
Reviving and Improving Recurrent Back-Propagation

Renjie Liao * 1 2 3 Yuwen Xiong * 1 2 Ethan Fetaya 1 3 Lisa Zhang 1 3 KiJung Yoon 4 5 Xaq Pitkow 4 5

Raquel Urtasun 1 2 3 Richard Zemel 1 3 6

Abstract
In this paper, we revisit the recurrent back-
propagation (RBP) algorithm (Almeida, 1987;
Pineda, 1987), discuss the conditions under which
it applies as well as how to satisfy them in deep
neural networks. We show that RBP can be unsta-
ble and propose two variants based on conjugate
gradient on the normal equations (CG-RBP) and
Neumann series (Neumann-RBP). We further in-
vestigate the relationship between Neumann-RBP
and back propagation through time (BPTT) and
its truncated version (TBPTT). Our Neumann-
RBP has the same time complexity as TBPTT but
only requires constant memory, whereas TBPTT’s
memory cost scales linearly with the number of
truncation steps. We examine all RBP variants
along with BPTT and TBPTT in three different
application domains: associative memory with
continuous Hopfield networks, document classifi-
cation in citation networks using graph neural net-
works and hyperparameter optimization for fully
connected networks. All experiments demonstrate
that RBPs, especially the Neumann-RBP variant,
are efficient and effective for optimizing conver-
gent recurrent neural networks.

1. Introduction
Back-propagation through time (BPTT) (Werbos, 1990) is
nowadays the standard approach for training recurrent neu-
ral networks (RNNs). However, the computation and mem-
ory cost of BPTT scale linearly with the number of steps
which makes BPTT impractical for applications where long
sequences are common (Sutskever et al., 2014; Goodfellow

*Equal contribution 1Department of Computer Science,
University of Toronto 2Uber ATG Toronto 3Vector Institute
4Department of Electrical and Computer Engineering, Rice Uni-
versity 5Department of Neuroscience, Baylor College of Medicine
6Canadian Institute for Advanced Research. Correspondence to:
Renjie Liao <rjliao@cs.toronto.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

et al., 2016). Moreover, as the number of unrolling steps in-
creases, the numerical error accumulates which may render
the algorithm useless in some applications, e.g., gradient-
based hyperparameter optimization (Maclaurin et al., 2015).
This issue is often solved in practice by using truncated
back-propagation through time (TBPTT) (Williams & Peng,
1990; Sutskever, 2013) which has constant computation and
memory cost, is simple to implement, and effective in some
applications. However, the quality of the TBPTT approxi-
mate gradient is not well understood. A natural question to
ask is, can we get better gradient approximations while still
using the same computational cost as TBPTT?

Here will show that under certain conditions on the underly-
ing model, the answer is positive. In particular, we consider
a class of RNNs whose hidden state converges to a steady
state. For this class of RNNs, we can bypass BPTT and
compute the exact gradient using an algorithm called re-
current back-propagation (RBP) (Almeida, 1987; Pineda,
1987). The key observation exploited by RBP is that the
gradient of the steady state w.r.t. the learnable parameters
can be directly computed using the implicit function theo-
rem, alleviating the need to unroll the entire forward pass.
The main computational cost of RBP is in solving a linear
system which has constant memory and computation time
w.r.t. the number of unrolling steps. However, due to the
strong assumptions that RBP imposes, TBPTT has become
the standard approach used in practice and RBP did not get
much attention for many years.

In this paper, we first revisit RBP in the context of mod-
ern deep learning. We discuss the original algorithm, the
assumptions it imposes and how to satisfy them for deep neu-
ral networks. Second, we notice that although the fixed point
iteration method used in (Almeida, 1987; Pineda, 1987) is
guaranteed to converge if the steady hidden state is achiev-
able, in practice it can fail to do so within a reasonable
amount of steps. This may be caused by the fact that there
are many fixed points and the algorithm is sensitive to ini-
tialization. We try to overcome the instability issue by
proposing two variants of RBP based on conjugate gradi-
ent on normal equations (CG-RBP) and Neumann series
(Neumann-RBP). We show a connection between Neumann-
RBP and TBPTT which sheds some new light on the ap-
proximation quality of TBPTT. In the experiments, we show

ar
X

iv
:1

80
3.

06
39

6v
3

 [
cs

.L
G

]
 1

3
A

ug
 2

01
8

Reviving and Improving Recurrent Back-Propagation

several important applications which are naturally amenable
to RBP. For example, we show how RBP can be used to
back propagate thorough the optimization of deep neural
networks in order to tune hyperparameters. Throughout our
experiments, we found that Neumann-RBP not only inherits
the advantages of original RBP but also remains consistently
stable across different applications.

2. Related Work
In the context of neural networks, RBP was independently
discovered by Almeida (Almeida, 1987) and Pineda (Pineda,
1987) in 1987, which is why this algorithm is sometimes
called the Almeida-Pineda algorithm. Back then, RBP was
shown to be useful in learning content-addressable memory
(CAM) models (Hopfield, 1982; 1984) and other compu-
tational neurodynamic models (Lapedes & Farber, 1986;
Haykin, 1993; Chauvin & Rumelhart, 1995). These models
are special RNNs in a sense that their inference stage is a
convergent dynamic system by design. For these systems,
one can construct a Lyapunov function for the underlying
dynamics which further guarantees the asymptotic stabil-
ity. We refer readers to chapter 13 of (Haykin, 1993) for
more details on neurodynamic models. The goal of learning
in these models is to manipulate the attractors, i.e. steady
states, such that they are close to the input data. Therefore,
during inference stage, even if the input data is corrupted,
the corresponding correct attractor or “memory“ can still
be retrieved. Instead of computing gradient via BPTT, RBP
provides an more efficient alternative for manipulating the
attractors.

RBP was later applied to learning graph neural networks
(GNNs) (Scarselli et al., 2009), which are generalizations of
RNNs that handle graph-structured input data. Specifically,
the inference of GNNs is essentially a propagation process
which spreads information along the graph. One can force
the propagation process to converge by either constructing
a contraction map explicitly, or by regularizing the Jacobian
of the update function. Similarly, the goal is to push the
converged inference solution close to the target. RBP is nat-
urally applicable here and demonstrated to save both com-
putation time and memory. A recent investigation (Scellier
& Bengio, 2017a) shows that RBP is related to equilibrium
propagation (Scellier & Bengio, 2017b) which is motivated
from the perspective of biological plausibility. Another
recent related work in deep learning is OptNet (Amos &
Kolter, 2017) where the gradient of the optimized solution
of a quadratic programming problem w.r.t. parameters is
obtained by analytically differentiating the KKT system.

