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Abstract

Bayesian neural networks (BNNs) allow us to
reason about uncertainty in a principled way.
Stochastic Gradient Langevin Dynamics (SGLD)
enables efficient BNN learning by drawing sam-
ples from the BNN posterior using mini-batches.
However, SGLD and its extensions require stor-
age of many copies of the model parameters, a
potentially prohibitive cost, especially for large
neural networks. We propose a framework,
Adversarial Posterior Distillation, to distill the
SGLD samples using a Generative Adversarial
Network (GAN). At test-time, samples are gen-
erated by the GAN. We show that this distillation
framework incurs no loss in performance on re-
cent BNN applications including anomaly detec-
tion, active learning, and defense against adver-
sarial attacks. By construction, our framework
distills not only the Bayesian predictive distri-
bution, but the posterior itself. This allows one
to compute quantities such as the approximate
model variance, which is useful in downstream
tasks. To our knowledge, these are the first re-
sults applying MCMC-based BNNs to the afore-
mentioned applications.

1. Introduction
Neural networks (NNs) are often viewed as powerful black-
box systems whose behaviors are difficult to interpret and
control. Despite significant progress made on supervised
learning with Stochastic Gradient Descent (SGD), users are
still apprehensive when applying NNs in safety-critical sys-
tems. Moreover, recent work has shown that modern neural
networks can be miscalibrated and may be over-confident
about their predictions (Guo et al., 2017). The overarching
motivation of this research is to have reliable estimates of
uncertainty when making predictions with a NN.
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Uncertainty is important in many scenarios. For exam-
ple, designers of autonomous cars might want passengers
to take control when the system is uncertain about the
scene. Uncertainty can also be used to understand a system,
such as in the prediction of basketball player movements;
a player’s offensive skill can be gauged by the amount of
uncertainty he is able to induce by his movements.

Bayesian methods provide a principled way to model un-
certainty through the posterior distribution over model pa-
rameters. Most approaches for learning Bayesian Neural
Networks (BNNs) (MacKay, 1992) fall into one of two cat-
egories: variational inference (VI) or Markov chain Monte-
Carlo (MCMC). The disadvantage of MCMC methods is
their computational cost, both in terms of time and storage,
and the difficulty in evaluation. However, MCMC methods
are appealing because, in the limit, they produce samples
from the true posterior. In contrast, VI methods require one
to choose a family of approximating distributions, and thus
can only produce samples from an approximate posterior.

The main goal of our work is to reduce the storage over-
head involved in maintaining MCMC samples, and to show
the usefulness of MCMC methods in modern BNN ap-
plications. We employ Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014a) to model the MCMC
samples. This yields a parametric approximation (i.e., the
generator) of the distribution of MCMC samples, that elim-
inates the storage overhead while providing access to the
posterior at test-time. We evaluate our approach on a range
of applications including classification, anomaly detection,
active learning, and defense against adversarial examples,
and show that the distilled samples perform as well as the
original MCMC samples. We also analyze the suitability
of GANs for this distillation process, taking into account
recent advances in stabilizing GANs.

2. Background
In this section, we provide a brief overview of BNNs and
the technical background required for our study.

2.1. Uncertainty Estimates with BNNs

In the standard deterministic NN setup, we aim to optimize
the network parameters θ given a loss function L and a
dataset of input-output pairs D = {(xi, yi)}Ni=1 as follows:
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θ = argminθ′L(θ′,D) (1)

where typically the loss is the regularized negative log-
likelihood:

L = −
∑
i

log p(yi|xi, θ′) + ‖θ′‖22 (2)

This is equivalent to MAP estimation of a BNN with a
Gaussian prior, θ ∼ N (0, I) = p(θ). At test time, one
uses the learned parameters to make predictions.

In contrast to a deterministic NN, where parameters are
represented by a point estimate, the parameters in a BNN
are represented by probability distributions. Given a prior
distribution p(θ) over model parameters, the goal is to ob-
tain the posterior p(θ|D). At test time, instead of using
the point-estimate approximation, one needs to marginalize
out the posterior. We provide a more detailed discussion in
Section 3.

2.2. Stochastic Gradient Langevin Dynamics

Stochastic Gradient Langevin Dynamics (SGLD) is a piv-
otal work for the application of MCMC methods to BNNs
(Welling & Teh, 2011). Each iteration of MCMC tradition-
ally requires computation over the full dataset (e.g., to com-
pute the Metropolis-Hastings acceptance ratio). Welling &
Teh (2011) develop theoretical justification for learning the
posterior using mini-batches of data. Given a standard clas-
sification problem with a loss function as given in Eqn. 2,
the usual SGD update can be written as:

∆θt =
εt

2

(
∇ log p(θt) +

N

n

n∑
i=1

∇ log p(yti |xti, θt)

)
(3)

where n is the mini-batch size, and superscript t denotes
the update iteration. Then, the SGLD update is just:

∆θt =
εt

2

(
∇ log p(θt) +

N

n

n∑
i=1

∇ log p(yti |xti, θt)

)
+ηt

(4)
where ηt ∼ N (0, εt). Note that Eqn. 4 is simply Eqn. 3
with added Gaussian noise. Welling & Teh (2011) show
that when the step-size εt is decayed polynomially, the pro-
cess transitions from stochastic optimization to Langevin
dynamics, where each update yields an unbiased sample
from the posterior.

