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Abstract

A strong machine learning system should aim
to produce the full range of valid interpreta-
tions rather than a single mode in tasks involv-
ing inherent ambiguity. This is particularly
true for image segmentation, in which there
are many sensible ways to partition an image
into regions. We formulate a tree-structured
probabilistic model, the stochastic segmenta-
tion tree, that represents a distribution over
segmentations of a given image. We train this
model by optimizing a novel objective that
quantifies the degree of match between statis-
tics of the model and ground truth segmen-
tations. Our method allows learning of both
the parameters in the tree and the structure
itself. We demonstrate on two datasets, in-
cluding the challenging Berkeley Segmenta-
tion Dataset, that our model is able to success-
fully capture the range of ground truths and to
produce novel plausible segmentations beyond
those found in the data.

1 INTRODUCTION

Humans have a remarkable ability to resolve ambiguity
in real-world situations. For example, a skilled inter-
preter knows that many valid translations of a sentence to
a target language exist, and which is the most appropri-
ate depends on context. Yet even in the absence of dis-
ambiguating information, humans are able to internally
represent a wide range of plausible interpretations when
presented with a stimulus. As the central aim of AI is
to build machines that can reason about the world in a
human-like way, strong AI systems should also be able
to maintain a distribution over plausible outputs when
confronted with an ambiguous task. Many current ma-
chine learning approaches are unable to do this despite

(a) Image (b) Ground Truth 1 (c) Ground Truth 2

(d) Sample 1 (e) Sample 2

Figure 1: Multiple ground truths from the Berkeley Seg-
mentation Dataset and samples from our model. Stochas-
tic segmentation trees produce segmentations that gener-
alize through novel combinations of the level of detail in
different areas of the image.

the prevalence of ambiguity in domains such as natu-
ral language parsing, machine translation, image caption
generation, and visual scene understanding.

Tasks involving ambiguity can often naturally be cast
as structured output learning problems, in which out-
puts have internal dependencies. Examples of struc-
tured outputs are natural language sentences or paths in
a graph. It is often infeasible to independently model
each element of the exponentially large structured out-
put spaces typically considered in such problems. Fortu-
nately, graphical models provide a powerful and flexible
framework for building rich distributions over structured



output spaces. This is a boon for tasks involving am-
biguity as they tend to naturally have multiple ground
truths, each reflecting a different yet correct interpreta-
tion of the input. For example, the Berkeley Segmenta-
tion Dataset (BSD) (Martin et al., 2001; Arbelaez et al.,
2011) contains segmentations of natural images collected
from multiple human annotators. Due to variability in in-
terpretation or attention, some annotators provided more
detailed segmentations or emphasized different contour
types than others (Hou et al., 2013). See Figure 1 for an
example of such variation.

In this work we introduce the stochastic segmentation
tree (SST) model, which treats multiple ground truths
as samples from a target distribution and learns to pre-
dict a distribution specific to the given image. Motivated
by the observation that biological visual systems parse
scenes according to a hierarchy (Sharon et al., 2006), the
model first builds a tree-structured latent region hierar-
chy of the image. It then predicts a distribution over
binary variables corresponding to nodes in the tree that
indicate which regions in the tree should be grouped in
the same segment.

We make a number of contributions in this paper:

• We introduce an aim that to our knowledge is novel,
of producing for a single test input multiple valid
structured outputs that directly capture variations in
ground truths (GTs).

• We formulate a probabilistic model, a stochastic
segmentation tree, that represents a distribution over
segmentations of a given image.

• We develop a method of forming a tree specific
to a given image, and assigning probabilities to
its nodes, from a base set of pixels or superpixels
(groupings of pixels).

• We define a novel objective that quantifies the
degree of match between the model and ground
truth segmentations, and formulate an optimization
method that allows learning of both the parameters
in a tree and the tree structure itself.

2 RELATED WORK

The first line of research related to our SSTs concerns
learning systems that produce multiple structured out-
puts. Many of these approaches can be viewed as struc-
tured output generalizations of common multi-label pre-
diction, in which an input can be associated with any
number of outputs. One way this can be done is to re-
define the output space to be over sets rather than sin-
gle outputs (Lampert, 2011). Another strategy is to train
an ensemble of models to produce multiple hypotheses

at test time, either independently (Guzman-Rivera et al.,
2012) or in a cascade (Dey et al., 2015). Multiple outputs
can also be produced by applying a specialized inference
procedure, such as Diverse M-Best MAP (Batra et al.,
2012; Yadollahpour et al., 2013; Kirillov et al., 2015) or
Diverse Beam Search (Vijayakumar et al., 2016). These
approaches have some overlap with our SSTs but differ
in aims and formulation. None of these methods pro-
duce alternative valid interpretations given an input but
instead predict a set of outputs such that one of them
is good. Others have attempted to model diverse (and
thereby multiple) outputs more directly via Structured
DPPs (Kulesza et al., 2012; Gillenwater et al., 2012).

Our model is closely related to approaches that build a
graphical model whose structure is conditioned on input
data. For example, Wong & Mooney (2006) learn a set of
context-free grammar rules which are used to produce a
parse tree for a given natural language sentence. They
also learn model parameters that define a distribution
over meaning representations for the predicted parse tree.
Their graphical model parameters are globally learned
whereas ours are predicted by the model given the input.
The machine translation model of Tromble et al. (2008)
forms a distribution over sentences via paths through a
translation lattice given a source sentence.

