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ABSTRACT

Deep networks are increasingly being applied to problems in-

volving image synthesis, e.g., generating images from textual

descriptions and reconstructing an input image from a com-

pact representation. Supervised training of image-synthesis

networks typically uses a pixel-wise loss (PL) to indicate

the mismatch between a generated image and its correspond-

ing target image. We propose instead to use a loss function

that is better calibrated to human perceptual judgments of

image quality: the multiscale structural-similarity score (MS-

SSIM) [1]. Because MS-SSIM is differentiable, it is easily

incorporated into gradient-descent learning. We compare the

consequences of using MS-SSIM versus PL loss on training

autoencoders. Human observers reliably prefer images syn-

thesized by MS-SSIM-optimized models over those synthe-

sized by PL-optimized models, for two distinct PL measures

(L1 and L2 distances). We also explore the effect of training

objective on image encoding and analyze conditions under

which perceptually-optimized representations yield better

performance on image classification. Finally, we demon-

strate the superiority of perceptually-optimized networks for

super-resolution imaging. We argue that significant advances

can be made in modeling images through the use of training

objectives that are well aligned to characteristics of human

perception.

Index Terms— Perceptual Losses, Deep Learning

1. INTRODUCTION

There has been a recent explosion of interest in developing

methods for image representation learning, focused in partic-

ular on training neural networks to synthesize images. Sur-

prisingly little work has been done to study loss functions

that are appropriate for image generation. A basic method for

learning generative image models is the autoencoder archi-

tecture. Autoencoders are made up of two functions, an en-

coder and a decoder. The encoder compresses an image into

a feature vector, typically of low dimension, and the decoder

takes that vector as input and reconstructs the original image

as output. The standard loss function is the squared Euclidean

(L2) distance between the original and reconstructed images,

also referred to as the mean squared error or MSE. A city-

block (L1) distance is sometimes used as well, referred to as

the mean absolute error or MAE. As we will show, both loss

functions yield blurry results–synthesized images that appear

to have been low-pass filtered.

In this paper, we explore loss functions that, unlike MSE

and MAE, are grounded in human perceptual judgments. We

show that these perceptual losses lead to representations are

superior to other methods, both with respect to reconstruct-

ing given images and image classification. This superiority is

demonstrated both in quantitative studies and human judge-

ments. Beyond achieving perceptually superior synthesized

images, we also demonstrate that perceptual losses yield a

convincing win when applied to a state-of-the-art architecture

for single image super-resolution.

2. BACKGROUND AND RELATED WORK

2.1. Neural Networks for Image Synthesis

The standard neural network for image synthesis is the au-

toencoder, in which the input is mapped directly through hid-

den layers to output a reconstruction of the original image.

The autoencoder is trained to reproduce an image that is sim-

ilar to the input, where similarity is evaluated using a pixel-

wise loss between the image and its reconstruction. A second

approach to building generative models for image synthesis

uses variants of Boltzmann Machines [2, 3] and Deep Belief

Networks [4]. While these models are very powerful, each

iteration of training requires a computationally costly step of

MCMC to approximate derivatives of an intractable partition

function (normalization constant), making it difficult to scale

them to large datasets. A third approach to learning generative

image models, which we refer to as the direct-generation ap-

proach, involves training a generator that maps random sam-

ples drawn from a uniform distribution through a deep neu-

ral network that outputs images. Generative Adversarial Net-

works (GANs) [5, 6, 7] is a paradigm that involves training

a discriminator that attempts to distinguish real from gener-

ated images, along with a generator that attempts to trick the

4277978-1-5090-2175-8/17/$31.00 ©2017 IEEE ICIP 2017



discriminator. Drawbacks of the GAN include the need to

train a second network, a deep and complicated adversary,

and the fact that the training of the two networks are inter-

dependent and lack a single common objective. An alterna-

tive direct-generation approach, moment-matching networks

[8], directly trains the generator to make the statistics of these

two distributions match.

Because the goal of image generation is to synthesize im-

ages that humans would judge as high quality and natural,

current approaches seem inadequate by failing to incorporate

measures of human perception. In this paper, we describe an

alternative approach using the autoencoder architecture. We

focus on autoencoders over direct-generation approaches be-

cause autoencoders interpret images in addition to generating

images. That is, an input image can be mapped to a com-

pact representation that encodes the underlying properties of

the world responsible for the observed image features. The

encoder can thus be used as the initial image mapping that

can be utilized for many different applications. Although ad-

versarial training can be combined with autoencoding, here

we explore autoencoding in isolation, to study the effects of

optimizing with perceptually-based metrics.