In this work, we use SGLD to obtain samples of θ. How-
ever, our framework is also compatible with other exten-
sions to SGLD; these extensions are complementary to our
method.

2.3. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are an approach
to generative modeling that consist of two components: a

generator, G, maps random noise z ∼ N (0, I) to approx-
imate data samples G(z); and a discriminator, D, tries to
distinguish between generated data G(z) and real data x.
G is trained to confuse D. In our approach, the “data” are
the model samples θ, hence we write θ instead of x when
appropriate. The GAN objective is:
min
G

max
D

Eθ∼p(θ|D)[logD(θ)]+Ez∼pz(z)[log(1−D(G(z)))]

(5)
A recent GAN formulation with empirical success uses
Wasserstein distance as the loss (Arjovsky et al., 2017).
In (Arjovsky et al., 2017), D is required to be Lipschitz
continuous, and weight clipping is used as a crude approx-
imation. Extensions include using a gradient penalty (Gul-
rajani et al., 2017), and finite differences of gradients (Wei
et al., 2018) to enforce this constraint. Other formulations
of the Wasserstein distance have also been studied (Sali-
mans et al., 2018). In this work, we opt to use the WGAN
with gradient penalty (WGAN-GP) (Gulrajani et al., 2017),
which optimizes the following objective:

L = Eθ̃∼Pg [D(θ̃)]− Eθ∼Pr [D(θ)]

+ λEθ̂∼Pθ̂ [(||∇θ̂D(θ̂)||2 − 1)2]
(6)

Evaluation. Despite recent advances in GANs, evalua-
tion remains a challenge. Most research in GANs deals
with image generation, for which it is difficult to quantify
performance. Some metrics are based on visual quality,
including the InceptionScore (Salimans et al., 2016) and
unsupervised SSIM (Rosca et al., 2017). Similarly, evalu-
ating the quality of MCMC posterior samples has long been
a challenge. In this work, because our samples are network
parameters, we have the opportunity to quantitatively eval-
uate the samples—both the original SGLD samples and the
ones generated by the GAN—by applying the BNN with
those parameters across a range of applications (see Sec-
tion 4).

3. Method
In this section, we introduce a framework for Bayesian in-
ference that consists of two steps: 1) obtain a set of sam-
ples from the posterior distribution over network param-
eters θ ∼ p(θ|D) using SGLD; 2) train a WGAN-GP to
model the posterior samples. This process is illustrated in
Figure 1. The result is a single generative model that distills
the posterior distribution; this allows us to draw samples ef-
ficiently (i.e., in parallel, as opposed to traditional MCMC
steps which are performed sequentially), with little storage
overhead (i.e., we only need to store the parameters of a
relatively small generator). We call this formulation Ad-
versarial Posterior Distillation (APD).

The distillation process can be performed either offline or
online. We outline the offline variant of APD in Algorithm
1. This requires the user to store a large number of samples
prior to distillation. We further generalize this framework



Adversarial Posterior Distillation

Distillation
Inference

SGLD

APD

Figure 1. APD Framework. Distillation: Posterior samples are
generated from the target network (top) and used to train the gen-
erator network (bottom). Inference: When performing inference,
we sample from the generator network.

Algorithm 1 Offline APD
1: Sample {θt}Tt=1 using MCMC updates, where T de-

notes the number of updates.
2: Optimize G with WGAN-GP loss using {θt}Tt=1 as

real data.

to the online setting where MCMC steps and GAN updates
are interleaved (Algorithm 2). Both variants perform simi-
larly when the buffer θR is reasonably large.

Details. For SGLD, instead of using the sampling scheme
suggested by Welling & Teh (2011), we follow Balan et al.
(2015), where the number of burn-in iterations and the
sampling interval are treated as hyperparameters instead
of monitoring when SGLD transitions into the sampling
phase. Similarly to Balan et al. (2015), we use a fixed learn-
ing rate, as we found that this led to better performance in
our experiments. It has been shown that the bias introduced
by this modified version of SGLD is quantifiable (Vollmer
et al., 2016).

3.1. Uncertainty Estimates

Once the generator is sufficiently trained, we can discard
the SGLD posterior samples and use the generator to pro-
duce samples at test time, for use in downstream tasks. The
common feature of the downstream applications we use for
evaluation is that they require an estimate of uncertainty.
Here we outline the uncertainty estimates used in Section 5.