Our model also relates to structured output models, but
differ in the training and evaluation criteria. Structured
output models are conventionally trained with maximum
likelihood given the ground truths for each input. Mod-
els are typically evaluated, however, via a task-specific
loss comparing a single model output against the ground
truths. Examples of task losses include mean average
precision for rankings and BLEU (Papineni et al., 2002)
for text generation. This disconnect between training
and test has spurred many attempts to minimize task loss
at training time (Hazan et al., 2010; Song et al., 2015;
Shen et al., 2015; Ranzato et al., 2015). These train-
ing procedures often improve task loss performance at
test but require additional loss-augmented inference or
dynamic programming steps during training. In con-
trast, our method constructs a target distribution from
the ground truths and learns to minimize the distance
between the model and target distributions. When the
model is amenable to such distance computation, this is
a more efficient way to learn than task loss minimiza-
tion since no inference is required. Moreover, the eval-
uation of model outputs against multiple ground truths
via a task loss depends on specific characteristics of
the (often few in number) ground truths. BLEU, for
example, compares a model generated sentence against
n-grams found in ground truth sentences. Yet replac-
ing words in the ground truth sentences with direct syn-
onyms would likely be equally plausible outputs. Using



domain knowledge to construct a target distribution in-
variant to such low-level variations is a more direct way
to train and evaluate models, and is the approach we take
in this work.

We now review approaches specific to image segmen-
tation. The goal of image segmentation is to partition
an image into meaningful regions. Several task losses
are used to measure segmentation performance; one of
the most popular is the Probabilistic Rand Index (Un-
nikrishnan & Hebert, 2005), a generalization of Rand In-
dex (Rand, 1971) to the single-output multiple ground-
truth setting. A common approach to image segmenta-
tion is to form a hierarchical region grouping, in which
regions of finer-scale segmentations are subregions of
those at coarser scales, and then cut the tree to obtain
an output segmentation. The gPb-OWT-UCM (Arbe-
laez et al., 2011) algorithm (called UCM, hereafter) uti-
lizes the oriented watershed transform on gPb (Maire
et al., 2008) boundaries, followed by greedy merging of
regions. It forms a weighted boundary map such that
thresholding it at any level produces a valid segmenta-
tion, and the threshold value controls the scale. Jain et al.
(2011) propose a method that learns to agglomerate su-
perpixels into hierarchies, by learning a similarity func-
tion based on ground-truth clustered data. The agglom-
erative region clustering method (Ren & Shakhnarovich,
2013) uses a learned boundary probability model to
merge regions until the estimated probability of merg-
ing is below a threshold. Arbelaez et al. (2014) propose
a multiscale combinatorial grouping that uses a fast nor-
malized cuts algorithm to produce a hierarchical segmen-
tation that leverages information across different scales.

In general, these methods provide alternative approaches
to construct the visual hierarchy from the image; our pri-
mary aim is to utilize this tree structure to generate alter-
native segmentations. The two approaches that most re-
semble our model are first the work by Ion et al. (2011),
which composes multiple figure-ground hypotheses ob-
tained by applying constraints at different locations and
scales, into multiple larger interpretations of the en-
tire image. More recently, Hu et al. (2015) propose a
probabilistic generative model for segmentations, which
can efficiently generate segmentations of varying gran-
ularity; unlike our SSTs this work does not propose a
novel tree construction process, and more importantly, is
trained via maximum likelihood as opposed to matching
the set of human annotations.

3 SST MODEL

Our SST model produces multiple segmentation hy-
potheses from a single image in three steps: (1) a tree
structure is constructed; (2) probabilities are associated

with nodes in the tree; (3) sample segmentations are
generated from the tree based on the node probabilities.
Here we detail these steps, initially assuming that the tree
structure is given. We first describe how nodes in a tree
relate to regions of an image, and how a binary label-
ing of nodes in such a tree corresponds to a segmentation
of the image. We then present the probabilistic model
over segmentations based on these binary labelings, and
a metric comparing the model samples to ground-truth
segmentations of an image that can be used to evaluate
a multiple segmentation system. This metric is then the
objective utilized in learning the network that predicts
the node probabilities from an image at test time. Finally
at the end of this section we describe our own procedure
for generating trees, which is also based on this metric.

3.1 PROBABILISTIC TREE MODEL

A segmentation can be represented as a vector of num-
bers, where each pixel is assigned a particular region in-
dex r ∈ R. In such a representation, pixels assigned the
same index r are considered to be grouped together. An
alternative representation of the same information is as a
symmetric binary matrix S, where Sij = 1 if pixel i and
j are assigned to the same region, and Sij = 0 otherwise.
We adopt this representation here.

We also utilize a third representation of a segmentation,
with respect to a segmentation tree. A segmentation
tree has M leaves, one for each of M non-overlapping
and complete image superpixels. A superpixel m ∈
{1, ...,M} represents a grouping of contiguous pixels in
the image; we denote the set of pixels assigned to super-
pixel m as C(m). As a slight abuse of notation, we use
m to denote both a superpixel and its corresponding leaf
in the tree. Each internal node k represents a grouping of
pixels that is the union of pixels assigned to its children:
C(k) = C(`(k))∪C(r(k)), where `(k) and r(k) are the
left and right child of k, respectively. This assignment of
nodes to left and right children of parent nodes define the
tree structure.

Given a particular tree structure, a segmentation is a set
of binary values t, where each leafm has tm = 1, and the
binary value tk associated with each internal tree node k
represents whether or not the set of pixels in its left child
and the pixels of the right child belong to the same image
region:

tk = 1⇒ Sij = 1, ∀i ∈ C(`(k)), j ∈ C(r(k)) (1)

These binary values are constrained to ensure that the
values in the pairwise pixel matrix S correspond to a
valid segmentation. This is achieved by forcing tk = 0
if either t`(k) = 0 or tr(k) = 0. This constraint results in
tree labelings in which any path that starts at a leaf and
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Figure 2: Left: image and color-coded superpixels. Middle: two sample segmentations, with corresponding binary
values (t) of the segmentation tree. Right: each node k in the tree has an associated marginal probability πk, which
governs a specific region of the pairwise segmentation matrix.

ends at the root has an initial value of 1, and if the value
switches to 0 along the path then it stays at 0 through the
root.