In the probabilistic graphical models (PGMs) literature, sim-
ilar techniques to RBP have been developed as well. For
example, an efficient gradient-based method to learn the hy-
perparameters of log-linear models is provided in (Foo et al.,

2008) where the core contribution is to use the implicit dif-
ferentiation trick to compute the gradient of the optimized
inference solution w.r.t. the hyperparameters. A similar
implicit differentiation technique is used in (Samuel & Tap-
pen, 2009) to optimize the maximum a posterior (MAP)
solution of continuous MRFs, since the MAP solution can
be regarded as the steady state of the inference process.
An implicit-differentiation-based optimization method for
generic energy models is proposed in (Domke, 2012) where
the gradient of the optimal state (steady state) of the en-
ergy w.r.t. the parameters can be efficiently computed given
the fast matrix-vector product implementation (Pearlmut-
ter, 1994). If one regards the inference algorithms from
aforementioned applications as unrolled RNNs, the implicit
differentiation technique is essentially equivalent to RBP.

Other efforts have been made to develop alternatives to
BPTT. NoBackTrack (Ollivier et al., 2015) maintains an
online estimate of the gradient via the random rank-one
reduction technique. ARTBP (Tallec & Ollivier, 2017) in-
troduces a probability distribution over the truncation points
in the sequence and compensates the truncated gradient
based on the distribution. Both approaches provide an un-
biased estimation of the gradient although their variances
differ.

3. Revisiting Recurrent Back-Propagation
In this section, we review the original RBP algorithm and
discuss its assumptions.

3.1. Recurrent Back-Propagation

We denote the input data and initial hidden state as x and
h0. During inference, the hidden state at time t is computed
as follows,

ht+1 = F (x,wF , ht), (1)

where F is the update function parameterized by wF . A
typical instantiation of F is an LSTM (Hochreiter & Schmid-
huber, 1997) cell function. This RNN formulation differs
from the one commonly used in language modeling, as the
input is not time-dependent. We restrict our attention to
RNNs with fixed inputs for now as it requires fewer assump-
tions. Assuming the dynamical system, (i.e., the forward
pass of the RNN), reaches steady state before time step T ,
we have the following equation,

h∗ = F (x,wF , h
∗), (2)

where h∗ is the steady hidden state. We compute the pre-
dicted output y based on the steady hidden state as follows,

y = G(x,wG, h
∗), (3)

where G is the output function parameterized by wG. Typ-
ically, a loss function L = l(ȳ, y) measures the closeness

Reviving and Improving Recurrent Back-Propagation

between ground truth ȳ and predicted output y. Since the
input data x is fixed for all time steps, we can construct a
function Ψ of wF and h as follows,

Ψ(wF , h) = h− F (x,wF , h). (4)

At the fixed point, we have Ψ(wF , h
∗) = 0. Assuming some

proper conditions on F , e.g., continuous differentiability,
we can take the derivative w.r.t. wF at h∗ on both sides.
Using the total derivative and the dependence of h∗ on wF

we obtain,

∂Ψ(wF , h
∗)

∂wF
=

∂h∗

∂wF
− dF (x,wF , h

∗)
dwF

= (I − JF,h∗)
∂h∗

∂wF
− ∂F (x,wF , h

∗)
∂wF

= 0, (5)

where JF,h∗ = ∂F (x,wF ,h∗)
∂h is the Jacobian matrix of F

evaluated at h∗ and d is the total derivative operator. As-
suming that I − JF,h∗ is invertible, we rearrange Eq. (5) to
get,

∂h∗

∂wF
= (I − JF,h∗)

−1 ∂F (x,wF , h
∗)

∂wF
. (6)

In fact, Equations (4- 6) are an application of the Implicit
Function Theorem (Rudin, 1964), which guarantees the
existence and uniqueness of an implicit function φ such that
h∗ = φ(wF) if two conditions hold: I, Ψ is continuously
differentiable and II, I − JF,h∗ is invertible. Although we
do not know the analytic expression of the function φ, we
can still compute its gradient at the fixed point.

Based on Eq. (6), we now turn our attention towards com-
puting the gradient of the loss w.r.t. the parameters of the
RNN. By using the total derivative and the chain rule, we
have

∂L

∂wG
=
∂L

∂y

∂G(x,wG, h
∗)

∂wG
(7)

∂L

∂wF
=
∂L

∂y

∂y

∂h∗
(I − JF,h∗)

−1 ∂F (x,wF , h
∗)

∂wF
. (8)

Since the gradient of the loss w.r.t. wG can be easily ob-
tained by back-propagation, we focus our exposition on the
computation of ∂L

∂wF
. The original RBP algorithm (Pineda,

1987; Almeida, 1987) introduces an auxiliary variable z
such that,

z =
(
I − J>F,h∗

)−1(∂L
∂y

∂y

∂h∗

)>
, (9)

where z is a column vector. If we managed to compute z,
then we can substitute it into Eq. (8) to get the gradient.
Note that the Jacobian matrix JF,h∗ is nonsymmetric for

Algorithm 1 : Original RBP

1: Initialization: initial guess z0, e.g., draw uniformly
from [0, 1], i = 0, threshold ε

2: repeat
3: i = i+ 1

4: zi = J>F,h∗zi−1 +
(

∂L
∂y

∂y
∂h∗

)>

5: until ‖zi − zi−1‖ < ε

6: ∂L
∂wF

= z>i
∂F (x,wF ,h∗)

∂wF

7: Return ∂L
∂wF

general RNNs which renders direct solvers of linear system
impractical. To compute z, the original RBP algorithm uses
fixed point iteration. In particular, we multiply

(
I − J>F,h∗

)

on the left hand of both sides of Eq. (9) and rearrange the
terms as follows,

z = J>F,h∗z +

(
∂L

∂y

∂y

∂h∗

)>
. (10)

If we view the right hand side of the above equation as a
function of z, then applying the fixed point iteration results
in the Algorithm 1. Note that the most expensive operation
in this algorithm is the matrix-vector product J>F,h∗z, which
is the same operator as back-propagation.