For prediction using APD, we perform MC integration by
drawing samples from the trained generator:

p(y|x,D) = Eθ|D[p(y|x, θ)] (7)

≈ 1

T

T∑
t=1

p(y|x,G(zt)), zt ∼ N (0, I) (8)

Algorithm 2 Online APD
1: Initialize {θ0,k}Kk=1, the K independent BNN parame-

ters using generated samples from G.
2: while not converged do
3: Sample {θt,k}t+Tmt=t using MCMC updates, where

Tm denotes the number of updates for all k.
4: Add {θt,k} to θR denoting a buffer of samples to

distill
5: Optimize G with WGAN-GP loss using θR as real

data for Tg gradient steps.
6: end while

To measure uncertainty, we can compute the entropy,
H(y|x,D) or the Bayesian Active Learning by Disagree-
ment objective (BALD) (Houlsby et al., 2011):

I(y, θ|x,D) = H(y|x,D)− Eθ|D[H(y|x, θ)] (9)

or the variations-ratio (VR):

VR(x) = 1− 1

T

∑
t

1[yt = c∗],

c∗ = argmaxc
∑
t

1[yt = c], where c indexes classes

yt = argmaxyp(y|x,G(zt))

(10)

or the approximate model variance as defined in Feinman
et al. (2017):

U(x) =
1

T

T∑
t=1

pTt pt − (
1

T

T∑
t=1

pt)
T (

1

T

T∑
t=1

pt) (11)

where pt are the stochastic vectors of class predictions.

4. Related Work
In this section, we give an overview of recent BNN learning
methods and modern applications of BNNs, to motivate our
experimental studies.

4.1. Learning BNNs

Variational Inference (VI). VI methods construct an ap-
proximating distribution q(θ) ≈ p(θ|D) and optimize to
make the approximation close to the true posterior. This
often involves making assumptions such as that the param-
eters can be fully-factorized, as p(θ | D) =

∏
p(wi | D).

VI was first proposed for neural networks by Hinton &
Van Camp (1993). Graves (2011) made VI practical by in-
troducing a stochastic VI method with a diagonal Gaussian
posterior. Graves’ method uses a biased Monte Carlo esti-
mate of the variational lower bound. Later, Blundell et al.
(2015) introduced an algorithm for training BNNs called
Bayes by Backprop (BBB), that uses an unbiased Monte
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Carlo estimate of the lower bound, based on the reparam-
eterization trick (Kingma & Welling, 2014; Rezende et al.,
2014).

An alternative approach is Expectation Propagation (EP)
(Minka, 2001), a deterministic approximation method that
extends assumed density filtering (ADF) by iteratively re-
fining the approximations. Probabilistic Backpropagation
(PBP) (Hernández-Lobato & Adams, 2015) is a recently-
introduced online extension of EP.

More recently, Louizos & Welling (2017) proposed to use
the idea of a flow to break the simplifying mean-field as-
sumption, but this method is still restricted by the kinds
of transformations allowed by a flow (e.g., invertible).
Bayesian Hypernetworks (BH) (Krueger et al., 2017) use
a hypernetwork to generate shift and scale distribution over
network activations, where the hypernet is restricted to be
an invertible generative model.

MCMC MCMC methods have long been used to learn
BNNs (Neal, 1996). However, traditional MCMC meth-
ods require computation over the whole dataset per itera-
tion. Since the introduction of SGLD, a suite of stochastic-
gradient MCMC algorithms have been proposed (Ahn
et al., 2012; 2014; Balan et al., 2015; Chen et al., 2014;
Ding et al., 2014), drawing from the wealth of knowledge
behind general MCMC techniques. This demonstrates the
potential of MCMC methods for BNNs. However, to make
use of these methods, one needs to store a sufficient num-
ber of posterior samples, which incurs significant storage
overhead.

Balan et al. (2015) proposed a method to approximate
the Bayesian predictive distribution using a single net-
work. They train a student model S(y|x,w) to approximate
the Bayesian predictive distribution q(y|x) by minimizing
the KL divergence DKL[Eθ|D[p(y|x, θ)]||S(y|x,w)]. This
avoids the storage cost and integration at test-time. How-
ever, the posterior p(θ|D) is lost at test-time, which makes
this method unfit for cases where the posterior is required
for other computations. In contrast, our formulation aims
to distill the posterior to be sampled from for downstream
use.

Li et al. (2017) studied a framework that most resembles
ours. Both their work and ours use a GAN to replace
MCMC samples, yet the setting and goals are different.
Li et al. (2017) only provided results related to BNNs on
small NNs with 50 hidden units on binary classification ac-
curacy/loss. They instead explored additional tasks such as
using their sampler to improve latent variable inference for
missing-data imputation.

