
A DETAILS OF SST-SWAPTREE ALGORITHM

Our tree construction algorithm begins with an arbitrary tree structure and seeks to iteratively improve it by making
moves within the space of tree structures. We consider swaps, in which the subtree rooted at a node in the tree is
exchanged with the subtree rooted at another node. Refer to Figure 4 for an illustration of a sample swap.

We now present the details of how we efficiently compute and score allowable swaps in order to decide which move
to make. This procedure continues for a fixed number of iterations chosen based on validation performance.

A.1 COMPUTATION OF ALLOWABLE SWAPS

We consider only swaps that satisfy two criteria. The first is that a swap must not be between a node and an ancestor
of that node. We do not consider such swaps because the subtree rooted at each of two nodes overlap and therefore
the position of any shared descendants after the swap is ill-defined. For example, a swap between node B and node I
in Figure 4 would not be allowable.

The second criterion is that the swap must preserve the property that the children of any nonterminal node in the tree
are neighboring. We call this property the neighboring-region property. Informally, the neighboring-region property
ensures that for two children of a parent node k to be siblings, at least one of the superpixels corresponding to the
left sibling must be adjacent to one of the superpixels corresponding to the right. If this condition is satisfied, we
say that Neigh(C(`(k)), C(r(k))). More precisely, the neighboring-region property is satisfied by a tree if for every
non-terminal node k in the tree, N(C(`(k))) ∩ C(r(k)) 6= ∅, where N(S) =

(⋃
s∈S Adj(s)

)
\ S denotes the set

of superpixels directly adjacent to the superpixels contained in set S but not including the elements of S itself, and
Adj(s) denotes the set of superpixels directly adjacent to superpixel s. Note that the neighboring-region property is
symmetric in that it could equally well be expressed as N(C(r(k))) ∩ C(`(k)) 6= ∅ for each non-terminal node k.

Finding swaps that satisfy the first criterion is simple. We begin by iterating over each node i in the tree. For each
node i, we can search for potential swap partners j by traversing the path from i to the root. For each node k along this
path (excluding i itself), we search the the subtree rooted at the child of k not belonging to that path for potential swap
partners j. For example, if B were being considered for a swap in Figure 4, the path to the root (excluding B) would
be E→ I→ K. We would therefore search the subtrees rooted at A, F, and J for nodes that could be swapped with B.

Satisfying the second criterion relies on two observations that hold for all swaps between nodes i and j: (a) any node
not on the path from i to j will continue to satisfy the neighboring-region property after the swap, and (b) the lowest
common ancestor k = LCA(i, j) will maintain the neighboring-region property after the swap. Observation (a) is
due to the fact that the regions corresponding to these nodes do not change as a result of the swap. For example, in
Figure 4, the path from node B to C is B → E → I → K → J → H → C. A swap between B and C will not affect
the subtrees rooted at A, F, G, or D, and therefore we do not need to check the neighboring-region property for these
nodes. In addition, if there were any nodes above K in the example tree, they would not need to be checked either since
the region corresponding to K in the tree does not change as a result of the swap. Furthermore, the subtrees rooted at
i and j themselves do not change as a result of the swap and thus do not need to be checked.

To show observation (b) holds, assume without loss of generality that i is a descendant of `(k) and j is a descendant of
r(k) (the right child of k). We know that prior to the swap, Neigh(C(`(k)), C(r(k))) is true. Thus Neigh((C(`(k)) \
C(i)) ∪ C(i), (C(r(k)) \ C(j)) ∪ C(j)) is also true. For k to satisfy the neighboring-region property after the swap,
it must be the case that Neigh((C(`(k)) \ C(i)) ∪ C(j), (C(r(k)) \ C(j)) ∪ C(i)). If `(k) 6= i, then we know
that Neigh(C(`(k)) \ C(i), C(i)), otherwise the subtree rooted at `(k) would not have satisfied the neighboring-
region property prior to the swap. Similarly, if r(k) 6= j, then we know that Neigh(C(r(k)) \ C(j), C(j)). If both
`(k) = i and r(k) = j, then the neighboring-region property is satisfied trivially after the swap, because otherwise
Neigh(C(`(k)), C(r(k))) would not be true prior to the swap.

Therefore we must only check the nodes along the path from i to j that are not either theLCA(i, j) or i or j themselves.
Let m be such a node along the path from i to LCA(i, j). Without loss of generality, assume that i is a descendant
of `(m). Define the set of critical superpixels in i relative to a node h to be Crit(i, h) = C(i) ∩N(C(h)). For m to
have satisfied the neighboring-region property prior to the swap, it must be the case that Crit(`(m), r(m)) 6= ∅. If
Crit(`(m), r(m)) = Crit(i, r(m)), i.e. all critical superpixels of `(m) relative to r(m) are also contained in C(i), then
we say i is critical relative to r(m).