The last node along this path with a value of 1 defines a
sub-tree of superpixels that all belong to the same image
region, which corresponds to a block in the segmentation
matrix. The relationship between the tree labeling t and
the matrix S is illustrated in Figure 2.

In order to represent the variety of segmentations of a
given image, with different levels of detail in different
regions, we formulate a probabilistic model based on a
leaf-to-root sampling scheme. The probabilities are as-
signed to nodes in the tree, which directly correspond
to probabilities in the segmentation matrix. These equa-
tions define the SST probabilistic model:

P (tk = 1|t−k) =

{
pk if t`(k) = tr(k) = 1

0 otherwise
(2)

where t−k is the vector of binary values associated with
the nodes below k in the tree. Given this definition, and
a sampling scheme that samples binary values tk start-
ing at the leaves and moving up the tree, then it can be
shown that the marginal probability πk that node k takes
on value 1 is a product of the local probability of that
node and the marginals of its children:

πk ≡ P (tk = 1) =
∏

d∈subTree(k)

pd = pkπ`(k)πr(k)

(3)
where subTree(k) are all the nodes in the sub-tree
rooted at node k.

The probabilistic model plays an important role in our
system, specifying a distribution over segmentations of
an image, which can be sampled to generate hypoth-
esized segmentations. An example probability vector

P (t) for a given tree, and some corresponding samples
are illustrated in Figure 2.

3.2 EVALUATING AN SST

The aim of the stochastic segmentation tree is to pro-
duce segmentations such that their statistics match the
statistics of the reference segmentations for a given im-
age. One metric that is well-suited to this goal is the
Hellinger distance, which is a metric for comparing two
distributions.

In our setting we utilize the marginal pairwise probabil-
ities as the underlying probabilities to be compared via
the Hellinger distance. For the model, the marginal prob-
ability that pixel i is in the same segment as pixel j is
captured by πk, where i ∈ C(`(k)) and j ∈ C(r(k)),
or vice versa. Given a set of ground-truth segmentations
{S1, ...,SU}, the target marginals qij can be computed
easily: qij = 1

U

∑
u S

u
ij . The squared-Hellinger distance

D(π, q) is defined to be:

1− 1(
N
2

)(D0+
∑

k,i∈C(`(k))
j∈C(r(k))

[√
πkqij+

√
(1− πk)(1− qij)

])
(4)

whereN is the number of pixels. HereD0 is the summed
Hellinger distance of each of the super-pixels, which
sums over the SST leaves of any errors in the super-
pixellation; these errors are constant and cannot be re-
paired by the SST.

We propose that matching pairwise statistics is an appro-
priate goal for the multiple-segmentation scenario. In-
tuitively, the metric considers all pairs of pixels in the
image, and compares how often that pair are grouped to-
gether by humans versus the model. An alternative is
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Figure 3: Illustration of the properties of the Hellinger
distance as it relates to segmentations. In this scenario,
there are four superpixels and two ground truth segmen-
tations. When viewed in the pairwise matrix form, both
the ground truth and model distributions are identical de-
spite the fact that the model outputs segmentations not
found in the ground truths. We hypothesize that these
are sensible generalizations.

to attempt to match higher order statistics between the
model and ground-truth segmentations, e.g., triplets of
pixels, but given that typically only a small reference set
of segmentations are available, these higher-order statis-
tics are not as reliable. A visualization of the properties
of the Hellinger distance is shown in Figure 3.

3.3 NETWORK TO ESTIMATE NODE
MARGINALS

If the reference segmentations are available, the node
probabilities and their corresponding marginals for a
given tree structure can be optimized (e.g., via gradient
descent) to minimize the Hellinger objective (Equation
4). At test time, however, with no reference segmenta-
tion these node marginals must be estimated from the im-
age. We formulate a neural network that estimates node
marginals, and optimize it to minimize the Hellinger ob-
jective on the training set. Then given a tree for a test
image, we can estimate marginals, and sample segmen-
tations.

Our network to estimate the marginals πk for any node
k is a three layer feed-forward neural net. The inputs to
the network consist of visual features extracted from re-
gions corresponding to `(k) and r(k), as well as a small
number of geometric features of the regions, including
centroid location and size. The first layer of the net-
work applies the same weights to these features of the
left and right regions. The second layer takes as input
the concatenation of the hidden left and right represen-
tations with their element-wise squared difference. The
third and final layer connects to the network output, a sin-
gle sigmoid unit, which is the estimated marginal prob-

ability for the `(k), r(k) merge. The same network is
used to predict merge marginal probabilities throughout
the entire tree.

Learning is performed via SGD with backpropagation,
to minimize the Hellinger distance with respect to the
parameters of our model. This is made simpler by the
fact thatD(π, q) decomposes over nodes of the tree. The
learned network predicts marginal probabilities indepen-
dently for each node and therefore it is possible that the
network’s predictions are not consistent with our tree as-
sumptions from Section 3.1. For example, if the marginal
probability predicted at a certain node is greater than that
predicted at either of its children, there will be no set-
ting of the conditional node probabilities p consistent
with the network outputs that also satisfies Equation 3.
Thus as a final step, we perform a separate constrained
optimization using L-BFGS (Liu & Nocedal, 1989) to
find the setting of p that has minimal Hellinger distance
to the marginals outputted by the network while still
obeying our tree assumptions. We then recompute the
marginal probabilities corresponding to this setting of p
using Equation 3 and treat these reconciled marginals as
the final outputs of the model.

Sample segmentations can be generated from the model
using a simple bottom-up procedure. The non-terminal
nodes in the tree are traversed in bottom-up order. For
each node k, draw xk ∼ Uniform(0, 1). If xk < pk and
t`(k) = tr(k) = 1, then tk ← 1. Otherwise, tk ← 0.
This setting of t defines a segmentation that is a sample
from the model (see Figure 2 for a example t and the
corresponding segmentation).

