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Naturally occurring sensory stimuli are dynamic. In this letter, we con-
sider how spiking neural populations might transmit information about
continuous dynamic stimulus variables. The combination of simple en-
coders and temporal stimulus correlations leads to a code in which infor-
mation is not readily available to downstream neurons. Here, we explore
a complex encoder that is paired with a simple decoder that allows rep-
resentation and manipulation of the dynamic information in neural sys-
tems. The encoder we present takes the form of a biologically plausible
recurrent spiking neural network where the output population recodes
its inputs to produce spikes that are independently decodeable. We show
that this network can be learned in a supervised manner by a simple local
learning rule.

1 Introduction

Naturally occurring sensory stimuli are seldom static; they comprise a large
number of sensory elements, the statistics of which at any given instant are
often a function of what happened previously in time. Light levels change
very quickly over a natural range; odor intensity often varies rapidly and
unpredictably in nature; auditory stimuli such as vocal communication sig-
nals of various animals are made up of many sound elements, the amplitude
and frequency of which change rapidly with time. Experimental studies
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suggest that neural responses to such stimuli reflect the ongoing changes
in stimulus dynamics, even those that occur on a millisecond timescale,
resulting in stimulus-induced temporal correlations in the neural activity.
For example, studies in the insect antennal lobe show that odor intensity is
represented by a spatiotemporal pattern of activity that varies predictably
with the fine-scale temporal dynamics of the odor (Vickers, Christensen,
Baker, & Hildebrand, 2001).

Proper decoding or downstream interpretation of information in neu-
ral response to temporally correlated stimuli requires knowledge of the
stimulus-induced correlations in neural activity. This is evident from
studying the computational consequences of encoding and decoding stim-
ulus trajectories in a Bayesian framework. Even for a simple encoding of
a dynamic stimulus variable, decoding as a Bayesian inverse of the en-
coding model can be computationally difficult. In Huys, Zemel, Natarajan,
and Dayan (2007), we considered noisy memoryless input spikes as being
generated by an independent, inhomogeneous Poisson process. We then
derived the instantaneous posterior distribution over stimulus position as
a Bayesian inverse of the encoding model. Even in this constrained setup,
our results showed that decoding correct estimates of the probability dis-
tribution can be a complex computational problem, requiring access to past
spikes.

For stimuli with Markovian dynamics, the posterior distribution can be
written in a recursive form that depends on only current spikes and a single
population vector summarizing information in past spikes. If correlations
extend further back in time (i.e., for stimuli with “smooth” autocorrela-
tions), the complete history of population spikes is needed to properly
interpret a new spike. This requirement is ecologically relevant, as natural
trajectories tend to vary smoothly over time. In a network of neurons, the
downstream neural population that obtains these spikes as inputs faces
a complicated inference problem, as computational and behavioral con-
straints do not permit retaining the full spiking history. However, it may
be that an adequate approximation to the spike statistics exists and that
a simple representation of an approximate posterior can be maintained
online.

In this letter, we investigate the capacity of a simple method of retaining
the information online using a nonlinear recurrent neural network to form
such an approximation. This network is an instantiation of a hypothesis
about population coding: we suggest that one of the tasks at every level of
processing is to form a new encoding of dynamic stimulus information to
facilitate access to the relevant information by downstream neurons. The
main idea in our approach is that a population of neurons might recode
information in its inputs (i.e., generate a new set of spikes) such that the
resulting representation will obviate the need for the interpretation of
a spike to depend on past spikes. The objective is to recode the input
representation in a form that is relevant and computationally sensible for
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downstream processing. We further propose a particular representation
where each spike can be decoded independent of others in the spike train,
in a way that does not require maintaining the entire spike history; instead,
only a summary of past spikes is maintained in the current belief state.

The rest of the letter is organized as follows. In section 2, we present
a simple recurrent neural network for encoding stimulus trajectories and
formulate a decoding scheme for recovering the distribution over a dy-
namic stimulus variable from neural responses. Section 3 describes how the
network parameters can be learned in a supervised manner, using a local
learning rule. Section 4 presents the instantiation of the network we employ
in our simulations, particularly the encoding model for generating input
spikes and its corresponding optimal decoder. Section 5 presents simula-
tions that examine the efficacy of the representational scheme and analyzes
the results.

2 Recoding in a Recurrent Network

Let us consider a dynamic stimulus variable, position s, that evolves over
time, forming a trajectory defined by −→sT = {s1, . . . , st, . . . , sT }, where st is
the position at time t. Note that we employ a discrete time representation.
A population of neurons i = {1, 2, . . . , N} that responds selectively to the
position generates a population spike sequence −→

ξT = {ξ 1, . . . , ξ t, . . . , ξT }
where ξ t is a binary spike vector at time t, such that ξ i

t is 1 when neuron i
spikes at time t.