If i is critical relative to r(m), we know m will not satisfy the neighboring-region property after a swap involving i
unless the region of the replacement node j is neighboring to the region of r(m). We can thus add a critical constraint
on j due to m that C(j) ∩ N(r(m)) 6= ∅. Any such constraints can be accumulated as we traverse the path from i
to LCA(i, j), and we must check that the candidate node j satisfies all constraints. Similarly we must check that i
satisfies all critical constraints collected along the path from j to LCA(i, j). If all such constraints are satisfied then
the swap between i and j is allowable.

A.2 SWAP SCORING

In this section we outline the algorithm used to assign scores to potential swaps. We first examine the minimum
achievable Hellinger distance for a given tree structure. Then we show how to compute the change in minimum
achievable Hellinger distance resulting from a swap. Finally, we derive an approximation to the change in Hellinger
distance that can be computed given only information known at test time.

A.2.1 Minimum Achievable Hellinger Distance

When iteratively making swaps, we seek to decrease Hellinger distance achievable by the tree. In other words, we
wish to decrease

min
p
D(π, q) = 1− 1(

N
2

) ∑
k

∑
i∈C(`(k))
j∈C(r(k))

[
√
πkqij +

√
(1− πk)(1− qij)

]

− 1(
N
2

) ∑
m

∑
i,j∈C(m)
i<j

√
qij , (5)

where the summation involving k is over nonterminal nodes in the tree, the summation involving m is over leafs of the
tree, p is a vector of probabilities (one for each nonterminal node), and πk = pkπ`(k)πr(k) is the marginal probability
of node k.

When scoring swaps it is more convenient to consider minimization directly over π because the summations decom-
pose over nodes:

1− 1(
N
2

) ∑
m

∑
i,j∈C(m)
i<j

√
qij −

∑
k

max
πk

√πk
 1(

N
2

) ∑
i∈C(`(k))
j∈C(r(k))

√
qij

+
√

1− πk

 1(
N
2

) ∑
i∈C(`(k))
j∈C(r(k))

√
1− qij



(6)

= 1− 1(
N
2

) ∑
m

∑
i,j∈C(m)
i<j

√
qij −

∑
k

max
πk

[
Q(`(k), r(k))

√
πk + Q̃(`(k), r(k))

√
1− πk

]
, (7)

where we define

Q(s1, s2) ≡ 1(
N
2

) ∑
i∈C(s1)
j∈C(s2)

√
qij , and Q̃(s1, s2) ≡ 1(

N
2

) ∑
i∈C(s1)
j∈C(s2)

√
1− qij . (8)

The value π∗k that minimizes Equation 7 is



π∗k =
Q(`(k), r(k))2

Q(`(k), r(k))2 + Q̃(`(k), r(k))2
, (9)

and the term of the summation involving k resulting from substituting in π∗k becomes

max
πk

[
Q(`(k), r(k))

√
πk + Q̃(`(k), r(k))

√
1− πk

]
=

√
Q(`(k), r(k))2 + Q̃(`(k), r(k))2 (10)

= ‖z(`(k), r(k))‖2, (11)

where z(s1, s2) ∈ R2 and is defined to be

z(s1, s2) ≡ [Q(s1, s2), Q̃(s1, s2)]. (12)

A.2.2 Effect of a Swap on Minimum Achievable Hellinger Distance

Most terms in the expression forD(π, q) from Equation 5 will not change as a result of a swap of s1 and s2. The terms
that do change are those corresponding to nodes along the path from s1 to s2, not including s1 and s2 themselves. Let
k be a node along the path from s1 to LCA(s1, s2), not including the endpoints. Define u(k) to be the child of k that
is not an ancestor of s1, and g(k) to be the child of k that is an ancestor of s1. Then the decrease in D(π, q) due to k
from making the swap is:

∆k(s1, s2) = ‖z(g(k) \ s1, u(k)) + z(s2, u(k))‖ − ‖z(g(k) \ s1, u(k)) + z(s1, u(k))‖ (13)

The change in D(π, q) due to a node along the path from s2 to LCA(s1, s2) is similar to Equation 13 but with the
roles of s1 and s2 reversed.

At the LCA(s1, s2) the change is

∆LCA(s1, s2) =‖z(g(LCA) \ s1, h(LCA) \ s2) + z(s1, s2) + z(g(LCA) \ s1, s1) + z(s2, h(LCA) \ s2)‖−
‖z(g(LCA) \ s1, h(LCA) \ s2) + z(s1, s2) + z(g(LCA) \ s1, s2) + z(s1, h(LCA) \ s2)‖,

(14)

where LCA is used as shorthand for LCA(s1, s2). The total change in D(π, q) is then

∑
k∈path(s1,LCA(s1,s2))

∆k(s1, s2) +
∑

k∈path(s2,LCA(s1,s2))

∆k(s2, s1) + ∆LCA(s1, s2). (15)

A.2.3 Approximating the Effect of a Swap

The quantity in Equation 15 depends on the values of qij for the relevant pixel pairs, which will be unknown at test
time. We note that from Equations 9 and 12 that

z(s1, s2) = ‖z(s1, s2)‖2[
√
π∗k,
√

1− π∗k]. (16)