3.4 TREE CONSTRUCTION

The discussion above assumed the tree structure was
given, as could be provided by some existing segmenta-
tion tree algorithm such as UCM (Arbelaez et al., 2011)
or ISCRA (Ren & Shakhnarovich, 2013). Here we ex-
tend our formulation to also construct a tree for a given
image. Our tree construction algorithm, called SST-
SWAPTREE, begins with an arbitrary tree structure and
seeks to iteratively improve it by making moves within
the space of tree structures. We consider swaps, in which
the subtree rooted at a node in the tree is exchanged with
the subtree rooted at another node. Refer to Figure 4
for an illustration of a sample swap. Alternate strategies
for constructing trees, such as agglomerative clustering,
are possible but we opt to iteratively improve tree struc-
tures rather than building them from scratch for two main
reasons. First, maintaining valid tree structures makes it
easier to track performance throughout the tree building
process. Second, it is simpler to estimate the effect of a
move on the entire tree structure because the global con-
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Figure 4: An example swap. Left: The tree structure
before swapping B and C. Right: The structure after the
swap. Note that when non-leaf nodes are swapped, their
descendants also accompany them in the swap.

text is known, as opposed to agglomerative clustering in
which part of the tree structure does not yet exist.

At each iteration of SST-SWAPTREE, the first step in-
volves enumerating allowable swaps. A swap between
nodes is allowable if neither is a descendant of the other,
as otherwise the resulting structure is ill-defined. It also
must preserve the property that children of any non-
terminal node in the tree are neighboring. Both of these
properties can be checked efficiently (see the supplemen-
tary material for details).

The next step involves scoring a swap. The key idea
in this step is that any tree can be evaluated based on
the minimum achievable Hellinger distance between the
tree and the ground-truth segmentations. Hence a swap
can be scored based on how it much it lowers this min-
imum distance. At training time we have access to the
ground truth segmentations, and so the minimum achiev-
able Hellinger distance for a given structure can be easily
computed via numerical minimization of D(π, q) with
respect to π. At test time however this is not possible,
so instead we utilize our learned network that estimates
node marginals to approximate the change in achievable
Hellinger distance effected by a swap, which determines
its score. Every iteration of the algorithm greedily se-
lects the highest scoring swap and produces a new tree
structure. This procedure is repeated for a fixed num-
ber of iterations chosen based on validation performance.
Space does not permit a detailed description here of our
SST-SWAPTREE algorithm for enumerating and scoring
swaps, and so further details can be found in the supple-
mentary material.

4 EXPERIMENTS

In order to assess the effectiveness of SSTs in producing
multiple plausible segmentations, we learned models on
two segmentation datasets: the Berkeley Segmentation
Dataset 500 (BSDS500) (Arbelaez et al., 2011) and the
Penn-Fudan pedestrian parsing dataset (Bo & Fowlkes,
2011; Wang et al., 2007). In this section, we first de-
scribe the datasets we used. We then provide details of

our model training procedure and show experimental re-
sults.

4.1 DATASETS

The BSDS500 dataset is a natural fit for our task because
it contains multiple human-annotated ground truth seg-
mentations for each image. The Penn-Fudan pedestrian
dataset is a semantic image dataset that we adapt for our
purposes by generating four synthetic GT segmentations
per example, each of which represents a different proto-
typical parse of the image. We generate these GTs based
on merging different body parts in different segmenta-
tions. Details of the merging algorithm, along with vi-
sualizations of several ground truths and corresponding
images are shown in the supplementary material.

The BSDS500 dataset contains predefined training, val-
idation, and test splits of 200, 100, and 200 examples,
respectively. The Penn-Fudan dataset contains only 169
examples, so we randomly created five splits with 20% of
the examples as test and the remainder divided into train-
ing and validation in an 80%-20% ratio. The reported
evaluation results for this dataset are averaged over test
predictions across the five splits.

4.2 SST TRAINING DETAILS

We took the regions output by the UCM algorithm, prior
to thresholding, as the leaves of our trees. For BSDS500
this yielded a large number of leaves per image, so we
thresholded the weighted contour map for each exam-
ple independently such that 100 regions remained. All
methods, including baselines, used the same base-level
regions.

Our network for estimating marginal probabilities used
two sets of features as input. The first are visual features
computed by average-pooling activations from the fourth
convolutional layer of the VGG-19 network (Simonyan
& Zisserman, 2014). The second set were geometric fea-
tures regarding the regions. Both sets of features have the
benefit that the features of a parent region can efficiently
be computed given features of the child regions.

The marginal probability estimation network was trained
with SGD using the Adam optimizer (Kingma & Ba,
2014). Early stopping was done on the Hellinger dis-
tance of the model merge probability assigned trees on
the validation set. Dropout was used on the first two lay-
ers of the network for regularization. Further training
and architectural details are contained in the supplemen-
tary material.



4.3 RESULTS

We evaluate the learned SST models along with several
baselines, which we describe here. We distinguish be-
tween methods that produce a single output and those
that generate multiple outputs.

Of the single output baselines, the simplest is SUPER-
PIXELS, the segmentation consisting of the starting base-
level regions themselves. BOYKOV-JOLLY is a baseline
inspired by Boykov & Jolly (2001) in which strengths be-
tween regions are computed as a monotonically increas-
ing function of the squared difference in mean intensity
between them. This induces a tree structure, which can
be thresholded at any strength in order to form a segmen-
tation. UCM SINGLE is the standard single segmenta-
tion produced by UCM, based on thresholding the hier-
archy at the threshold yielding the best performance on
the validation set.

For multiple-output baselines, we consider an extension
of UCM SINGLE, in which a Gaussian distribution over
thresholds is constructed. Multiple segmentations can be
generated by first sampling a threshold from this Gaus-
sian, and then generating a segmentation by merging
regions until this threshold is reached. The mean of
this Gaussian is set to the corresponding UCM SINGLE
threshold and the variance is tuned on the validation set.
We call this extension UCM MULTIPLE.

