Caltech Silhouettes
(Marlin et al., 2010), which consists of 4100 28 × 28 bi-
nary images that have been derived from the Caltech-101
image dataset.2.

The correlation matrix for Caltech Silhouettes is signifi-
cantly more complex, making it difficult to distinguish be-
tween the models as they all look fairly similar. One qual-
itative way to compare the distributions over binary im-
ages is to look at samples from both models and compare
these to samples from the empirical distribution. We plot
samples from the models learned on the Caltech dataset in
Fig. 11d. This dataset contains strong horizontal and verti-
cal pairwise correlations, between pixels. The pairwise tree
model can only include a restricted set of edges, so we chose
the spanning tree to capture the strongest interactions. As
a result, the samples tend to show strong horizontal and
vertical lines. The samples from the RC model suggest
that it is indeed capturing a different set of statistics.

Finally, we repeated the experiments on higher-order
statistics, and found that the results, shown in Fig. 12,
led the same conclusions as the Ising dataset: namely that
the RC model is better at capturing higher-order count
statistics.

2http://www.vision.caltech.edu/Image Datasets/
Caltech101/
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(a) Adaptive clustering
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(b) Anti-clustering

Figure 12: Error in higher-order count statistics be-
tween the empirical and model distributions as a func-
tion of the number of variables in a subset on the Cal-
tech Silhouettes dataset.
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Figure 11: Pairwise correlation matrices for Caltech Silhouettes (a), along with the pairwise tree (b) and RC (c)
models, and some examples from Caltech Silhouettes, and random samples from the RC and pairwise tree models
(d). Note that these models are not learned in a class-specific manner. The whole data set, including all classes
was used as training.