Because autoencoders reconstruct training images, train-

ing the network requires evaluating the quality of the re-

construction with respect to the original. This evaluation

is based on a pixel-to-pixel comparison of the images—a

so-called full-reference metric. Autoencoders typically use

mean-squared error (MSE), the average square of the pixel

intensity differences, or mean-absolute error (MAE), the av-

erage of the absolute difference in pixel intensity. In many

instances, these standard measures fail to capture human

judgments of quality. For example, distorting an image with

salt-and-pepper impulse noise obtains a small perturbation

by standard measures but is judged by people as having low

visual quality relative to the original image.

2.2. Perception-Based Error Metrics

As digitization of photos and videos became commonplace

in the 1990s, the need for digital compression also became

apparent. Lossy compression schemes distorted image data,

and it was important to quantify the drop in quality result-

ing from compression in order to optimize the compression

scheme. Researchers attempted to develop full-reference im-

age quality metrics that take into account features to which

the human visual system is sensitive and that ignore features

to which it is insensitive. Some are built on complex models

of the human visual system, such as the Sarnoff JND model

[9], the visual differences predictor [10], the moving picture

quality metric [11], the perceptual distortion metric [12], and

the metric of [13].

Others take more of an engineering approach, and are

based on the extraction and analysis of specific features of an

image to which human perception is sensitive. The most pop-

ular of these metrics is the structural similarity metric (SSIM)

[14], which aims to match the luminance, contrast, and struc-

ture information in an image. Alternative engineering-based

metrics are the visual information fidelity metric [15] and the

visual signal-to-noise ratio [16]. Some of these metrics have

been used for optimization in traditional image reconstruction

paradigms [17, 18], but not in the context of deep learning.

2.3. Structural Similarity

In this paper, we train neural nets with MS-SSIM [1],

a multiscale extension of the structural-similarity metric

(SSIM) [14]. We chose the SSIM family of metrics because

it is well accepted and frequently utilized in the literature.

Further, its pixelwise gradient has a simple analytical form

and is inexpensive to compute. In this work, we focus on the

original grayscale MS-SSIM, although there are interesting

variations such as colorized versions [19, 20].

The SSIM family of metrics compares corresponding pix-

els and their neighborhoods in two images, denoted x and

y, with three comparison functions—luminance (I), contrast

(C), and structure (S):

I(x, y)=
2µxµy + C1

µ2
x + µ2

y + C1

C(x, y)=
2σxσy + C2

σ2
x + σ2

y + C2

S(x, y) =
σxy + C3

σxσy + C3

The variables µx, µy , σx, and σy denote mean pixel intensity

and the standard deviations of pixel intensity in a local image

patch centered at either x or y. Following [14], we chose

a square neighborhood of 5 pixels on either side of x or y,

resulting in 11 × 11 patches. The variable σxy denotes the

sample correlation coefficient between corresponding pixels

in the patches centered at x and y. The constants C1, C2, and

C3 are small values added for numerical stability. The three

comparison functions are combined to form the SSIM score:

SSIM(x, y) = I(x, y)αC(x, y)βS(x, y)γ

This single-scale measure assumes a fixed image sampling

density and viewing distance, and may only be appropriate

for certain range of image scales. This issue is addressed in

[1] with a variant of SSIM that operates at multiple scales si-

multaneously. The input images x and y are iteratively down-

sampled by a factor of 2 with a low-pass filter, with scale

j denoting the original images downsampled by a factor of

2j−1. The contrast C(x, y) and structure S(x, y) components

are applied at all scales. The luminance component is applied

only at the coarsest scale, denoted M . Additionally, a weight-

ing is allowed for the contrast and structure components at

each scale, leading to the definition:

MS-SSIM(x, y) = IM (x, y)αM

M∏

j=1

Cj(x, y)
βjSj(X, y)γj
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Fig. 1. Distribution of image quality ranking for MS-SSIM,

MSE, and MAE on 1000 held-out STL-10 images.