4.2. Recent BNN Applications

A number of interesting applications of BNNs have been
studied in the context of recent VI methods. Similarly, MC

dropout (Gal & Ghahramani, 2016)—which is a simple ap-
proximation that applies dropout (Srivastava et al., 2014)
at test-time—has recently been used in real-world applica-
tions. Below we summarize these results by task.

Standard Classification/Regression. Though perhaps
not the most informative tasks for examining BNNs, re-
gression loss or classification accuracy are usually reported
by BNN studies. Some use 1-dimensional regression prob-
lems (Hernández-Lobato & Adams, 2015). Others use
standard deep learning classification benchmarks such as
MNIST (LeCun et al., 1998; Balan et al., 2015; Blun-
dell et al., 2015; Gal & Ghahramani, 2016), or CIFAR10
(Krizhevsky & Hinton, 2009; Krueger et al., 2017; Louizos
& Welling, 2017), which we adopt as well. Since good
classification accuracy only requires a good point-estimate
of θ, additional tasks are usually used to evaluate BNNs.

Anomaly Detection. Anomaly detection refers to detect-
ing out-of-distribution (OOD) data (such as white noise)
given a BNN trained only on in-distribution data (e.g.,
MNIST). Intuitively, a good BNN should be more uncer-
tain about OOD inputs, enabling better detection of OOD
data. Hendrycks & Gimpel (2016) provide benchmarks for
anomaly detection. Krueger et al. (2017) applied BH to this
task, and showed that both MC dropout and BH outperform
deterministic NNs. Hence, we provide detailed results us-
ing both existing MCMC-based methods and ours.

Exploration. Blundell et al. (2015) used Thompson sam-
pling based on BNN outputs to minimize regret in a ban-
dit problem. Hernández-Lobato & Adams (2015) per-
formed active learning on a 1-dimensional regression prob-
lem. Both of these settings involve fairly small datasets and
models (e.g., input size on the order of 10, and NN with 1-
hidden layer of width 50). More recently, Gal et al. (2017)
achieved good results using MC dropout for active learn-
ing with image data (e.g., MNIST and real-world medical
images).

Detecting Adversarial Attacks. Adversarial examples
(Szegedy et al., 2013) are inputs to a neural network that
are designed to force misclassification. These inputs of-
ten appear normal to humans but cause the neural network
to make inaccurate predictions. This raises an interesting
question: can we train neural networks to detect adversar-
ial examples? Bayesian neural networks are an obvious
candidate for this task and thus they have been explored
before (Feinman et al., 2017; Louizos & Welling, 2017;
Rawat et al., 2017). Related to our work, Feinman et al.
(2017) used MC dropout inference to detect adversarial ex-
amples and showed promising results. To the best of our
knowledge, the use of SGLD for this task has not been ex-
plored.

Lastly, our work is focused on distilling BNNs and study-
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ing modern downstream applications. To the best of our
knowledge, our work is the first to provide results for
MCMC-based BNNs for these applications.

5. Experiments
In this section, we show that APD performs as well as the
true SGLD samples in terms of classification accuracy, and
on the recent anomaly detection benchmarks provided by
Hendrycks & Gimpel (2016). On other difficult tasks—
active learning and defense against attacks—we show that
SGLD does at least as well as MC dropout (Gal & Ghahra-
mani, 2016). APD did not match SGLD, but did perform as
well as MC dropout in each case. Lastly, studies show that
distilling the posterior is a challenging task, and that recent
advances in GANs improve APD. 1

5.1. Toy 2D Classification

We first validated our approach using a 2D toy dataset fol-
lowing Balan et al. (2015). The dataset consists of two clus-
ters of 10 points each in 2D space, easily separable by a lin-
ear classifier. This toy task is used to determine the ability
of a model to capture uncertainty far from the data distribu-
tion. We trained a simple NN to perform binary classifica-
tion on this dataset, using both SGD and SGLD. We used
a fully-connected NN (fcNN) with two hidden layers of 10
units each (2-10-10-2). The results are shown in Figure 2.
The predictive uncertainty increases in regions far from the
observed data. APD was also able to capture this behavior.

5.2. Predictive Performance and Uncertainty

Recently, anomaly detection has been used as a benchmark
for BNNs. Here, we show that SGLD and APD are able
to detect anomalies better than the SGD and MC dropout
baselines.