We assume that the spikes −→
ξT are generated by an encoding model

P(−→ξT |−→sT ) that specifies the probability of a particular population spike se-
quence being evoked by the trajectory −→sT . Since neural spiking is stochastic
and not capable of representing the stimulus value exactly, we consider the
population response to implicitly define a distribution over likely stimulus
trajectories. Then the posterior distribution p(sT |−→ξT ) over stimulus positions
can be estimated as a Bayesian inverse of the respective encoding model.
Thus, we adopt the filtering goal of estimating the posterior distribution
over trajectories implied by the input spikes rather than the prediction one
of making an estimate about the future course of the trajectory.

2.1 Population Dynamics. Let j = {1, 2, . . . , M} be a population of re-
currently connected output neurons in a network, receiving inputs −→

ξT from
the population i = {1, 2, . . . , N}. We ascribe simple dynamics to the recur-
rent population, similar to the general spiking neuron model of Kistler,
Gerstner, and van Hemmen (1997). The output population spikes are spec-
ified by −→ρT , where ρ

j
t = 1 if neuron j spikes at time t. Like the inputs, the

output spikes also convey information about −→sT .
The strength of the synaptic connection from an input neuron i to an

output neuron j is characterized by the weight Wi j and lateral connections
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Figure 1: Schematic description of our network. (Left) Dynamic stimulus
variable position s evolves over time in a one-dimensional space forming a
trajectory. (Center) Sensory neurons i = {1, . . . , N} generate population spikes
in response to the trajectory. Downstream population j = {1, . . . , M} receives
the input via feedforward synapses W and recurrently processes the input using
learned lateral synaptic weights U to recode the input into a representation
that is independently decodable by downstream neurons. (Right) Input and
recoded population spikes. Note the convention for illustrating the population
spike train in this and all subsequent figures: the neurons are arranged along
the y-axis based on their preferred stimulus values, and a shaded circle
indicates that the neuron at that position spiked at the particular time.

between neurons j and k in the output population by Ujk . This scheme is
illustrated in Figure 1. In a discrete time representation, the internal state
(analogous to the membrane potential) of a neuron j at time T can be
characterized by a continuous variable h j

T :

h j
T =

T−1∑
τ=0

N∑
i=1

ξ i
T−τ Wi jη(τ ) +

T−2∑
τ=0

M∑
k=1

ρk
T−τ−1Uk jη(τ ). (2.1)

The term η(τ ) specifies the effect of a past spike on the current membrane
potential; this typically has a form where temporally distant spikes have
diminishing effects compared to more recent ones.

For each neuron j in the population, its response is governed by a
stochastic binary spiking rule:

P
(
ρ

j
T = 1

) = σ
(
h j

T

)
. (2.2)

The spikes are generated independently among the population. This implies
that the probability of any population binary (spike/no spike) vector ρT at
time T is

P(ρT |−→ξT ) =
∏

j

σ
(
h j

T

)ρ
j
T
(
1 − σ

(
h j

T

))(1−ρ
j
T )

, (2.3)

where the sigmoid function is defined by σ (h j
T ) = 1

1+exp(−h j
T )

.
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Note that the dynamics can be simplified considerably if the influence
of past spikes is defined as

η(τ ) = exp(−βτ ), (2.4)

where β is the temporal decay constant. Using an exponentially decaying
function to characterize the postsynaptic potential of a neuron allows us to
express the dynamics of the output population in a recursive formulation:

h j
T =

∑
i

ξ i
T Wi j +

∑
k

ρk
T−1Uk j + η(1)h j

T−1. (2.5)

Then the probability of a population spike vector is a function solely of
the membrane potential and population outputs at the previous time step
and the current input spikes:

P(ρT |−→ξT ) = P(ρT |hT−1; ρT−1; ξT ). (2.6)

2.2 An Independent Probabilistic Decoder. As stated in section 1,
our objective is to encode dynamic stimuli into a representation that is
computationally sensible for downstream decoding. By treating the spikes
as if they were independent, formulating the decoder becomes highly
simplified. However, a key question arises as to whether population spikes
are naturally and faithfully decodable in this manner. Theoretical work
on the effect of noise correlations on information decoding (Nirenberg,
Carcieri, Jacobs, & Latham, 2001; Pola, Thiele, Hoffmann, & Panzeri, 2003)
shows that it may be possible to decode independently despite correlations
in the input. Hence, our primary hypothesis with respect to decoding is
that each spike can be considered independently of the others in the spike
sequence—that spikes from different neurons can be combined without
taking correlations into account.

Even if downstream neurons, and indeed the organism as a whole, may
never explicitly decode the information in the neural activity, making rel-
evant information simply and readily interpretable can only ease the com-
putational task faced by downstream neurons. Thus, decoding constitutes a
canonical test for the computational consequences of the encoding scheme;
if all the encoded information can be easily accessed, then subsequent ma-
nipulation of the information must be statistically easier to carry out. This
is particularly important for dynamic stimuli since subsequent processing
needs to be carried out at a pace relevant to the timescales of behaviorally
significant decision making.