3.2. Assumptions of RBP

In this section, we discuss how to satisfy the assumptions
of RBP. Recall that in order to apply the implicit func-
tion theorem, Ψ(wF , h) has to satisfy two assumptions:
I, Ψ is continuously differentiable. II, I − JF,h∗ is invert-
ible. Condition I requires the derivative of F to be con-
tinuous, a condition satisfied by many RNNs, like LSTM
and GRU (Cho et al., 2014). Condition II is equivalent to
requiring the determinant of I − JF,h∗ to be nonzero, i.e.,
det(I − JF,h∗) 6= 0. One sufficient but not necessary con-
dition to ensure this is to force F to be a contraction map,
as in Scarselli et al. (2009). Recall that F is a contraction
map on Banach space B, i.e., a complete normed vector
space, iff, ∀h1, h2 ∈ B, ‖F (h1)− F (h2)‖ ≤ µ‖h1 − h2‖
where 0 ≤ µ < 1. Banach fixed point theorem guarantees
the uniqueness of the fix point of the contraction map F in
B. Note that here we drop the dependency of F on w for
readability. Based on the first order Taylor approximation,
F (h) = F (h∗) + JF,h∗(h− h∗), we have,

‖F (h)− F (h∗)‖
‖h− h∗‖ =

‖JF,h∗(h− h∗)‖
‖h− h∗‖ . (11)

Note that if we use L2 vector norm, then the induced matrix
norm, a.k.a., operator norm, is,

‖JF,h∗‖ = sup
{‖JF,h∗h‖

‖h‖ : ∀h 6= 0

}
= σmax(JF,h∗), (12)

Reviving and Improving Recurrent Back-Propagation

where σmax is the largest singular value. Therefore, relying
on the contraction map definition, we have,

‖JF,h∗‖ ≤ µ < 1, (13)

Moreover, since the minimum singular value of I − JF,h∗

is 1− σmax(JF,h∗), we have

|det(I − JF,h∗)| =
∏

i

|σi(I − JF,h∗)|

≥ [1− σmax(JF,h∗)]
d
> 0. (14)

Thus our second condition holds following Eq. (14).

Scarselli et al. (2009) use L1 vector norm which results in a
looser inequality since ‖JF,h∗‖2 ≤

√
d‖JF,h∗‖1. They ob-

tain an easier to compute regularization term maxi(‖JF,h∗(:
, i)‖1 − η)2 where (:, i) denotes the i-th column and η ∈
(0, 1) is the desired contraction constant. We note, however,
that this work makes a claim that the contraction map as-
sumption can be achieved by regularizing the local Jacobian
JF,h∗ of a general neural network. This is problematic be-
cause the contraction map property is a global property of F
that requires regularizing every h in the spaceB, not just h∗.
Nevertheless, this regularization evaluated at h∗ encourages
local contraction at the fixed point h∗, which is sufficient for
satisfying condition II. Another way to enforce condition
II to hold is directly formalizing the Lagrangian of equality
constraint Ψ(wF , h

∗) = 0. Since all applications we con-
sidered in this paper have converged dynamic systems in
practice, we leave further discussions of condition II to the
appendix.

4. New Recurrent Back-Propagation Variants
In this section, we present our newly proposed variants of
RBP, CG-RBP and Neumann-RBP, in detail.

4.1. Recurrent Back-Propagation based on Conjugate
Gradient

Facing the system of linear equations like Eq. (9) in the
derivation of original RBP, one would naturally think of
the most common iterative solver, i.e., conjugate gradient
method (Hestenes & Stiefel, 1952). In particular, multi-
plying I − J>F,h∗ on both sides, we obtain the following
equations,

(
I − J>F,h∗

)
z =

(
∂L

∂y

∂y

∂h∗

)>
. (15)

Unfortunately, for general RNNs, the Jacobian matrix JF,h∗

of the update function, e.g., a cell function of LSTM, is
non-symmetric in general. This increases the difficulty of
solving the system. One simple yet sometimes effective
way to approach this problem is to exploit the conjugate

gradient method on the normal equations (CGNE) (Golub
& Van Loan, 2012). Specifically, we multiply I − JF,h∗ on
both sides of Eq. (15) which results in,

(I − JF,h∗)
(
I − J>F,h∗

)
z = (I − JF,h∗)

(
∂L

∂y

∂y

∂h∗

)>
.

Having a symmetric matrix multiplying z on the left hand
side, we can now use the conjugate gradient method. The
detailed algorithm is easily obtained by instantiating the
standard conjugate gradient (CG) template. The most ex-
pensive operation used in CGNE is JF,h∗J>F,h∗z, which
can be implemented by successive matrix-vector products
similarly for computing the Fisher information product of
the natural gradient method (Schraudolph, 2002). Once we
solve z via K-step CGNE, we obtain the final gradient by
substituting the solution into Eq. (8). Since the condition
number of the current system is the square of the origi-
nal one, the system may be slower to converge in practice.
Exploring more advanced and faster convergent numerical
methods under this setting, like LSQR (Paige & Saunders,
1982), is left for future work.

4.2. Recurrent Back-Propagation based on Neumann
Series

We now develop a new RBP variant called Neumann-RBP,
which uses Neumann series from functional analysis and
is efficient in terms of computation and memory. We then
show its connections to BPTT and TBPTT.

A Neumann series is a mathematical series of the form∑∞
t=0A

t where A is an operator. In matrix theory, it is also
known as the geometric series of a matrix. A convergent
Neumann series has the following property,

(I −A)−1 =
∞∑

k=0

Ak. (16)

One sufficient condition of convergence is that the spectral
radius (i.e., the largest absolute eigenvalue value) ofA is less
than 1. This convergence criterion applied to A = JF,h∗

implies condition II. Other cases where the convergence
hold is beyond the scope of this paper. If the Neumann
series

∑∞
t=0 J

t
F,h∗ converges, we can use it to replace the

term (I − JF,h∗)
−1 in E.q. (8). Furthermore, the gradient

of RBP can be approximated with the K-th order truncation
of Neumann series as below,

∂L

∂wF
≈ ∂L

∂y

K∑

k=0

∂y

∂h∗
Jk
F,h∗

∂F (x,wF , h
∗)

∂wF
. (17)

There is a rich body of literature on how to compute Neu-
mann series efficiently using binary or ternary decompo-
sition (Westreich, 1989; Vassil & Diego, 2017). However,

Reviving and Improving Recurrent Back-Propagation

Algorithm 2 : Neumann-RBP

1: Initialization: v0 = g0 =
(

∂L
∂y

∂y
∂h∗

)>

2: for step t = 1, 2, . . . ,K do
3: vt = J>vt−1
4: gt = gt−1 + vt
5: end for
6: ∂L

∂wF
= (gK)

> ∂F (x,wF ,h∗)
∂wF

7: Return ∂L
∂wF

these decomposition based approaches are inapplicable in
our context since we cannot compute the Jacobian matrix
JF,h∗ efficiently for general neural networks. Fortunately,
we can instead efficiently compute the matrix-vector prod-
uct J>F,h∗u and JF,h∗u (u is a proper sized vector) by using
reverse and forward mode auto-differentiation (Pearlmut-
ter, 1994). Relying on this technique, we summarize the
Neumann series based RBP algorithm in Algorithm 2. In
practice, we can obtain further memory efficiency by per-
forming updates within the for loops in-place (please refer to
the example code in appendix), so that memory usage need
not scale with the number of truncation steps. Moreover,
since the algorithm does not rely on hidden states except the
steady state h∗, we no longer need to store the hidden states
in the forward pass of the RNN. Besides the computational
benefit, we now have the following propositions to connect
Neumann-RBP to BPTT and TBPTT.
Proposition 1. Assume that we have a convergent RNN
which satisfies the implicit function theorem conditions. If
the Neumann series

∑∞
t=0 J

t
F,h∗ converges, then the full

Neumann-RBP is equivalent to BPTT.
Proposition 2. For the above RNN, let us denote its con-
vergent sequence of hidden states as h0, h1, . . . , hT where
h∗ = hT is the steady state. If we further assume that
there exists some step K where 0 < K ≤ T such that
h∗ = hT = hT−1 = · · · = hT−K , then K-step Neumann-
RBP is equivalent to K-step TBPTT.