We compare these baselines to two methods utilizing
SSTs. SST-UTREE is our model trained using the
UCM tree structures as described in Section 4.2. SST-
SWAPTREE is a modified version of the procedure de-
scribed in Section 3.4 to iteratively improve the trees
generated by UCM. The only modification we made was
to use the true node marginals when choosing swaps
to make. As such these tree structures are oracle trees
in that they can only be computed if the optimal π∗k is
known at test time. This tests whether our tree construc-
tion procedure produces better trees, provided the π̂ es-
timator is sufficiently accurate. The final Hellinger dis-
tance computed on the tree structures does however use
the network marginal outputs to assign probabilities to
each node in the procedure described in Section 3.3.

We also evaluate the methods on a multiple output vari-
ant of the Rand Index that we call matching Rand In-
dex (MRI). For each method a set of candidate segmen-
tations is first generated by sampling from the model.
Then an optimal matching is found between these and the
ground-truth segmentations; this can easily be computed
via a max-weighted bipartite matching algorithm. Each
ground truth matches the segmentation from the candi-
date set with the greatest Rand Index with respect to it-
self, subject to the constraint that no two ground truths

Table 1: Test Hellinger distances (lower is better). The
first methods all output a single segmentation, while the
others output several.

Method BSDS 500 Penn-Fudan
SUPERPIXELS 0.1451 0.3485
BOYKOV-JOLLY 0.1447 0.3172
UCM SINGLE 0.1315 0.2974
UCM MULTIPLE 0.1315 0.2971
SST-UTREE 0.0864 0.2070
SST-SWAPTREE 0.0689 0.1901

Table 2: Test matching Rand Index (higher is better).

Method Samples BSDS 500 Penn-Fudan
SUPERPIXELS 1 0.8107 0.6366
BOYKOV-JOLLY 1 0.8111 0.6612
UCM SINGLE 1 0.8247 0.6813
UCM MULTIPLE 50 0.8687 0.7037
SST-UTREE 50 0.8786 0.7160
SST-SWAPTREE 50 0.9116 0.7726
UCM MULTIPLE 100 0.8718 0.7072
SST-UTREE 100 0.8813 0.7180
SST-SWAPTREE 100 0.9148 0.7792

match the same model output. The MRI is then the mean
Rand Index of the matched segmentations. The MRI re-
sults are shown in Table 2. For methods that output a
single segmentation we report its average Rand Index to
the ground-truths; MRI simplifies to probabilistic Rand
Index (PRI) (Unnikrishnan & Hebert, 2005) in this set-
ting. For the multiple output methods we include results
with both 50 and 100 samples drawn from the respec-
tive models. SST significantly outperforms the baselines
here even though it was trained to optimize Hellinger
distance, demonstrating that Hellinger is a sensible ob-
jective for training models in a multiple output setting.
Also, the SST-SWAPTREE MRI shows the gains ob-
tained by improving the tree structure.

Segmentations sampled from the SST-UTREE model are
visualized in Figure 5 for BSDS500. We observe that
the samples vary across regions of the image, capturing
the idea of generating segmentations at different levels of
granularity.

4.4 APPLICATION OF SST: SEMANTIC
SEGMENTATION

The stochastic segmentation tree provides an informa-
tive representation of the image structure. The tree, with
each node assigned its own well-calibrated probability of
the associated merge, describes a rich distribution over



Figure 5: Samples from the SST-UTREE model on BSDS500. From top to bottom: image, samples 1-4 from the
model. All images are from the test set.

segmentations. In addition, there are a number of po-
tential applications of SSTs. Any algorithm A that uses
superpixels as inputs could benefit from this rich repre-
sentation. IfA wants k superpixels, the SST can produce
multiple instances with approximately the same number,
but with varying granularity in different regions of the
image. Other existing tree-based methods do not have
the same ability. For example, UCM generates alterna-
tive segmentations, but these obey a fixed ordering, so
they cannot produce higher granularity in one region and
lower in another in one segmentation, and vice versa in
a second segmentation. Running A on each of these su-
perpixel inputs provides a natural measure of uncertainty
in the algorithm’s output.

Here we explore one such algorithm, semantic segmenta-
tion, that utilizes superpixels as inputs. In semantic seg-
mentation, the goal is to assign each pixel in an image
one of a fixed set of labels. We consider a scenario
in which an SST is used to generate multiple segmenta-
tions, which are used as superpixel input to a semantic
segmentation algorithm. In order to decouple the effects
of the specific segmentation algorithm from the perfor-
mance of the SST as a superpixel generator, we consider
an oracle setting in which each region is assigned a sin-
gle label that gives the highest segmentation accuracy
as measured by Hamming distance or intersection-over-
union (IOU) between the semantic segmentation and the

ground truth.

Our experiments use the Penn-Fudan dataset, as they al-
ready contain semantic segmentation labels. We varied
the sigmoid output bias of our SST-UTREE model in
order to encourage it to generate superpixelations with
various numbers of regions per image. We chose the bi-
ases to produce roughly 30, 50, 80, and 100 superpix-
els per image, and computed both the oracle segmenta-
tion accuracy and number of segments of 1,000 samples
from our model on each test example. The results are
shown in Figure 6 for Hamming distance and in Figure 7
for mean intersection-over-union (IOU). IOU was com-
puted for each of the 12 non-background classes in the
Penn-Fudan dataset and then averaged across classes to
produce mean IOU. For comparison, we also display the
oracle segmentation accuracy of the UCM SINGLE algo-
rithm over a range of thresholds and the BOYKOV-JOLLY
baseline. The oracle accuracy of SST-UTREE is higher
for each of these scenarios than either UCM SINGLE or
BOYKOV-JOLLY. In order to illustrate how the sampled
segmentations vary, Figure 8 shows sampled oracle seg-
mentations from the SST-UTREE model that produces
roughly 50 superpixels per image.