5.2.1. EXPERIMENTAL SETUP

We used MNIST for our classification and anomaly detec-
tion experiments. We trained on 50,000 examples, and re-
served 10,000 from the standard training set as a fixed vali-
dation set. When training with SGD, we tuned the learning
rate and weight decay on the validation set: we found the
best values to be 0.05 and 0.001, respectively. We did not
use momentum, for fair comparison with vanilla SGLD,
which did not use momentum. For baselines, we used SGD
and MC dropout (MC-Drop), where we used the same pa-
rameters as for SGD, with an additional dropout rate set to
0.5. For SGLD, we did not use dropout, and the number of
burn-in iterations and sampling interval were 500 and 20,
respectively. The batch size for training was fixed at 100
for all methods. For the approximate BNNs—MC-Drop,

1Implementation details can be found at https://
github.com/wangkua1/apd_public

Figure 2. Toy2D Classification Results. Top: The decision
boundaries of models trained with SGD vs SGLD. The 10 × 2
white/black dots are inputs from each of the two classes. The
model learned with SGD is very confident everywhere, whereas
the one learned with SGLD is uncertain far from the training data.
Bottom: The learning curve for the discriminator loss of WGAN-
GP. The initial generated samples result in a random decision
boundary. Middle: As the WGAN-GP loss improves, the deci-
sion boundary looks more similar to the one obtained with real
SGLD samples.

SGLD, and APD—predictions were based on the MC esti-
mate of 200 network samples unless otherwise specified.

We experimented with two fcNN architectures: fcNN1,
with architecture 784-100-10 (79,510 parameters), and
fcNN2, with architecture 784-400-400-10 (478,410 param-
eters). For APD, we used a 3-layer fcNN with 100 hidden
units per layer for both our generator and discriminator, for
all tasks.

5.2.2. CLASSIFICATION ACCURACY

We evaluated the classification accuracy of our method on
MNIST, and compared to SGD, MC dropout, and SGLD.
The results are shown in Table 1. The architectures we
explored use narrow hidden layers compared to typical
dropout architectures but nonetheless contain a large num-
ber of parameters. We include these results to demon-
strate that APD is able to distill the posterior distribution
of large networks without sacrificing performance on this

https://github.com/wangkua1/apd_public
https://github.com/wangkua1/apd_public
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task. Also, these networks, which performed reasonably
on classification, were used for anomaly detection in the
following subsection.

Dataset Model SGD MC-Drop SGLD APD (Ours)

MNIST fcNN1 0.981 0.973 0.979 0.978
MNIST fcNN2 0.981 0.983 0.980 0.981

Table 1. MNIST Classification Results. The samples of net-
work parameters produced by APD achieve classification accu-
racy competitive with other BNN methods, including MC dropout
and SGLD.

5.2.3. ANOMALY DETECTION

We measured the performance of our method on the
MNIST anomaly detection task introduced by Hendrycks
& Gimpel (2016) and used by Louizos & Welling (2017)
and Krueger et al. (2017). Training was unmodified from
the previous subsection. At test-time, the inputs consisted
of both in-distribution and OOD data. We evaluated perfor-
mance using the area under receiver operating curve (AU-
ROC) and the area under precision-recall curves (AUPR+/-
). ROC is the curve of true-positive rate versus false-
positive rate. AUPR+/- is similar, but adjusts for differ-
ent base rates between the two classes. For both metrics,
higher numbers indicate better detection performance. We
refer readers to Hendrycks & Gimpel (2016) for details. 2

Although Hendrycks & Gimpel (2016) and Krueger et al.
(2017) showed reasonable results, the deterministic base-
line NN already performed very well on this task (i.e.,
> 90%). We found that the baseline is susceptible to scal-
ing of the pixel intensity of the OOD data (i.e., when the
intensities are multiplied by a scalar value 6= 1). Hence, for
our experiments we scaled the OOD datasets by a factor of
5. Table 2 shows that our method outperforms SGD and
MC dropout, and is competitive with SGLD. An analysis
of the effect of OOD scaling and more anomaly detection
results are provided in the appendix.

We also investigated the impact of the sample size for
test-time inference, using the fcNN1 network and the
notMNIST OOD dataset. Figure 3 shows that as we in-
creased the sample size, anomaly detection performance
improved. Both SGLD and APD consistently outper-
formed MC dropout.

5.3. Active Learning

For active learning, we followed the experimental setup of
Gal et al. (2017), and evaluated on MNIST. For the acqui-
sition function we used entropy, which performed well in
Gal et al. (2017). The architecture for our prediction model
was based on that of Springenberg et al. (2014). Instead of

2We adapted the evaluation code provided at http://
github.com/hendrycks/error-detection
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ReLU, we used LeakyReLU with a negative slope of 0.2,
and we used half the number of filters of the original ar-
chitecture. Our initial training set consisted of 20 labeled
images, 2 from each of the 10 digit classes; the rest of the
images formed a poolset. In each acquisition iteration, the
model used an acquisition function to choose a set of 10
images from the pool to be labeled (e.g., by a human or or-
acle). Figure 4 shows that BNNs outperform point-estimate
counterparts consistently, and that using entropy as the ac-
quisition function is better than random. Our method per-
forms best early (i.e., < 10 acquisitions) due to either a
better regularization effect or better uncertainty for active
learning.