Moreover, the following proposition bounds the error of
K-step Neumann-RBP.
Proposition 3. If the Neumann series

∑∞
t=0 J

t
F,h∗ con-

verges, then the error between K-step and full Neumann
series is as follows,
∥∥∥∥∥

K∑

t=0

Jt
F,h∗ − (I − JF,h∗)−1

∥∥∥∥∥ ≤
∥∥(I − JF,h∗)−1

∥∥ ‖JF,h∗‖K+1

We leave all proofs in appendix.

5. Experiments
In this section, we thoroughly study all RBP variants on
diverse applications. Our implementation based on PyTorch

Figure 1. Left and right figures are training and validation curves
of the same Hopfield network. y axis is the log scale L1 loss. x
axis of (a) and (b) are training and validation step respectively. We
do validation every 10 training steps.

(a) (b) (c) (d) (e) (f)

Figure 2. Visualization of associative memory. (a) Corrupted input
image; (b)-(f) are retrieved images by BPTT, TBPTT, RBP, CG-
RBP, Neumann-RBP respectively.

is publicly available1. Note that our Neumann-RBP is very
simple to implement using automatic differentiation and we
provide a very short example program in the appendix.

5.1. Associative Memory

The classical testbed for RBP is the associative mem-
ory (Hopfield, 1982). Several images or patterns are pre-
sented to the neural network which learns to store or mem-
orize the images. After the learning process, the network
is subsequently presented with a corrupted or noisy ver-
sion of the original image. The task is then to retrieve the
corresponding original image. We consider a simplified con-
tinuous Hopfield network as described in (Haykin, 1993).
Specifically, the system of nonlinear first-order differential
equations is,

d

dt
hi(t) = −hi(t)

a
+

N∑

j=1

wijφ(b · hj(t)) + Ii, (18)

where subscript i denotes the index of the neuron. wij is
the learnable weight between a pair of neurons. hi is the
hidden state of the i-th neuron. φ is a nonlinear activate
function which is a sigmoid function in our experiments.
a, b are positive constants and are set to 1 and 0.5. The
set of neurons consists of three parts: observed, hidden
and output neurons, of size 784, 1024 and 784 respectively.
For observed neuron, the state hi is clamped to observed
pixel value Ii. For hidden and output neurons, the observed
pixel value Ii = 0 and their states hi are updated according

1https://github.com/lrjconan/RBP

Reviving and Improving Recurrent Back-Propagation

0 250 500 750 1000 1250 1500 1750
train epoch

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

lo
g

C
E

GNN-BPTT
GNN-TBPTT
GNN-Neumann-RBP
GNN-RBP
GNN-CG-RBP
Baseline

0 250 500 750 1000 1250 1500 1750 2000
train epoch

10

15

20

25

30

35

40

45

ac
cu

ra
cy

GNN-BPTT
GNN-TBPTT
GNN-Neumann-RBP
GNN-RBP
GNN-CG-RBP
Baseline

0 20 40 60 80
propagation step

1

2

3

4

5

no
rm

 o
f d

iff
er

en
ce

GNN-TBPTT
GNN-Neumann-RBP
GNN-RBP
GNN-CG-RBP
Baseline

(a) (b) (c)

0 250 500 750 1000 1250 1500 1750
train epoch

0.1

0.0

0.1

0.2

0.3

0.4

lo
g

C
E

GNNBPTT
GNNTBPTT
GNNNeumannRBP
GNNRBP
GNNCGRBP
Baseline

0 250 500 750 1000 1250 1500 1750
train epoch

10

20

30

40

50

ac
cu

ra
cy

GNNBPTT
GNNTBPTT
GNNNeumannRBP
GNNRBP
GNNCGRBP
Baseline

0 20 40 60 80
propagation step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

no
rm

 o
f d

iff
er

en
ce

GNNBPTT
GNNTBPTT
GNNNeumannRBP
GNNRBP
GNNCGRBP

(d) (e) (f)
Figure 3. The first and second rows are the results on Cora and Pubmed respectively. (a) to (c), (d) to (f) are curves of training loss,
validation accuracy and difference norm of the same GNN with different optimization methods.

to Eq. (18). During inference, the output neurons return
xi = φ(b · hi) and we further binarize it for visualization.
An important property of continuous Hopfield networks is
that by updating the states according to Eq. (18) until con-
vergence (which corresponds to the forward pass of RNNs),
we are guaranteed to minimize the following (Lyapunov)
energy function.

E =
N∑

i=1

(
1

a

∫ xi

0

φ−1(x)dx− Iixi
)
−

N∑

i=1

N∑

j=1

wijxixj
2

,

where we drop the dependency on time t for simplicity.
Instead of adopting the Hebbian learning rule as in (Hop-
field, 1982), we directly formulate the learning objective as
minimizing

∑
i∈I ‖xi− Ii‖1 where I is the set of observed

neurons. In our experiments, we train and test on 10 MNIST
images. In training we feed clean data, and during testing
we randomly corrupt 50% of the non-zero pixel values to
zero. The number of updates for one inference pass is 50.

Fig. 1 shows the training and validation curves of contin-
uous Hopfield network with different optimization meth-
ods. Here truncation steps for TBPTT, RBP, CG-RBP and
Neumann-RBP are all set to 20. From the figure, we can
see that CG-RBP and Neumann-RBP match BPTT under
this setting which verifies that their gradients are accurate.
Nevertheless, we can see that training curve of the original
RBP blows up which validates its instability issue. The
hidden state of Hopfield network becomes steady within
10 steps. However, we notice that if we set the truncation
step to 10, original RBP exhibits behaviors which fails to
converge. We also show some visualizations of retrieved

images of the Hopfield network under different optimization
methods in Fig. 2. More visual results are provided in the
appendix.