Figure 6: Oracle segmentation accuracy (Hamming) for
SST-UTREE, UCM-SINGLE, and BOYKOV-JOLLY on
the Penn-Fudan dataset.

Figure 7: Oracle segmentation accuracy (mean IOU) for
SST-UTREE, UCM-SINGLE, and BOYKOV-JOLLY on
the Penn-Fudan dataset.

5 CONCLUSION & FUTURE WORK

We have presented a model for producing multiple seg-
mentations. The model extends current hierarchical
segmentation approaches by formulating a probabilistic
model using its structure. The probabilistic objective,
based on the Hellinger distance, provides a fairly simple
metric for evaluating and training this model. We formu-
late a learning approach to estimate merge probabilities
for the internal nodes of a given tree. We then utilize this
same estimator in order to optimize the tree structure,
based on a sequence of sub-tree swaps, which effectively
improves our loss function. We tested the model against
two strong baselines, the standard Boykov-Jolly as well
as a top current segmentation approach. The model pro-
vides a significant win on two datasets, including the
challenging BSDS500. We also showed its utility in se-
mantic segmentation, as a method of forming superpixels
at different levels of granularity.

We are currently investigating a number of directions,
including further improvements in the tree construction

GT UCM SST-UTree GT UCM SST-UTree

Figure 8: Oracle segmentation visualizations. From
left to right: image, ground truth segmentation, UCM-
SINGLE oracle segmentation, and oracle segmentations
from three samples from SST-UTREE. Superpixels were
generated from the∼50 superpixels per image setting for
both UCM-SINGLE and SST-UTREE. Superpixels are
outlined in red.

procedure. If the complexity of using multiple tree struc-
tures can be managed, this should provide a performance
boost as well. Multiple trees would allow the model to
handle diversity in the segmentations that go beyond that
captured in a single tree, such as alternative groupings
of ambiguous regions. In addition, allowing the merge
probability estimator to take into account more informa-
tion about regions, such as the level of the tree, and fea-
tures at multiple levels, may also be beneficial.

The proper treatment of ambiguity is important to the fu-
ture progress in AI. We believe that predicting the struc-
ture and parameters of a graphical model given an input,
as we have done here for image segmentation, is appli-
cable to other domains as well. Such models facilitate
the minimization of distance to a target distribution con-
structed from multiple ground truths, which when appro-
priately built according to the task is a sensible objective.
We hypothesize that this approach can be used to im-
prove both training and evaluation of models in a wide
range of important domains, particularly in tasks involv-
ing ambiguity in computer vision and natural language
processing.
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A DETAILS OF SST-SWAPTREE ALGORITHM

Our tree construction algorithm begins with an arbitrary tree structure and seeks to iteratively improve it by making
moves within the space of tree structures. We consider swaps, in which the subtree rooted at a node in the tree is
exchanged with the subtree rooted at another node. Refer to Figure 4 for an illustration of a sample swap.

We now present the details of how we efficiently compute and score allowable swaps in order to decide which move
to make. This procedure continues for a fixed number of iterations chosen based on validation performance.

A.1 COMPUTATION OF ALLOWABLE SWAPS

We consider only swaps that satisfy two criteria. The first is that a swap must not be between a node and an ancestor
of that node. We do not consider such swaps because the subtree rooted at each of two nodes overlap and therefore
the position of any shared descendants after the swap is ill-defined. For example, a swap between node B and node I
in Figure 4 would not be allowable.

The second criterion is that the swap must preserve the property that the children of any nonterminal node in the tree
are neighboring. We call this property the neighboring-region property. Informally, the neighboring-region property
ensures that for two children of a parent node k to be siblings, at least one of the superpixels corresponding to the
left sibling must be adjacent to one of the superpixels corresponding to the right. If this condition is satisfied, we
say that Neigh(C(`(k)), C(r(k))). More precisely, the neighboring-region property is satisfied by a tree if for every
non-terminal node k in the tree, N(C(`(k))) ∩ C(r(k)) 6= ∅, where N(S) =

(⋃
s∈S Adj(s)

)
\ S denotes the set

of superpixels directly adjacent to the superpixels contained in set S but not including the elements of S itself, and
Adj(s) denotes the set of superpixels directly adjacent to superpixel s. Note that the neighboring-region property is
symmetric in that it could equally well be expressed as N(C(r(k))) ∩ C(`(k)) 6= ∅ for each non-terminal node k.

Finding swaps that satisfy the first criterion is simple. We begin by iterating over each node i in the tree. For each
node i, we can search for potential swap partners j by traversing the path from i to the root. For each node k along this
path (excluding i itself), we search the the subtree rooted at the child of k not belonging to that path for potential swap
partners j. For example, if B were being considered for a swap in Figure 4, the path to the root (excluding B) would
be E→ I→ K. We would therefore search the subtrees rooted at A, F, and J for nodes that could be swapped with B.

Satisfying the second criterion relies on two observations that hold for all swaps between nodes i and j: (a) any node
not on the path from i to j will continue to satisfy the neighboring-region property after the swap, and (b) the lowest
common ancestor k = LCA(i, j) will maintain the neighboring-region property after the swap. Observation (a) is
due to the fact that the regions corresponding to these nodes do not change as a result of the swap. For example, in
Figure 4, the path from node B to C is B → E → I → K → J → H → C. A swap between B and C will not affect
the subtrees rooted at A, F, G, or D, and therefore we do not need to check the neighboring-region property for these
nodes. In addition, if there were any nodes above K in the example tree, they would not need to be checked either since
the region corresponding to K in the tree does not change as a result of the swap. Furthermore, the subtrees rooted at
i and j themselves do not change as a result of the swap and thus do not need to be checked.