5.4. Adversarial Example Detection

Adversarial examples are inputs to a classifier which have
been maliciously designed to force misclassification. These
inputs are typically produced by taking some existing data
point and applying a small perturbation to cause inaccu-
rate predictions (Szegedy et al., 2013; Goodfellow et al.,
2014b). Given an input data point x which is correctly
classified as y, a small perturbation, δ, is added such that
x̂ = x + δ is now classified as ŷ 6= y by the classifier.

http://github.com/hendrycks/error-detection
http://github.com/hendrycks/error-detection
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Dataset SGD MC-Dropout SGLD APD (Ours)

Det. area under ROC PR+ PR- ROC PR+ PR- ROC PR+ PR- ROC PR+ PR-

VR

notMNIST 64.2 67.6 54.4 88.0 87.2 82.1 98.1 97.8 98.3 97.8 97.4 98.1
OmniGlot 84.2 84.9 78.7 91.5 90.8 90.3 99.0 98.8 99.1 98.8 98.6 99.1
CIFAR10bw 61.4 66.1 52.2 90.1 88.5 86.5 97.4 97.0 97.5 96.9 96.5 96.7
Gaussian 67.3 70.2 57.4 91.3 89.8 89.0 99.6 99.6 99.7 99.6 99.5 99.6
Uniform 85.4 80.7 85.8 93.6 91.2 94.8 99.8 99.8 99.9 99.8 99.7 99.8

BALD

notMNIST - - - 87.0 85.0 81.0 99.7 99.8 99.6 99.6 99.7 99.5
OmniGlot - - - 91.4 90.7 90.5 99.9 100.0 99.9 99.9 99.9 99.9
CIFAR10bw - - - 89.3 86.2 86.0 99.4 99.4 99.2 99.1 99.3 98.3
Gaussian - - - 90.9 88.6 89.3 100.0 100.0 100.0 100.0 100.0 100.0
Uniform - - - 97.3 96.6 97.9 100.0 100.0 100.0 100.0 100.0 100.0

Table 2. MNIST Anomaly Detection Results with fcNN2 (784-400-400-10). We use variations ratio (top), and BALD (bottom). We
show anomaly detection results on several OOD datasets (Hendrycks & Gimpel, 2016), with OOD data scaled by a factor of 5.

Source Attack Type MC-Drop SGLD Ours

MC-Drop FGSM 89.53 94.01 91.70
PGD 88.37 93.95 91.63

SGLD FGSM 54.99 83.76 75.93
PGD 56.91 84.98 82.80

Ours FGSM 54.51 83.05 86.02
PGD 54.98 88.01 93.15

Table 3. MNIST Adversarial Detection Results. Each row
shows the AUROC for FGSM and PGD adversaries under each
source model.

Different choices of attack determine the form of the per-
turbation. In practice, we can often find δ which is imper-
ceptibly small.

We focused on two attacks: Fast Gradient-Sign Method
(FGSM) (Goodfellow et al., 2014b), and Projected Gra-
dient Descent (PGD) (Kurakin et al., 2016; Madry et al.,
2017). FGSM utilizes a simple unit step in the direction
of increasing gradient of the network’s cost function. PGD
utilizes repeated smaller steps of the same form, while pro-
jecting the output onto Bε(x), the `-infinity ball of size
ε. FGSM is considered a relatively easy attack to defend
against, while PGD is a strong attack with evidence sup-
porting it as a “universal” first-order attack (Madry et al.,
2017). We made use of the foolbox library (Rauber et al.,
2017) for both of these attacks, using our own implemen-
tation for PGD.

In this work, the adversary has access to the network archi-
tecture and a single posterior sample. We generated 6000
adversarial examples from the validation set using this pos-
terior sample as fixed network weights. We then used 1000
samples from the posterior distribution to detect whether an
input point was an adversarial example or belonged to the
test set. We refer to this scheme as a gray-box attack be-
cause the attacker does not have access to the full posterior
distribution. For these experiments, we used the approx-
imate model variance (Eqn. 11) which we found outper-
formed entropy and BALD on this problem.

Table 3 shows the results of using various MC techniques
to detect adversarial examples. We compared SGLD and
our method to MC dropout inference detection (Feinman

et al., 2017) as a baseline. We used a small single-hidden-
layer network with 100 units. For each detection method,
we generated attacks using samples from the source model
and tested these attacks against all other approaches.

We found that all three approaches were effective when
detecting adversarial examples crafted with their own net-
works. However, when transferring attacks between net-
works there was a steep drop-off for MC dropout infer-
ence which performed only slightly better than random.
Both SGLD inference and our own method were able to
detect transferred attacks. In this setting we were able to
see a more substantial gap between SGLD and our own
method—suggesting that the GAN was unable to capture
some quality of the posterior distribution that is critical for
adversarial example detection.