In our work, we weight each component and each scale

equally (α = β1..M = γ1..M = 1), a common simplification

of MS-SSIM. Following [1], we use M = 5 downsampling

steps. Our objective is to minimize the loss related to the sum

of structural-similarity scores across all image pixels,

L(X,Y ) = −

∑

i

MS-SSIM(Xi, Yi),

where X and Y are the original and reconstructed images,

and i is an index over image pixels.

3. AUTOENCODER RECONSTRUCTIONS

We now turn experiments that compare autoencoders trained

with a pixelwise loss (MSE and MAE) to those trained with a

perceptually optimized loss (MS-SSIM). We trained networks

on 96 × 96 images with a convolutional autoencoder archi-

tecture [21]: convolutional layers encode the input and de-

convolutional layers decode the feature representation in the

bottleneck layer. For training and testing, we use the STL-

10 dataset [22], which consists of RGB color images from 10

categories. The images were converted to grayscale using the

ITU-R 601-2 luma transform. For our experiments, we train

our models on the 100,000 images in STL-10 referred to as

the “unlabeled” set, and of the remaining data, we formed a

hold-out set of 10,400 images. More details of the dataset and

architecture are provided in the supplementary materials1.

After training, we collected judgments of perceptual qual-

ity on Amazon Mechanical Turk to assess whether human

observers prefer reconstructions produced by perceptually-

optimized networks or by the pixelwise-loss optimized net-

works. Images were chosen randomly from the STL-10

hold-out set. Participants were presented with a sequence

of screens showing the original (reference) image on the left

and a set of of three reconstructions on the right. Participants

were instructed to drag and drop the images vertically into

the correct order, so that the best reconstruction is on top

1Supplementary materials are available at http://www.cs.

toronto.edu/˜jsnell/perceptual_supplementary.pdf.

(a) (b)

Fig. 2. (a) Four randomly selected, held-out STL-10 im-

ages and their reconstructions for the 128-hidden-unit net-

works. For these images, the MS-SSIM reconstruction was

ranked as best by humans. (b) Four randomly selected test

images where the MS-SSIM reconstruction was ranked sec-

ond or third.

and the worst on the bottom. The initial vertical ordering of

reconstructions was randomized. We asked 20 participants

to each rank 50 images, for a total of 1000 rankings. Fig-

ure 1 shows the distribution over rankings for each of the

three training objectives. If participants chose randomly, one

would expect to see the same number of high rankings for

each model. However, MS-SSIM is ranked highest for a

majority of images (709 out of 1000).

Figure 2a shows examples of images whose MS-SSIM re-

construction was ranked as best by human judges. Figure 2b

shows examples of images whose MSE or MAE reconstruc-

tion was ranked as the best. The strong preference for MS-

SSIM appears to be due to its superiority in capturing fine de-

tail such as the monkey and cat faces and background detail

such as the construction cranes. MS-SSIM seems to have less

of an advantage on simpler, more homogeneous, less textured

images. Note that even when MSE or MAE beats MS-SSIM,

the MS-SSIM reconstructions have no obvious defects rela-

tive to the other reconstructions.

4. IMAGE CLASSIFICATION

In the previous section, we showed that using a perceptually-

aligned training objective improves the quality of image syn-

thesis, as judged by human observers. In this section, we in-

vestigate whether the MS-SSIM objective leads to the discov-

ery of internal representations that are more closely tied to the

factors of variation in images. For these experiments we use

the Extended Yale B Faces dataset [23]. This dataset contains

2,414 grayscale images of 38 individuals and is labeled with

the azimuth (−130◦ to +130◦) and elevation (−40◦ to +90◦)

of the light source in relation to the face. We resized the im-

ages to 48×48 and learned convolutional autoencoders using

MSE, MAE, and MS-SSIM as loss functions. We then used

the bottleneck representations as features for SVMs trained to

predicted identity, azimuth, and elevation. Additional details

are provided in the supplementary materials.
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Loss Identity Azimuth Elevation

MSE 5.60% 277.46 51.46

MAE 5.60% 325.19 50.23

MS-SSIM 3.53% 234.32 35.60

Table 1. Test error for SVMs trained on bottleneck represen-

tations of convolutional autoencoders for Yale B. Classifica-

tion error is the evaluation metric for identity prediction; MSE

is the evaluation metric for azimuth and elevation prediction.