5.2. Semi-supervised Document Classification

We investigate RBPs on semi-supervised document classi-
fication with citation networks. A node of a network rep-
resents a document associated with a bag-of-words feature.
Nodes are connected based on the citation links. Given a
portion of nodes labeled with subject categories, e.g., sci-
ence, history, the task is to predict the categories for unla-
beled nodes within the same network. We use two citation
networks from (Yang et al., 2016), i.e., Cora, Pubmed, of
which the statistics are summarized in the appendix. We
adopt graph neural networks (GNNs) (Scarselli et al., 2009)
model and employ the GRU as the update function similarly
as (Li et al., 2016). We refer to (Li et al., 2016; Liao et al.,
2018) for more details. We compare different optimization
methods with the same GNN. We also add a logistic regres-
sion model as a baseline which is applied to every node
independently. The labeled documents are randomly split
into 1%, 49% and 50% for training, validation and testing.
We run all experiments with 10 different random seeds and
report the average results. The training, validation and dif-
ference norm curves of BPTT, TBPTT and all RBPs are
shown in Fig. 3. We can see that the hidden states of GNNs
with different optimization methods become steady during
inference from Fig. 3 (c). As shown in Fig. 3 (a) and (b),
Neumann-RBP is on par with TBPTT on both datasets. This
matches our analysis in proposition 1 since the changes of

Reviving and Improving Recurrent Back-Propagation

Test Acc. Cora Pubmed

Baseline 39.96 ± 3.4 40.41 ± 3.1
BPTT 24.48 ± 6.6 47.05 ± 3.1

TBPTT 46.55 ± 6.4 53.41 ± 6.7
RBP 29.25 ± 3.3 48.55 ± 3.4

CG-RBP 39.26 ± 6.5 49.12 ± 2.9
Neumann-RBP 46.63 ± 8.3 53.56 ± 5.3

Table 1. Test accuracy of different methods on citation networks.

Truncate Step 10 50 100

Run Time ×3.02 ×2.87 ×2.68
Memory ×4.35 ×4.25 ×4.11

Table 2. Run time and memory comparison. We show the ratio of
BPTT’s cost divided by Neumann-RBP’s.

successive hidden states of TBPTT and Neumann-RBP are
almost zero as shown in Fig. 3 (c). Moreover, they outper-
form other variants and the baseline model. On the other
hand, BPTT on both datasets encounter issues in learning
which may be attributable to the accumulation of errors in
the many steps of unrolling. Note that CG-RBP sometimes
performs significantly worse than Neumann-RBP, e.g., on
Cora. This may be caused by the fact that the underlying
linear system of CG-RBP is ill-conditioned in some applica-
tions as the condition number is squared in CGNE. The test
accuracy of different methods are summarized in Table 1. It
generally matches the behavior in the validation curves.

5.3. Hyperparameter Optimization

In our next experiment, we test the abilities of RBP to per-
form hyperparameter optimization. In this experiment, we
view the optimization process as a RNN. When training a
neural network, the model parameters, e.g., weights and
bias, are regarded as the hidden states of the RNN. Hyperpa-
rameters such as learning rate and momentum are learnable
parameters of this ‘meta-learning’ RNN. Here we focus
on the gradient based hyperparameter optimization rather
than the gradient-free one (Snoek et al., 2012). We adopt the
same experiment setting as in (Maclaurin et al., 2015), using
an initial learning rate of exp(−1) and momentum 0.5. The
optimization is on a fully connected network with 4 layers,
of sizes 784, 50, 50, and 50. For each layer, we associate
one learning rate and one momentum with weight and bias
respectively which results in 16 hyperparameters in total.
We use tanh non-linearities and train on 10, 000 examples
on MNIST. At each forward step of the RNN, i.e., at each
optimization step, a different mini-batch of images is fed to
the model. This is different from the previous setting where
input data is fixed. However, since the mini-batches are
assumed to be i.i.d., the sequential input data can be viewed
as sampled from a stationary distribution. We can thus
safely apply RBP as the steady state holds in expectation. In

TBPTT

Neumann-RBP

Train Step

TBPTT

Neumann-RBP

Train Step

(a) (b)

Figure 4. t-SNE visualization of trajectories of hidden states for
TBPTT and Neumann-RBP on hyperparameter optimization. Dif-
ferent methods are annotated at the convergence point. (a) and
(b) are snapshots of hidden states at meta step 20 and 40. Time is
encoded as the color map for better illustration.

terms of implementation, we just need to average the meta
gradient returned by RBPs or TBPTT across multiple mini-
batches at the end of one meta step. We use Adam (Kingma
& Ba, 2014) as the meta optimizer and set the learning rate
to 0.05. The initialization of the fully connected network
at each meta step is controlled to be the same. For each
hyper-gradient method, we run experiments 10 times with
10 different random seeds which are shared across different
methods.

Fig. 5 shows the meta training losses under different train-
ing and truncation steps. For better understanding, one can
consider the training step as the unrolling step of the RNN.
Truncation step is the the number of steps that TBPTT and
RBPs execute. From the figure, we can see that as the num-
ber of training steps increases (e.g., from (a) to (d)), the
meta loss becomes smoother. This makes sense since more
steps make the training per meta step closer to convergence.
Another surprising phenomenon we found is the meta loss
of TBPTT becomes worse when the training step increases.
One possible explanation is that the initial meta training loss
of small training steps (e.g., (a)) is still very high as you
can see from the log y-axis whereas the one with large train-
ing step, e.g., (d) is much lower. The probability of using
incorrect gradients to decrease the meta loss in case (a) is
most likely higher than that of (d) since it is farther from
convergence. On the other hand, our Neumann-RBP per-
forms consistently better than the original RBP and TBPTT
which empirically validates that Neumann-RBP provides
better estimation of the gradient in this case. The potential
reason why RBP performs poorly is that the stochastic-
ity of mini-batches worsen the instability issue. Training
losses under similar settings at the last meta step are also
provided in Fig. 6. We can see that at the end of hyperparam-
eter optimization, our Neumann-RBP generally matches the
performance of BPTT and outperforms the other methods.
Fig. 4 depicts the trajectories of hidden states in 2D space
via t-SNE (Maaten & Hinton, 2008). From the figure, we
can see that as the meta training goes on, TBPTT tends to
oscillate whereas Neumann-RBP converges, which matches
the finding in the train loss curves in Fig. 6.

Reviving and Improving Recurrent Back-Propagation

0 20 40 60 80
meta step

0.8

0.7

0.6

0.5

0.4

0.3

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP

0 20 40 60 80
meta step

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP

0 20 40 60 80
meta step

2.75

2.50

2.25

2.00

1.75

1.50

1.25

1.00

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP

0 20 40 60 80
meta step

3.0

2.5

2.0

1.5

1.0

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP

(a) (b) (c) (d)

0 20 40 60 80
meta step

0.7

0.6

0.5

0.4

0.3

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP

0 20 40 60 80
meta step

2.2

2.0

1.8

1.6

1.4

1.2

1.0
lo

g
C

E

BPTT
TBPTT
Neumann-RBP
RBP

0 20 40 60 80
meta step

2.75

2.50

2.25

2.00

1.75

1.50

1.25

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP

0 20 40 60 80
meta step

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP

(e) (f) (g) (h)
Figure 5. Meta training loss. Training and truncate steps per meta step are (a) (100, 50); (b) (500, 50); (c) (1000, 50); (d) (1500, 50); (e)
(100, 100); (f) (500, 100); (g) (1500, 100); (h) (1500, 100).