To show observation (b) holds, assume without loss of generality that i is a descendant of `(k) and j is a descendant of
r(k) (the right child of k). We know that prior to the swap, Neigh(C(`(k)), C(r(k))) is true. Thus Neigh((C(`(k)) \
C(i)) ∪ C(i), (C(r(k)) \ C(j)) ∪ C(j)) is also true. For k to satisfy the neighboring-region property after the swap,
it must be the case that Neigh((C(`(k)) \ C(i)) ∪ C(j), (C(r(k)) \ C(j)) ∪ C(i)). If `(k) 6= i, then we know
that Neigh(C(`(k)) \ C(i), C(i)), otherwise the subtree rooted at `(k) would not have satisfied the neighboring-
region property prior to the swap. Similarly, if r(k) 6= j, then we know that Neigh(C(r(k)) \ C(j), C(j)). If both
`(k) = i and r(k) = j, then the neighboring-region property is satisfied trivially after the swap, because otherwise
Neigh(C(`(k)), C(r(k))) would not be true prior to the swap.

Therefore we must only check the nodes along the path from i to j that are not either theLCA(i, j) or i or j themselves.
Let m be such a node along the path from i to LCA(i, j). Without loss of generality, assume that i is a descendant
of `(m). Define the set of critical superpixels in i relative to a node h to be Crit(i, h) = C(i) ∩N(C(h)). For m to
have satisfied the neighboring-region property prior to the swap, it must be the case that Crit(`(m), r(m)) 6= ∅. If
Crit(`(m), r(m)) = Crit(i, r(m)), i.e. all critical superpixels of `(m) relative to r(m) are also contained in C(i), then
we say i is critical relative to r(m).



If i is critical relative to r(m), we know m will not satisfy the neighboring-region property after a swap involving i
unless the region of the replacement node j is neighboring to the region of r(m). We can thus add a critical constraint
on j due to m that C(j) ∩ N(r(m)) 6= ∅. Any such constraints can be accumulated as we traverse the path from i
to LCA(i, j), and we must check that the candidate node j satisfies all constraints. Similarly we must check that i
satisfies all critical constraints collected along the path from j to LCA(i, j). If all such constraints are satisfied then
the swap between i and j is allowable.

A.2 SWAP SCORING

In this section we outline the algorithm used to assign scores to potential swaps. We first examine the minimum
achievable Hellinger distance for a given tree structure. Then we show how to compute the change in minimum
achievable Hellinger distance resulting from a swap. Finally, we derive an approximation to the change in Hellinger
distance that can be computed given only information known at test time.

A.2.1 Minimum Achievable Hellinger Distance

When iteratively making swaps, we seek to decrease Hellinger distance achievable by the tree. In other words, we
wish to decrease

min
p
D(π, q) = 1− 1(

N
2

) ∑
k

∑
i∈C(`(k))
j∈C(r(k))

[
√
πkqij +

√
(1− πk)(1− qij)

]

− 1(
N
2

) ∑
m

∑
i,j∈C(m)
i<j

√
qij , (5)

where the summation involving k is over nonterminal nodes in the tree, the summation involving m is over leafs of the
tree, p is a vector of probabilities (one for each nonterminal node), and πk = pkπ`(k)πr(k) is the marginal probability
of node k.

When scoring swaps it is more convenient to consider minimization directly over π because the summations decom-
pose over nodes:

1− 1(
N
2

) ∑
m

∑
i,j∈C(m)
i<j

√
qij −

∑
k

max
πk

√πk
 1(

N
2

) ∑
i∈C(`(k))
j∈C(r(k))

√
qij

+
√

1− πk

 1(
N
2

) ∑
i∈C(`(k))
j∈C(r(k))

√
1− qij



(6)

= 1− 1(
N
2

) ∑
m

∑
i,j∈C(m)
i<j

√
qij −

∑
k

max
πk

[
Q(`(k), r(k))

√
πk + Q̃(`(k), r(k))

√
1− πk

]
, (7)

where we define

Q(s1, s2) ≡ 1(
N
2

) ∑
i∈C(s1)
j∈C(s2)

√
qij , and Q̃(s1, s2) ≡ 1(

N
2

) ∑
i∈C(s1)
j∈C(s2)

√
1− qij . (8)

The value π∗k that minimizes Equation 7 is



π∗k =
Q(`(k), r(k))2

Q(`(k), r(k))2 + Q̃(`(k), r(k))2
, (9)

and the term of the summation involving k resulting from substituting in π∗k becomes

max
πk

[
Q(`(k), r(k))

√
πk + Q̃(`(k), r(k))

√
1− πk

]
=

√
Q(`(k), r(k))2 + Q̃(`(k), r(k))2 (10)

= ‖z(`(k), r(k))‖2, (11)

where z(s1, s2) ∈ R2 and is defined to be

z(s1, s2) ≡ [Q(s1, s2), Q̃(s1, s2)]. (12)

A.2.2 Effect of a Swap on Minimum Achievable Hellinger Distance

Most terms in the expression forD(π, q) from Equation 5 will not change as a result of a swap of s1 and s2. The terms
that do change are those corresponding to nodes along the path from s1 to s2, not including s1 and s2 themselves. Let
k be a node along the path from s1 to LCA(s1, s2), not including the endpoints. Define u(k) to be the child of k that
is not an ancestor of s1, and g(k) to be the child of k that is an ancestor of s1. Then the decrease in D(π, q) due to k
from making the swap is:

∆k(s1, s2) = ‖z(g(k) \ s1, u(k)) + z(s2, u(k))‖ − ‖z(g(k) \ s1, u(k)) + z(s1, u(k))‖ (13)

The change in D(π, q) due to a node along the path from s2 to LCA(s1, s2) is similar to Equation 13 but with the
roles of s1 and s2 reversed.