We opted to investigate this prediction task as opposed

to a more straightforward task (such as STL-10 classifica-

tion accuracy) because we expect MS-SSIM to obtain supe-

rior encodings of low- and mid-level visual features such as

edges and contours. Indeed, initial studies showed only mod-

est benefits of MS-SSIM for STL-10 classification accuracy,

where coarse classification (e.g., plane versus ship) does not

require fine image detail. The resulting test performance (Ta-

ble 1) demonstrate that MS-SSIM yields more robust repre-

sentations of relevant image factors than MSE and MAE.

5. IMAGE SUPER-RESOLUTION

We also apply our perceptual loss to the task of super-

resolution (SR) imaging. As a baseline model, we use a

state-of-the-art SR method, the SRCNN [24]. We used the

SRCNN architecture determined to perform best in [24]. It

consists of 3 convolutional layers and 2 fully connected lay-

ers of ReLUs, with 64, 32, and 1 filters in the convolutional

layers, from bottom to top, and filter sizes 9, 5, and 5. All the

filters coefficients are initialized with draws from a zero-mean

Gaussian with standard deviation 0.001.

We construct a training set in a similar manner as [24]

by randomly cropping 5 million patches (size 33 × 33) from

a subset of the ImageNet dataset of [25]. We compare three

different loss functions for the SRCNN: MSE, MAE and

MS-SSIM. Following [24], we evaluate the alternatives uti-

lizing the standard metrics PSNR and SSIM. We tested 4×
SR with three standard test datasets—Set5 [26], Set14 [27]

and BSD200 [28]. All measures are computed on the Y

channel of YCbCr color space, averaged over the test set. As

expected (Table 2), MSE performs best on PSNR because

they are equivalent. However, MS-SSIM achieves a PSNR

comparable to that of MSE, and outperforms other loss func-

tions significantly in the SSIM measure. Close-up visual

illustrations are provided in the supplementary materials.

6. DISCUSSION AND FUTURE WORK

We have investigated the consequences of replacing pixel-

wise loss functions, MSE and MAE, with perceptually-

grounded loss functions, SSIM and MS-SSIM, in neural

networks that synthesize and transform images. Human ob-

Bicubic MSE MAE MS-SSIM

SET5 PSNR 28.44 30.52 29.57 30.35

SSIM 0.8097 0.8621 0.8350 0.8681

SET14 PSNR 26.01 27.53 26.82 27.47

SSIM 0.7018 0.7512 0.7310 0.7610

BSD200 PSNR 25.92 26.87 26.47 26.84

SSIM 0.6952 0.7378 0.7220 0.7484

Table 2. Super-resolution imaging results.

servers consistently judge SSIM-optimized images to be of

higher quality than PL-optimized images. We also found

that perceptually-optimized representations are better suited

for predicting content-related image attributes. Finally, our

promising results on single-image super-resolution highlight

one of the key strengths of perceptual losses: they can easily

be applied to current state-of-the-art architectures by simply

substituting in for a pixel loss such as MSE. Taken together,

our results support the hypothesis that the MS-SSIM loss

encourages networks to encode relevant low- and mid-level

structure in images. We conjecture that the MS-SSIM trained

representations may even be useful for fine-grained classifi-

cation tasks, in which small details are important.

A recent manuscript [29] also proposed using SSIM and

MS-SSIM as a training objective for image processing neural

networks. In this manuscript, the authors evaluate alternative

training objectives based not on human judgments, but on a

range of image quality metrics. They find that MAE outper-

forms MSE, SSIM, and MS-SSIM on their collection of met-

rics, and not surprisingly, that a loss which combines both PL

and SSIM measures does best—on the collection of metrics

which include PL and SSIM measures. Our work goes further

in demonstrating that perceptually-grounded losses attain bet-

ter scores on the definitive assessment of image quality: that

registered by the human visual cortex.

Given our encouraging results, it seems appropriate to in-

vestigate other perceptually-grounded loss functions. SSIM

is the low-hanging fruit because it is differentiable. Nonethe-

less, even black-box loss functions can be cached into a for-

ward model neural net [30] that maps image pairs into a qual-

ity measure. We can then back propagate through the forward

model to transform a loss derivative expressed in perceptual

quality into a loss derivative expressed in terms of individ-

ual output unit activities. This flexible framework will allow

us to combine multiple perceptually-grounded loss functions

and additionally refine any perceptually-grounded loss func-

tions with data obtained from human preference judgments,

such as those we collected in the present set of experiments.
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