0 20 40 60 80
train step

0.6

0.4

0.2

0.0

0.2

0.4

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP
Init

0 100 200 300 400
train step

2.0

1.5

1.0

0.5

0.0

0.5

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP
Init

0 200 400 600 800
train step

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP
Init

0 200 400 600 800 1000 1200 1400
train step

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP
Init

(a) (b) (c) (d)

0 20 40 60 80
train step

0.6

0.4

0.2

0.0

0.2

0.4

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP
Init

0 100 200 300 400
train step

2.0

1.5

1.0

0.5

0.0

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP
Init

0 200 400 600 800
train step

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP
Init

0 200 400 600 800 1000 1200 1400
train step

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

lo
g

C
E

BPTT
TBPTT
Neumann-RBP
RBP
Init

(e) (f) (g) (h)
Figure 6. Training loss at last meta step. Training and truncate steps per meta step are (a) (100, 50); (b) (500, 50); (c) (1000, 50); (d)
(1500, 50); (e) (100, 100); (f) (500, 100); (g) (1500, 100); (h) (1500, 100).

We also compare the running time and memory cost of our
unoptimized Neumann-RBP implementation with the stan-
dard BPTT, i.e., using autograd of PyTorch. With 1000 train-
ing steps, one meta step of BPTT cost 310.4s and 4061MB
GPU memory in average. We take BPTT as the reference
cost and report the ratio BPTT’s cost divided by Neumann-
RBP’s in Table 2. All results are reported as the average of
10 runs. Even without optimizing the code, the practical run-
time and memory footprint advantages of Neumann-RBP
over BPTT is still significant.

6. Conclusion
In this paper, we revisit the RBP algorithm and discuss
its assumptions and how to satisfy them for deep learn-
ing. Moreover, we propose two variants of RBP based on

conjugate gradient on normal equations and Neumann se-
ries. Connections between Neumann-RBP and TBPTT are
established which sheds some light on analyzing the approx-
imation quality of the gradient of TBPTT. Experimental
results on diverse tasks demonstrate that Neumann-RBP
is a stable and efficient alternative to original RBP and is
promising for several practical problems. In the future, we
would like to explore RBP on hyperparameter optimization
with large scale deep neural networks.

Acknowledgements
We thank Barak Pearlmutter for the enlightening discus-
sion and anonymous ICML reviewers for valuable com-
ments. R.L. was supported by Connaught International
Scholarships. R.L., E.F., L.Z., K.Y., X.P., R.U. and R.Z.

Reviving and Improving Recurrent Back-Propagation

were supported in part by the Intelligence Advanced Re-
search Projects Activity (IARPA) via Department of Inte-
rior/Interior Business Center (DoI/IBC) contract number
D16PC00003. K.Y. and X.P. were supported in part by
BRAIN Initiative grant NIH 5U01NS094368. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
annotation thereon. Disclaimer: the views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of IARPA,
DoI/IBC, or the U.S. Government.

References
Almeida, L. B. A learning rule for asynchronous perceptrons

with feedback in a combinatorial environment. In IEEE
International Conference on Neural Networks, pp. 609–
618, 1987.

Amos, B. and Kolter, J. Z. Optnet: Differentiable optimiza-
tion as a layer in neural networks. In ICML, 2017.

Chauvin, Y. and Rumelhart, D. E. Backpropagation: theory,
architectures, and applications. Psychology Press, 1995.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder for
statistical machine translation. In EMNLP, 2014.

Domke, J. Generic methods for optimization-based model-
ing. In AISTATS, pp. 318–326, 2012.

Foo, C.-s., Do, C. B., and Ng, A. Y. Efficient multiple
hyperparameter learning for log-linear models. In NIPS,
pp. 377–384, 2008.

Golub, G. H. and Van Loan, C. F. Matrix computations,
volume 3. JHU Press, 2012.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.
Deep learning, volume 1. MIT press Cambridge, 2016.

Haykin, S. Neural Networks and Learning Machines. Pren-
tice Hall, 1993.

Hestenes, M. R. and Stiefel, E. Methods of conjugate gradi-
ents for solving linear systems, volume 49. NBS Wash-
ington, DC, 1952.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

Hopfield, J. J. Neural networks and physical systems with
emergent collective computational abilities. PNAS, 79(8):
2554–2558, 1982.

Hopfield, J. J. Neurons with graded response have collective
computational properties like those of two-state neurons.
PNAS, 81(10):3088–3092, 1984.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lapedes, A. and Farber, R. A self-optimizing, nonsymmetri-
cal neural net for content addressable memory and pattern
recognition. Physica D: Nonlinear Phenomena, 22(1-3):
247–259, 1986.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated
graph sequence neural networks. ICLR, 2016.

Liao, R., Brockschmidt, M., Tarlow, D., Gaunt, A., Urtasun,
R., and Zemel, R. Graph partition neural networks for
semi-supervised classification. In ICLR Workshop, 2018.

Maaten, L. v. d. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 9(Nov):
2579–2605, 2008.

Maclaurin, D., Duvenaud, D., and Adams, R. Gradient-
based hyperparameter optimization through reversible
learning. In ICML, pp. 2113–2122, 2015.

Ollivier, Y., Tallec, C., and Charpiat, G. Training recurrent
networks online without backtracking. arXiv preprint
arXiv:1507.07680, 2015.

Paige, C. C. and Saunders, M. A. Lsqr: An algorithm
for sparse linear equations and sparse least squares.
ACM transactions on mathematical software, 8(1):43–71,
1982.

Pearlmutter, B. A. Fast exact multiplication by the hessian.
Neural Computation, 6(1):147–160, 1994.

Pineda, F. J. Generalization of back-propagation to recurrent
neural networks. Physical review letters, 59(19):2229,
1987.

Rudin, W. Principles of mathematical analysis, volume 3.
McGraw-hill New York, 1964.

Samuel, K. G. and Tappen, M. F. Learning optimized map
estimates in continuously-valued mrf models. In CVPR,
pp. 477–484. IEEE, 2009.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

Scellier, B. and Bengio, Y. Equivalence of equilibrium prop-
agation and recurrent backpropagation. arXiv preprint
arXiv:1711.08416, 2017a.