At the LCA(s1, s2) the change is

∆LCA(s1, s2) =‖z(g(LCA) \ s1, h(LCA) \ s2) + z(s1, s2) + z(g(LCA) \ s1, s1) + z(s2, h(LCA) \ s2)‖−
‖z(g(LCA) \ s1, h(LCA) \ s2) + z(s1, s2) + z(g(LCA) \ s1, s2) + z(s1, h(LCA) \ s2)‖,

(14)

where LCA is used as shorthand for LCA(s1, s2). The total change in D(π, q) is then

∑
k∈path(s1,LCA(s1,s2))

∆k(s1, s2) +
∑

k∈path(s2,LCA(s1,s2))

∆k(s2, s1) + ∆LCA(s1, s2). (15)

A.2.3 Approximating the Effect of a Swap

The quantity in Equation 15 depends on the values of qij for the relevant pixel pairs, which will be unknown at test
time. We note that from Equations 9 and 12 that

z(s1, s2) = ‖z(s1, s2)‖2[
√
π∗k,
√

1− π∗k]. (16)



We choose to bound this based on the product of the size of the regions:

‖z(s1, s2)‖2 ≤
|C(s1)||C(s2)|(

N
2

) , (17)

with equality iff either qij = 1 for all i ∈ C(s1), j ∈ C(s2) or qij = 0 for all i ∈ C(s1), j ∈ C(s2). If we have
an estimate π̂(s1, s2) of any two regions s1 and s2, we can combine Equations 16 and 17 to obtain an estimate for
z(s1, s2):

ẑ(s1, s2) ≈ |C(s1)||C(s2)|(
N
2

) [
√
π̂(s1, s2),

√
1− π̂(s1, s2)]. (18)

At test time, we can therefore use model predictions of π to estimate the change in Hellinger distance by plugging the
approximate ẑ values from Equation 18 into the change in Hellinger distance from Equation 15.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 ADDITIONAL DATASET DETAILS

We generated four synthetic ground truth segmentations per example in the Penn-Fudan pedestrian dataset, each of
which represents a different prototypical parse of the image. The original semantic segmentation labels contained
thirteen classes: background, hair, face, upper and lower clothes, and left and right arms, hands, legs, and shoes. The
first synthetic ground truth treats each of these semantic classes as a separate region. The second merges hair with face,
hand with corresponding arm, and shoe with corresponding leg. The third further merges all lower body classes, upper
body classes, and head classes together. The fourth and final ground truth segmentation distinguishes only between
background and non-background semantic classes. When forming the ground truths, regions were split as necessary to
ensure that each is spatially contiguous. Visualizations of several ground truths and corresponding images are shown
in Figure 9.

B.2 ADDITIONAL SST TRAINING DETAILS

Our network for estimating marginal probabilities used two sets of features as input. The first are visual features
extracted from VGG-19 (Simonyan & Zisserman, 2014). Each image was run through the net, and the activations just
prior to the second max-pooling operation were recorded (fourth convolutional layer). These activations were then
upsampled back to the original image size using nearest neighbor interpolation, thereby producing 128 features for
each pixel. These features were average-pooled within the base-level regions to give 128 visual features for each. The
second set were geometric features regarding the regions and their relations. These features included: centroids of the
parent, left, and right regions; difference and absolute difference between the left and right centroids; coordinates of
the top left and bottom right bounding box corners of each region; height and width of the regions; normalized number
of pixels of each region (maximum of 1); the difference and absolute difference of the normalized number of pixels
in the child regions; and the difference between the parent normalized number of pixels and minimum (respectively
maximum) of child normalized number of pixels. All coordinates were expressed relative to the image size such that
both x and y coordinates ranged from -1 to 1. This resulted in 35 additional geometric features, yield 163 features
total.

Each set of features has the benefit that the features of a parent region can efficiently be computed given features of
the child regions. All features were normalized to have zero mean and unit variance across the training examples.

For BSDS500, the first layer of the marginal estimation network had 128 hidden units and the second layer had 64.
For Penn-Fudan the first layer had 32 hidden units and the second had 16. ReLU activations with dropout were used
for the first and second layers. The final layer had a single sigmoid output and no dropout.



Figure 9: Example synthetic ground truths created for the Penn-Fudan dataset. From left to right: image, semantic
segmentation labels, ground truths 1-4. The colors shown in the ground truths are not semantically meaningful: they
are chosen to simply be maximally distinguishable for ease of visualization.

B.3 ADDITIONAL DETAILS REGARDING BOYKOV-JOLLY BASELINE

In BOYKOV-JOLLY, a strength is computed between any two adjacent base-level regions s1 and s2 as the mean of
1 − exp(−(Ii−Ij)2)

2σ2 , where pixel i ∈ s1 and pixel j ∈ s2. Here Ii ∈ [0, 1] denotes the mean intensity at pixel i across
color channels. Merges are then sequentially made between regions in order of ascending strength. The strength
between two arbitrary regions r1 and r2 is defined to be the minimum superpixel strength between two adjacent
superpixels s1 and s2 such that s1 ∈ r1 and s2 ∈ r2. Merges continue in this way until a single region remains. This
sequence of merges induces a segmentation tree, which can be thresholded by any strength from 0 to 1 in order to
form a segmentation. In the results presented in Tables 1 and 2 of the main paper, a single threshold and σ with the
best validation performance were chosen via grid search.

B.4 ADDITIONAL SAMPLES

We show additional samples from the SST-UTREE algorithm trained on BSDS 500 in Figure 10 and representative
samples from SST-UTREE on Penn-Fudan in Figure 11.



Figure 10: Samples from the SST-UTREE model on BSDS500. From left to right: image, samples 1-4 from the
model. All images are from the test set.



Figure 11: Representative samples from the SST-UTREE model on Penn-Fudan. Within each pane, from left to
right: image, samples 1-2 from the corresponding test model. Note that for visualization purposes, the images and
segmentations have been resized to the same dimensions; in the actual dataset the sizes vary.