Finally, we note that previous attempts at detection have
proven ill-tested. Following the guidance of Carlini &
Wagner (2017), we argue that it is critical to evaluate these
methods on a more challenging dataset such as CIFAR-10
(Krizhevsky & Hinton, 2009) and using attacks which take
advantage of the detection scheme. We hope to explore this
in future work.

5.5. Distillation with GANs

Here, we show that distilling the parameters of a network
is not trivial, and that recent advances in GANs make them
a promising approach. For the experiments in this section,
we used the fcNN1 architecture and measured performance
on the anomaly detection task (see Section 5.2.3) with the
notMNIST OOD dataset (as it is one of the most challeng-
ing ones).

Do we need a GAN? Using MCMC methods allows us
to avoid making simplifying assumptions about the poste-
rior distribution. In this section we show evidence that the
multimodal posterior distribution induced by SGLD sam-
ples cannot be completely represented with simple, fully
factorized approximations. We performed this analysis us-
ing a series of Mixture of Gaussians (MoG) with increasing
number of components, Nc. We fit the MoG to posterior
samples using the EM algorithm (Dempster et al., 1977).
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Figure 5. Effect of Increasing Number of GMM Components
on Anomaly Detection. The dashed lines correspond to the per-
formance when using SGLD samples used to train the GMM di-
rectly. We see improved performance as the number of com-
ponents increases—approaching the performance of using the
SGLD samples directly.

We compared the performance of MoG with varying Nc
for anomaly detection in Figure 5. For each value of Nc
the MoG was trained using 2000 posterior samples drawn
using SGLD, and the uncertainty measure was entropy.
The performance of using SGLD directly is plotted as a
dashed line. We see that when using a single component
(corresponding to a fully factorized Gaussian) the perfor-
mance is poor—suggesting that a single mode is not suffi-
cient to model the posterior. As the number of components
increases, the MoG begins to approach the performance
achieved by using the SGLD samples themselves.

With enough components, the MoG is able to perform well
on the anomaly detection tasks. In order to do so, the diag-
onal covariance MoG requires at least a mean and variance
parameter for each network parameter per component. This
reduces the memory overhead of using SGLD directly, but
is still costly compared to the GAN. Using a MoG model
with 60 components (9.54M parameters) retains 99.3% of
the performance on this task w.r.t. the original SGLD sam-
ples. APD (using WGAN-GP) retains 99.8% of the per-
formance while using fewer parameters (1.67M parameters
with GAN hidden size 20).

APD Storage Savings. We compared the performance of
SGLD and APD using different numbers of samples at test-
time. With a 3-layer GAN with 20 hidden units per layer,
generating 20 samples performs worse than simply using
20 original SGLD samples. However, the storage cost of
APD is not affected by drawing more samples. Figure 6
shows that as we generate more samples from the GAN,
the performance improves and reaches that of 50 SGLD
samples (i.e., 2.5x storage savings).

Comparing GAN Formulations. Our framework makes
use of recent advances in GANs. We compared the training
progress of our GAN using three popular variants: 1) the
original formulation; 2) the Wasserstein GAN with weight-
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Figure 6. Effect of SGLD and APD Sample Size. With APD, the
storage cost (i.e., generator size) is fixed regardless of the number
of samples we generate at test-time. The two horizontal lines ex-
tend the y-value of SGLD at 50 and 100 samples. Here, we used
BALD; VR and entropy yield similar results.
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Figure 7. Comparison of GAN Formulations. WGAN-GP
achieves better performance and converges faster than WGAN or
the original GAN w.r.t. AUROC. Here, we used VR.

clipping; and 3) WGAN with gradient penalty. Figure 7
shows that WGAN-GP converges faster, and exhibits fewer
oscillations from iteration to iteration.

6. Conclusion
We introduced a framework for distilling BNN posterior
samples drawn using SGLD, which we call Adversarial
Posterior Distillation (APD). Experimental results show
that APD is able to retain the characteristics of the SGLD
samples, as measured by performance on downstream ap-
plications including anomaly detection, active learning,
and defense against adversarial attacks. MCMC methods
have attracted relatively little attention in BNNs due to their
computational cost. APD provides a way to reduce the stor-
age cost. Our findings thus demonstrate that these MCMC
methods have the potential to outperform simple alterna-
tives such as MC dropout on important tasks that require
uncertainty estimates. For future directions, we aim to ex-
plore other generative models that can further reduce the
storage cost, such as autoregressive models.
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A. Effect of Input Scale on Anomaly
Detection