Reviving and Improving Recurrent Back-Propagation

Scellier, B. and Bengio, Y. Equilibrium propagation: Bridg-
ing the gap between energy-based models and backpropa-
gation. Frontiers in Computational Neuroscience, 11:24,
2017b.

Schraudolph, N. N. Fast curvature matrix-vector products
for second-order gradient descent. Neural Computation,
14(7):1723–1738, 2002.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
In NIPS, pp. 2951–2959, 2012.

Sutskever, I. Training recurrent neural networks. PhD thesis,
University of Toronto, 2013.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In NIPS, pp. 3104–
3112, 2014.

Tallec, C. and Ollivier, Y. Unbiasing truncated backpropa-
gation through time. arXiv preprint arXiv:1705.08209,
2017.

Vassil, S. D. and Diego, F. G. C. On the computation of
neumann series. arXiv preprint arXiv:1707.05846, 2017.

Werbos, P. J. Backpropagation through time: what it does
and how to do it. Proceedings of the IEEE, 78(10):1550–
1560, 1990.

Westreich, D. Evaluating the matrix polynomial i+a+. . .+a
n-1. IEEE Transactions on Circuits and Systems, 36(1):
162–164, Jan 1989.

Williams, R. J. and Peng, J. An efficient gradient-based
algorithm for on-line training of recurrent network trajec-
tories. Neural Computation, 2(4):490–501, 1990.

Yang, Z., Cohen, W. W., and Salakhutdinov, R. Revisiting
semi-supervised learning with graph embeddings. In
ICML, 2016.

Appendix: Reviving and Improving Recurrent Back-Propagation

Renjie Liao 1 2 3 Yuwen Xiong 1 2 Ethan Fetaya 1 3 Lisa Zhang 1 3 KiJung Yoon 4 Xaq Pitkow 4 5

Raquel Urtasun 1 2 3 Richard Zemel 1 3 6

A similar technique to RBP was discovered in physics by
Richard Feynman (Feynman, 1939) in modeling molecular
forces back in the 1930’s. When the energy of molecules
are in steady state, the forces on the molecules are defined
as the gradient of energy w.r.t. the position parameters of
molecules.

1. Assumptions of RBP
In this section, we will further discuss the assumptions
imposed by RBP.

1.1. Contraction Map

Contraction map is often adopted for constructing a con-
vergent dynamic system. But it also largely restricts the
model capacity and is also hard to satisfy for general neural
networks. Moreover, as pointed out by (Li et al., 2016),
on a special cycle graph, contraction map will make the
impact of one node on the other decay exponentially with
their distance.

1.2. Local Regularization At Convergence

Recall that in order to apply implicit function theorem, we
just to need to make sure that no singular value of the Jaco-
bian is zero. In particular, note that |det(I − JF,h∗)| > 0 is
equivalent to |det(I − JF,h∗)|2 > 0, one can equivalently
rewrite the condition II as,

|det(I − JF,h∗)|2 =
∏

i

|σi(I − JF,h∗)|2 > 0. (1)

Note that for any square matrix A, we have,

det(A>A) = det(A>)det(A) = det(A)2 (2)

Therefore, we can instead focus on the positive semi-definite
matrix (I − JF,h∗)>(I − JF,h∗). The condition can be
equivalently stated as below,

λmin
(
(I − JF,h∗)>(I − JF,h∗)

)
> 0, (3)

where λmin is the smallest eigenvalue. We now briefly dis-
cuss two ways of maximizing the smallest eigenvalue.

Maximizing Lower Bound One way to achieve this is to
enforce the lower bound of λmin is larger than zero. Specif-
ically, according to Gershgorin Circle Theorem, if A is
positive definite, we have,

λmin (A) ≥ 1− ‖A− I‖∞ ≥ 1−√n‖A− I‖F . (4)

We can instead maximize the lower bound by adding the
term max (0,

√
n‖A− I‖F − 1) to the loss function. One

may need to add a small constant to A if A is only positive
semi-definite rather than positive definite. Note that the
RHS term is not necessarily larger than zero.

Direct Maximizing By Differentiating Through Lanczos
Another possible solution is to treat Lanczos algorithm as
a fix computational graph to compute the smallest eigen-
value of (I − JF,h∗)>(I − JF,h∗). The most expansive
operator in one step Lanczos is the matrix-vector product
(I − JF,h∗)>(I − JF,h∗)v which has doubled complexity
as back-propagation. Differentiating through Lanczos via
BPTT is even more expansive which also provides rooms
for applying RBP. We can add a term max (0,−λmin) to the
loss function. Note that the computational complexity of
this method is generally high which seems to be impractical
for large scale problems.

2. Recurrent Back-Propagation based on
Neumann Series

In this section, we restate the propositions and prove them.
Proposition 1. Assume that we have a convergent RNN
which satisfies the implicit function theorem conditions. If
the Neumann series

∑∞
t=0 J

t
F,h∗ converges, then the full

Neumann-RBP is equivalent to BPTT.

Proof. Since Neumann series
∑∞

t=0 J
t
F,h∗ converges, we

have (I − JF,h∗)−1 =
∑∞

t=0 J
t
F,h∗ . By substituting it into

Eq. (8), we have,

∂L

∂wF
=

∂L

∂y

∂y

∂h∗
(I − JF,h∗)−1 ∂F (x,wF , h

∗)

∂wF

=
∂L

∂y

∂y

∂h∗
(
I + JF,h∗ + J2

F,h∗ + . . .
) ∂F (x,wF , h

∗)

∂wF

=
∂L

∂y

∞∑

k=0

∂y

∂h∗
Jk
F,h∗

∂F (x,wF , h
∗)

∂wF
. (5)

ar
X

iv
:1

80
3.

06
39

6v
3

 [
cs

.L
G

]
 1

3
A

ug
 2

01
8

Appendix: Reviving and Improving Recurrent Back-Propagation

Therefore, the full Neumann-RBP is equivalent to original
RBP which is further equivalent to BPTT due the implicit
function theorem.

Proposition 2. For the above RNN, let us denote its con-
vergent sequence of hidden states as h0, h1, . . . , hT where
h∗ = hT is the steady state. If we further assume that
there exists some step K where 0 < K ≤ T such that
h∗ = hT = hT−1 = · · · = hT−K , then K-step Neumann-
RBP is equivalent to K-step TBPTT.

Proof. Since Neumann series
∑∞

t=0 J
t
F,h∗ converges, we

have (I − JF,h∗)−1 =
∑∞

t=0 J
t
F,h∗ . By substituting it into

Eq. (8) and truncate K steps from the end, then the gradient
of TBPTT is

∂L

∂wF
=

∂L

∂y

∂y

∂h∗

K∑

k=0

(
T−k∏

i=T

JF,hi

)
∂F (x,wF , h

T−k)

∂wF
.