We choose to bound this based on the product of the size of the regions:

‖z(s1, s2)‖2 ≤
|C(s1)||C(s2)|(

N
2

) , (17)

with equality iff either qij = 1 for all i ∈ C(s1), j ∈ C(s2) or qij = 0 for all i ∈ C(s1), j ∈ C(s2). If we have
an estimate π̂(s1, s2) of any two regions s1 and s2, we can combine Equations 16 and 17 to obtain an estimate for
z(s1, s2):

ẑ(s1, s2) ≈ |C(s1)||C(s2)|(
N
2

) [
√
π̂(s1, s2),

√
1− π̂(s1, s2)]. (18)

At test time, we can therefore use model predictions of π to estimate the change in Hellinger distance by plugging the
approximate ẑ values from Equation 18 into the change in Hellinger distance from Equation 15.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 ADDITIONAL DATASET DETAILS

We generated four synthetic ground truth segmentations per example in the Penn-Fudan pedestrian dataset, each of
which represents a different prototypical parse of the image. The original semantic segmentation labels contained
thirteen classes: background, hair, face, upper and lower clothes, and left and right arms, hands, legs, and shoes. The
first synthetic ground truth treats each of these semantic classes as a separate region. The second merges hair with face,
hand with corresponding arm, and shoe with corresponding leg. The third further merges all lower body classes, upper
body classes, and head classes together. The fourth and final ground truth segmentation distinguishes only between
background and non-background semantic classes. When forming the ground truths, regions were split as necessary to
ensure that each is spatially contiguous. Visualizations of several ground truths and corresponding images are shown
in Figure 9.

B.2 ADDITIONAL SST TRAINING DETAILS

Our network for estimating marginal probabilities used two sets of features as input. The first are visual features
extracted from VGG-19 (Simonyan & Zisserman, 2014). Each image was run through the net, and the activations just
prior to the second max-pooling operation were recorded (fourth convolutional layer). These activations were then
upsampled back to the original image size using nearest neighbor interpolation, thereby producing 128 features for
each pixel. These features were average-pooled within the base-level regions to give 128 visual features for each. The
second set were geometric features regarding the regions and their relations. These features included: centroids of the
parent, left, and right regions; difference and absolute difference between the left and right centroids; coordinates of
the top left and bottom right bounding box corners of each region; height and width of the regions; normalized number
of pixels of each region (maximum of 1); the difference and absolute difference of the normalized number of pixels
in the child regions; and the difference between the parent normalized number of pixels and minimum (respectively
maximum) of child normalized number of pixels. All coordinates were expressed relative to the image size such that
both x and y coordinates ranged from -1 to 1. This resulted in 35 additional geometric features, yield 163 features
total.

Each set of features has the benefit that the features of a parent region can efficiently be computed given features of
the child regions. All features were normalized to have zero mean and unit variance across the training examples.

For BSDS500, the first layer of the marginal estimation network had 128 hidden units and the second layer had 64.
For Penn-Fudan the first layer had 32 hidden units and the second had 16. ReLU activations with dropout were used
for the first and second layers. The final layer had a single sigmoid output and no dropout.



Figure 9: Example synthetic ground truths created for the Penn-Fudan dataset. From left to right: image, semantic
segmentation labels, ground truths 1-4. The colors shown in the ground truths are not semantically meaningful: they
are chosen to simply be maximally distinguishable for ease of visualization.

B.3 ADDITIONAL DETAILS REGARDING BOYKOV-JOLLY BASELINE

In BOYKOV-JOLLY, a strength is computed between any two adjacent base-level regions s1 and s2 as the mean of
1 − exp(−(Ii−Ij)2)

2σ2 , where pixel i ∈ s1 and pixel j ∈ s2. Here Ii ∈ [0, 1] denotes the mean intensity at pixel i across
color channels. Merges are then sequentially made between regions in order of ascending strength. The strength
between two arbitrary regions r1 and r2 is defined to be the minimum superpixel strength between two adjacent
superpixels s1 and s2 such that s1 ∈ r1 and s2 ∈ r2. Merges continue in this way until a single region remains. This
sequence of merges induces a segmentation tree, which can be thresholded by any strength from 0 to 1 in order to
form a segmentation. In the results presented in Tables 1 and 2 of the main paper, a single threshold and σ with the
best validation performance were chosen via grid search.

B.4 ADDITIONAL SAMPLES

We show additional samples from the SST-UTREE algorithm trained on BSDS 500 in Figure 10 and representative
samples from SST-UTREE on Penn-Fudan in Figure 11.



Figure 10: Samples from the SST-UTREE model on BSDS500. From left to right: image, samples 1-4 from the
model. All images are from the test set.



Figure 11: Representative samples from the SST-UTREE model on Penn-Fudan. Within each pane, from left to
right: image, samples 1-2 from the corresponding test model. Note that for visualization purposes, the images and
segmentations have been resized to the same dimensions; in the actual dataset the sizes vary.


