
Supplementary material for Probabilistic n-Choose-k Models for
Classification and Ranking

Proofs

We introduce shorthand notation #r(yc) =

P
d2c 1 {yd = r} and #r(yc) =

P
d2c 1 {yd  r}

to represent the number of variables in yc that take on value r or value less than or equal to r. We
will also use the notation y�i and yc�i as shorthand for all variables except for i, and all variables
with indices in c except for i, respectively.

Proof of Proposition 1

In order for a variable to be given value R, it must be chosen in the first step of the generative process
that assigns values to variables. For kR = 0, the statement holds with equality (both are 0). For
kR > 0, we have,
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The idea is to split these sums into a common component and a disjoint component e.g.,
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Both p(yi = R) and p(yj = R) will share the first term, so it suffices to compare second terms,
which are disjoint. Here, we can see the summations are identical, except that one will have a sum
involving ✓i, and the other will have a sum involving ✓j , so clearly the claim holds for any kR. The
full probability p(yi = R) is a sum

P
kR

p(yi = R | kR), so given that the relation holds for each
component in the sum, it also holds for the full sum.

Proof of Proposition 2

We begin by dividing event space into a 3 ⇥ 3 matrix of possibilities: {yi � r, yi = r � 1, yi <
r � 1} ⇥ {yj � r, yj = r � 1, yj < r � 1}. The inductive assumption tells us that the sum
of probabilities across the first “row”, p(yi � r) = p(yi � r ^ yj � r) + p(yi � r ^ yj =

r � 1) + p(yi � r ^ yj < r � 1) is greater than or equal to the sum of probabilities across the first
“column”, p(yj � r) = p(yj � r ^ yi � r) + p(yj � r ^ yi = r � 1) + p(yj � r ^ yi < r � 1).
Our goal is to prove that the sum of probabilities across the first two rows is greater than or equal
to the sum of probabilities across the first two columns. The central element of this matrix, which
corresponds to yi = r � 1 ^ yj = r � 1 is included in both sums, so it suffices to show that
p(yi = r ^ yj < r) � p(yj = r ^ yi < r).

As before, we begin by showing that this holds for any particular choice of k, which then implies
that it holds for the summation over all possible k. Similarly, we can assume that we are given an
arbitrary choice of subset c�r of y�i,�j to take on labels � r. The desired property will hold for all
choices, so when we sum over all the choices, it will also still hold.

10



Given k and yc�r
, the argument follows similarly to Proposition 1. The probability of choosing yi

to be in level r is
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The expression for p(yi = r � 1 ^ yj < r � 1) will be identical, but ✓i will be replaced with ✓j .
Using the assumption that ✓i > ✓j completes the proof.

Proof of Proposition 3

We can rewrite gd by regrouping the summation (assuming we have defined f(0) = 0):

gd =

RX

r=1

f(r)p(yd = r) =

RX

r=1

(f(r)� f(r � 1))p(yd  r). (15)

We then consider the difference between gi and gj :

gi � gj =

RX

r=1

(f(r)� f(r � 1))(p(yi  r)� p(yi  r)). (16)

Due to the monotonicity of f , each f(r) � f(r � 1) term will be non-negative. By Lemma 1, the
p(yi  r)� p(yi  r) terms are also all non-negative, so the total sum is non-negative, and we get
gi � gj � 0.

Proof of Proposition 4

ai(bi � bj) + aj(bj � bi) � ai(bi � bj) + ai(bj � bi) = 0

,aibi � aibj + ajbj � ajbi � 0

,aibi + ajbj � aibj + ajbi
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Visualization of the learned parameters from embedded MNIST

Figure 3 shows a visualization of the parameters learned by the binary n-choose-k model on the
embedded MNIST dataset. The likelihood parameters form a 1000⇥ 10 matrix, where each column
corresponds to a different class. We take these and multiply them by the 3600⇥ 1000 RBM weights
that generated the features in order to project them to pixel-space. We then reshape each column to
form a 60 ⇥ 60 image. The same can be done for the prior parameters, except now the 10 columns
correspond to counts instead of classes.

For the likelihood parameters, we show the first four classes corresponding to the digits 0 to 3.
Clearly the parameters recognize the 4⇥ 4 grid in which the digits were embedded (before adding a
slight jitter). For the count parameters, we also visualize the first four, corresponding to the counts
1 to 4. Note that the count parameters became extremely strongly negative after 4, suggesting that
the model correctly learned that there can be at most 4 digits embedded in an image. In logistic
regression, the likelihood parameters look similar to the ones shown, however note that they must
also be used to simultaneously model the prior over counts.

(a) Likelihood parameters

(b) Prior parameters

Figure 3: A visualization of the parameters learned by the binary n-choose-k model on the embed-
ded MNIST dataset. (a) corresponds to the parameters connecting the inputs to the first 4 classes (out
of 10), while (b) corresponds to the input-dependent prior over counts. (also out of 10). White pixels
correspond to large, positive parameters while black pixels correspond to large, negative parameters.
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More LETOR Results
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(l) NP2003

Figure 4: NDCG and Precision for the Ordinal n-Choose-k Model and other benchmark methods
on the LETOR 3 datasets.
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Figure 4: NDCG and Precision for the Ordinal n-Choose-k Model and other benchmark methods
on the LETOR 3 datasets.
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(d) Ohsumed

Figure 5: NDCG and Precision for the Ordinal n-Choose-k Model and other benchmark methods
on the LETOR 3 datasets.
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