=
∂L

∂y

K∑

k=0

∂y

∂h∗
Jk
F,h∗

∂F (wF , h
∗)

∂wF
, (6)

where the second row uses the fact that h∗ = hT =
hT−1 = · · · = hT−K . Comparing Eq. (5) and Eq. (6),
it is clear that we exactly recover the K-step Neumann-
RBP.

Proposition 3. If the Neumann series
∑∞

t=0 J
t
F,h∗ con-

verges, then the error between K-step and full Neumann
series is as following,
∥∥∥∥∥

K∑

t=0

Jt
F,h∗ − (I − JF,h∗)−1

∥∥∥∥∥ ≤
∥∥(I − JF,h∗)−1

∥∥ ‖JF,h∗‖K+1

Proof. First note that,

(I − JF,h∗)

(
K∑

t=0

J
t
F,h∗

)
= I

(
K∑

t=0

J
t
F,h∗

)
− JF,h∗

(
K∑

t=0

J
t
F,h∗

)

= I − J
K+1
F,h∗ . (7)

Multiplying (I − JF,h∗)−1 on both sides, we get,

(
K∑

t=0

J
t
F,h∗

)
= (I − JF,h∗)−1

(
I − J

K+1
F,h∗

)
. (8)

With a bit rearrange, we have,
(

K∑

t=0

J
t
F,h∗

)
− (I − JF,h∗)−1

= −(I − JF,h∗)−1
J

K+1
F,h∗ . (9)

The result is then straightforward by using Cauchy-Schwarz
inequality.

We further prove the following proposition regarding to the
relationship between Neumann-RBP and the original RBP
algorithm.

Truncate Step TBPTT RBP CG-RBP Neumann-RBP

10 100% 1% 100% 100%
20 100% 4% 100% 100%
30 100% 99% 100% 100%

Table A1. Success rate of different methods with different trun-
cation steps. RBP is unstable until the truncation step reaches
30.

Proposition 4. K + 1-step RBP algorithm returned the
same gradient with K-step Neumann-RBP if z0 in original
RBP is initialized as a zero vector.

Proof. To prove this proposition, we only need to compare
the vector zK+1 and gK returned by two algorithms respec-
tively. For original RBP, recall in Algorithm 1, we have the
following recursion,

zt = J>F,h∗zt−1 +

(
∂L

∂y

∂y

∂h∗

)>
. (10)

Therefore, after K + 1 step, we have,

zK+1 =
(
J>F,h∗

)K+1
z0 +

K∑

t=0

(
J>F,h∗

)t(∂L
∂y

∂y

∂h∗

)>
.

(11)

For Neumann-RBP, we have the following recursion from
Algorithm 2,

vt = J>vt−1
gt = gt−1 + vt (12)

with v0 = g0 =
(

∂L
∂y

∂y
∂h∗

)>
. Therefore, after K step, we

have the following expansion,

gK =

K∑

t=0

(
J>F,h∗

)t(∂L
∂y

∂y

∂h∗

)>
. (13)

The relationship is now obvious.

3. Experiments
3.1. Example Code

Our Neumann-RBP is very simple to implement as long
as the auto-differentiation function is provided. Here we
show an example code based on PyTorch in Listing 1. The
effective number of lines is less than 10.

3.2. Continuous Hopfield Network

The success rates out of 100 experiments with different ran-
dom corruptions and initialization are counted in Table A1.

Appendix: Reviving and Improving Recurrent Back-Propagation

We consider one trial as successful if its final training loss
is less than 50% of the initial loss. From the table, we can
see that original RBP almost always fails to converge until
the truncation step increases to 30 whereas both CG-RBP
and Neumann-RBP have no issues to converge.

Figure A1 shows full results of visualization of associative
memory.

3.3. Citation Networks

Table A2 shows the statistics of datasets we used in our
experiments.

Dataset #Nodes #Edges #Classes #Features

Cora 2,708 5,429 7 1,433
Pubmed 19,717 44,338 3 500

Table A2. Dataset statistics of citation networks.

We also inlcude the comparsion with the recent work
ARTBP (Tallec & Ollivier, 2017). The experiment setting
is exactly the same as described in the paper. Since the un-
derlying RNN has the loss defined at the last time step, i.e.,
100th step, we adapt the ARTBP as follows: instead of ran-
domly truncating at multiple locations, we randomly choose
one time step to truncate. Similar analysis can be derived to
compensate the truncated gradient such that it is unbiased.
Due to the limited time, we only tried uniform and truncated
Poisson distribution (expected truncation point is roughly at
the 95th time step which is where TBPTT stops) over the
truncation location. We use SGD with momentum as the
optimizer for all methods. The average validation accuracy
over 10 runs are in the table below. We can see that both
ARTBP variants do not perform as well as Neumann-RBP
in this setting. ARTBP with truncated Poisson is better than
the one with uniform which matches the other observation
that TBPTT is better than full BPTT.

Test Acc. Cora

Baseline 39.96 ± 3.4
BPTT 24.48 ± 6.6

TBPTT 46.55 ± 6.4
Uniform-ARTBP 27.88 ± 3.2
TPoisson-ARTBP 42.22 ± 7.1

RBP 29.25 ± 3.3
CG-RBP 39.26 ± 6.5

Neumann-RBP 46.63 ± 8.3

Table A3. Test accuracy of different methods on citation networks.

References
Feynman, R. P. Forces in molecules. Physical Review, 56

(4):340, 1939.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated
graph sequence neural networks. ICLR, 2016.

Tallec, C. and Ollivier, Y. Unbiasing truncated backpropa-
gation through time. arXiv preprint arXiv:1705.08209,
2017.

Appendix: Reviving and Improving Recurrent Back-Propagation

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

Figure A1. Visualization of associative memory. (a) Corrupted input image; (b)-(f) are retrieved images by BPTT, TBPTT, RBP, CG-RBP,
Neumann-RBP respectively.

1 def neumann_rbp(weight, hidden_state, loss, rbp_step)
2 # get the gradient of last hidden state
3 grad_h = autograd.grad(loss, hidden_state[-1], retain_graph=True)
4

5 # set v, g to grad_h
6 neumann_v = grad_h.clone()
7 neumann_g = grad_h.clone()
8

9 for i in range(rbp_step):
10 # set last hidden_state’s gradient to neumann_v[prev]
11 # and get the gradient of last second hidden state
12 neumann_v = autograd.grad(
13 hidden_state[-1], hidden_state[-2],
14 grad_outputs=neumann_v,
15 retain_graph=True)
16

17 neumann_g += neumann_v
18

19 # set last hidden_state’s gradient to neumann_g
20 # and return the gradient of weight
21 return autograd.grad(hidden_state[-1], weight, grad_outputs=neumann_g)

Listing 1. PyTorch example code