In the anomaly detection benchmark introduced in
Hendrycks & Gimpel (2016), the baseline models already
perform very well; hence, the room to improve for BNNs is
not very significant. We performed an exploratory study in
which we found that the baseline NN is highly susceptible
to scaling of the pixel intensities of the out-of-distribution
(OOD) data. We performed this analysis on MNIST (us-
ing the notMNIST OOD dataset) as well as a smaller digit
dataset, sklearn.datasets.load digits (using
downsized notMNIST as OOD data). Figures 8 and 9 illus-
trate the effect of OOD intensity scaling: the performance
of the deterministic NN decreases as we increase the scal-
ing factor; MC dropout is more resistant to increasing scale,
while SGLD and APD are least affected.
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Figure 8. The effect of OOD pixel intensity scal-
ing on difficulty of anomaly detection using the
sklearn.datasets.load digits dataset, with down-
sized notMNIST as the OOD data. Here, we used a small
fully-connected network with architecture 64-100-10, and
measured uncertainty using variation ratios.
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Figure 9. The effect of OOD pixel intensity scaling on difficulty
of anomaly detection using MNIST, with notMNIST dataset OOD
data. We used fcNN1 and measured uncertainty using variation
ratios.

B. Additional Anomaly Detection Results
We present comprehensive results for the anomaly detec-
tion task, with both fcNN1 and fcNN2 networks, and each
of the variation ratios, entropy, and BALD uncertainty
measures. Table 4 shows the performance of SGD, MC
dropout, SGLD, and APD using the fcNN1 network (784-
100-10) with VR, entropy, and BALD. Table 5 shows the
results of each method using the fcNN2 network (784-400-
400-10) with entropy (the results for fcNN2 using VR and
BALD are shown in Table 2 in Section 5.2.3).
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Dataset SGD MC-Dropout SGLD APD (Ours)

Det. area under ROC PR+ PR- ROC PR+ PR- ROC PR+ PR- ROC PR+ PR-

VR

notMNIST 58.5 63.6 50.2 86.5 84.4 84.9 93.2 92.0 92.1 92.7 91.7 91.1
OmniGlot 81.8 83.2 75.3 91.0 89.9 91.2 96.6 95.9 97.2 96.4 95.7 97.0
CIFAR10bw 58.5 63.8 50.2 87.2 85.4 85.0 93.3 92.1 91.5 93.0 93.0 90.8
Gaussian 62.6 66.2 53.5 90.4 88.6 90.1 99.1 98.8 99.3 99.0 98.8 99.2
Uniform 91.7 89.8 92.6 91.8 89.5 93.2 99.4 99.2 99.5 99.3 99.1 99.4

Entropy

notMNIST 57.7 61.4 49.9 83.3 80.2 79.7 92.3 90.9 91.1 92.2 91.0 90.7
OmniGlot 83.5 84.4 78.5 91.0 90.2 91.1 96.4 95.9 96.7 96.7 96.3 97.0
CIFAR10bw 56.8 61.2 49.3 85.6 82.2 83.6 91.1 89.9 87.8 92.3 90.9 90.5
Gaussian 61.3 63.5 52.7 89.6 87.2 89.1 99.2 99.0 99.3 99.3 99.2 99.4
Uniform 95.1 94.0 95.9 94.8 93.2 95.7 99.7 99.6 99.8 99.8 99.7 99.8

BALD

notMNIST - - - 83.4 80.4 79.6 97.8 98.3 95.8 97.6 98.3 95.5
OmniGlot - - - 91.0 90.2 91.2 99.1 99.2 99.0 99.2 99.3 99.1
CIFAR10bw - - - 85.7 82.4 83.6 96.8 97.7 93.2 97.6 98.2 94.8
Gaussian - - - 89.6 87.2 89.1 100.0 100.0 100.0 100.0 100.0 100.0
Uniform - - - 94.7 93.1 95.6 100.0 100.0 100.0 100.0 100.0 100.0

Table 4. MNIST Anomaly Detection Results with fcNN1 (784-100-10) using VR, entropy, and BALD uncertainty measures.

Dataset SGD MC-Dropout SGLD APD (Ours)

Det. area under ROC PR+ PR- ROC PR+ PR- ROC PR+ PR- ROC PR+ PR-

Entropy

notMNIST 61.4 64.4 52.7 87.0 85.0 81.0 98.7 98.5 98.8 98.3 98.0 98.4
OmniGlot 84.0 85.2 78.7 91.4 90.7 90.6 99.4 99.4 99.5 99.3 99.2 99.4
CIFAR10bw 59.9 65.0 51.2 89.1 86.2 85.4 97.8 97.5 97.9 97.2 96.8 96.8
Gaussian 64.2 67.4 54.7 90.9 88.6 89.5 99.8 99.8 99.9 99.8 99.7 99.8
Uniform 86.4 83.0 86.1 97.3 96.5 97.8 99.9 99.8 99.9 99.9 99.8 99.9

Table 5. MNIST Anomaly Detection Results with fcNN2 using entropy. (The results using VR and BALD are given in the main
paper.)


