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INTRODUCTION

• We introduce the notion of an effective receptive field (ERF).

• We prove that ERF has a Gaussian distribution using Fourier anal-
ysis and central limit theorem.

• We show that ERF grows O(
√
n) over number of layers n in deep

CNNs and occupies O( 1√
n
) of the full theoretical receptive field.

• We analyze the ERF in several architecture designs, and the effect of
nonlinear activations, dropout, sub-sampling and skip connections
on it.

• We show that ERF grows during training.

Be careful, receptive field is smaller than we thought.

CONVOLUTION BY FOURIER TRANSFORM

We are showing: the distribution of gradients in a receptive
field for an output unit in a deep CNN correspond to coefficients
of a (extended) binomial distribution.

Considering convolution with uniform weights. Given input
u(t) = δ(t) and convolution kernel:

v(t) =

k−1∑
m=0

δ(t−m), where δ(t) =

{
1, t = 0
0, t 6= 0

Using Fourier transform:

U(ω) =

∞∑
t=−∞

u(t)e−jωt = 1, V (ω) =

∞∑
t=−∞

v(t)e−jωt =

k−1∑
m=0

e−jωm

Applying the convolution theorem, we have the Fourier trans-
form of o to be:

F(o) = F(u ∗ v ∗ · · · ∗ v)(ω) = U(ω) · V (ω)n =

(
k−1∑
m=0

e−jωm
)n

(1)

Using inverse Fourier transform:

o(t) =
1

2π

∫ π

−π

(
k−1∑
m=0

e−jωm
)n

dω,
1

2π

∫ π

−π
e−jωsejωtdω =

{
1, s = t
0, s 6= t

We can see that o(t) is simply the coefficient of e−jωt in the ex-

pansion of
(∑k−1

m=0 e
−jωm

)n
.

Case k = 2:
(∑k−1

m=0 e
−jωm

)n
= (1 + e−jω)n. The coefficient for

e−jωt is then the standard binomial coefficient
(
n
t

)
, i.e. o(t) =

(
n
t

)
.

Case k > 2: Coefficients are known as “extended binomial coeffi-
cients” or “polynomial coefficients”.

EFFECTIVE RECEPTIVE FIELD (ERF)
Receptive Field of an output unit is the region containing any

input pixel with an impact on that unit.
Effective Receptive Field (ERF) of an output unit is the region

containing any input pixel with a non-negligible impact on that unit.
non-negligible: region of impact within 2-standard deviation of

center pixel’s impact.
For CNNs, we measure the impact as the scale of the partial

derivatives, which can be computed by back-propagation, i.e. con-
volving gradient with weight, similar as Eq. 1:

F(o) = U(ω) · V (ω) · · ·V (ω) =

(
k−1∑
m=0

w(m)e−jωm
)n

o(t), the impact at pixel location t, is the coefficient of e−jωt in the
above expansion.

Uniform weights: Impact corresponds to binomial coefficient for
k = 2 or “extended binomial coefficients” for k > 2, both distribute
like Gaussian.

Non-Uniform weights: combinatorial literature shows:

o(t) = p(Sn = t), Sn =

n∑
i=1

Xi

where Xi’s are i.i.d. multinomial variables distributed according
to w(m)’s, i.e. p(Xi = m) = w(m).

Central limit theorem says: as n → ∞, the distribution of√
n( 1nSn − E[X]) converges to Gaussian N (0,Var[X]) in distribution,

i.e. Sn ∼ N (nE[X], nVar[X]) with

E[Sn] = n

k−1∑
m=0

mw(m), Var[Sn] = n

k−1∑
m=0

m2w(m)−

(
k−1∑
m=0

mw(m)

)2


Growth vs Shrinkage: ERF size is
√

Var[Sn] =
√
nVar[Xi] =

O(
√
n); Correspondingly ERF ratio: O( 1√

n
).

GAUSSIAN SHAPE

Comparing the effect of number of layers, random weight initial-
ization and nonlinear activation on the ERF.

5 layers, theoretical RF size=11 10 layers, theoretical RF size=21

Uniform Random ReLU Uniform Random ReLU

20 layers, theoretical RF size=41 40 layers, theoretical RF size=81

Uniform Random ReLU Uniform Random ReLU

INFLUENCE OF DIFFERENT STRUCTURES

The left figure shows the effect of different non-linearity while the
right figure shows the effect of subsampling and dilated convolution
comparing to a pure convnet.

ReLU Tanh Sigmoid ConvOnly Subsample Dilation

CHANGE OF ERF
Absolute growth (left) and relative shrinkage (right) for ERF. The

line for ERF growth has slope of 0.56 in log domain, while the line
for ERF ratio has slope of -0.43. This indicates ERF size is growing
linearly w.r.t

√
N and ERF ratio is shrinking linearly w.r.t. 1√

N
.

Comparison of ERF before and after training for models trained
on CIFAR-10 classification and CamVid semantic segmentation tasks.
We can see ERF growth during training.

CIFAR 10 (32× 32) CamVid (505× 505)

Before Training After Training Before Training After Training

CONNECTION TO OTHER WORK

Connection to biological neural networks: ERF in deep CNNs
grows a lot slower than we used to think. It could preserve lots of
local information; CNN may automatically create a form of foveal
representation.

Connection to CNN applications: Variance analysis help better
initialization [Xavier][He]; visualization of CNNs [Zeiler]; used as lo-
calization cue [Zhou] etc.