2.2.1 Formulating the Decoder. The decoding model specifies the proba-
bilities of various stimulus trajectories based on the spike sequence. Rather
than considering the complicated space of possible trajectories given an
entire spike train, we focus on an instantaneous version of the problem. In
mathematical terms, our aim is to decode at time T a distribution over the
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stimulus position at that time, sT , given all the spike observations up to
that particular time, −→ρT = {ρ1, . . . , ρT }; that is, we want to infer q (sT |−→ρT ) to
closely approximate the true posterior distribution p(sT |−→ξT ).

The approximating probability distribution over stimulus trajectories
q (sT |−→ρT ) is interpreted from the spiking activity as

q (sT |−→ρT ) ∝ exp (−E (s, T,−→ρT )) . (2.7)

Here, E (s, T,−→ρT ) is the total effect of the spike train specified as a linear
combination of the individual spikes,

E (s, T,−→ρT ) =
M∑

j=1

T−1∑
τ=0

κstd( j, s, τ )ρ j
T−τ , (2.8)

where κstd( j, s, τ ) is the spatiotemporal decoding kernel (defined below).
Equations 2.7 and 2.8 define our decoding hypothesis. The decoder is illus-
trated in Figure 2.

Under this model, a downstream neuron simply has to add the responses
of all the neurons that impinge on it; linear functions of these afferent
spikes establish the information available in the population inputs (Hinton
& Brown, 2000). The information is thus readily accessible: if the convolution
of spikes with the spatiotemporal kernels κstd( j, s, τ ) can be considered as
defining the postsynaptic potentials of neurons, then information about
the relative probabilities of stimulus values can be thought of as being
accessed by simply adding (and exponentiating) the neuronal excitatory
postsynaptic potentials (EPSPs).

2.2.2 Spatiotemporal Kernels. We define the kernels κstd( j, s, τ ) (see equa-
tion 2.8) as being uniform and separable—uniform in that the shape of the
kernel is the same for the entire population, and at all times, and separable
as follows,

κstd( j, s, t) = φ j (s)ψ(t), (2.9)

where φ j (s) is the spatial component and ψ(t) is the temporal component.
We will henceforth refer to these kernels as standard kernels. Then the spa-
tiotemporal contribution of the spikes (see equation 2.8) can be rewritten as
follows:

E (s, T,−→ρT ) =
∑

j

[
T−1∑
τ=0

ψ(τ )ρ j
T−τ

]
φ j (s). (2.10)
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Figure 2: Independent decoding model. (A) Output spikes (solid black circles)
of population j = {1, 2, . . . , M} convey information about the stimulus trajec-
tory (solid gray line). (B, C) An example of the form of spatial and temporal
components of the decoding kernel. (D) Linear contribution of the population
spikes through time (as in equation 2.10). (E) Inferred posterior distribution
(shaded in gray scale) over stimulus positions through time; the posterior mean
is in the dashed gray line.

The spatial dimension of the kernel is parameterized as

φ j (s) = |s − s j |2
ω

, (2.11)

where ω is the projective width of the neurons and s j is the preferred
stimulus value of neuron j . Thus, φ j (s) defines the influence of the output
of a particular neuron j in the population j = {1, . . . , M}, on the spatial
interpretation of the underlying variable.

The temporal dimension of the kernel is specified as an exponential decay
(analogous to the postsynaptic potential of the neuron, η in equation 2.5):

ψ(τ ) = exp(−γ τ ). (2.12)
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The parameter γ , which we refer to as the temporal integration constant,
specifies the timescale for synaptic integration in the readout. It effectively
controls what effect the spiking of a neuron at one time has on the interpre-
tation at future times. Hence, the kernels are very simple, specified using
just three parameters: the preferred stimulus value s j and spatial projective
width ω for neuron j and the temporal integration constant γ .

3 Learning to Recode

Independent decoding of the input spikes −→
ξT is far from optimal, especially

for the smooth case. This decoder cannot by itself access the information
in the input spikes that is due to the stimulus autocorrelations. Thus, this
choice of output decoder shifts the onus of providing the information about
the stimulus correlations from the decoder onto the network. In essence,
the task of the network is to produce spikes that represent the information
contained in the stimulus autocorrelations to make up for the fact that the
decoder of its output spikes −→ρT will, by itself, neglect any such information
in the inputs −→

ξT .
The overall aim of recoding is to form output spikes such that the pos-

terior obtained by decoding these spikes according to equations 2.7 and 2.8
will faithfully approximate the optimal decoding of input spikes. We adopt
a learning approach here, under the assumption that effective recoding can
be achieved by learning from patterns of input spikes the spatial and tem-
poral regularities governing the stimulus trajectories, that is, the prior over
trajectories. In this section, we elaborate how the weight vectors W, U and
the temporal decay constant β are learned using an online procedure.

3.1 Learning Algorithm. Learning occurs through the observation of a
large number of trajectories that have the same spatial and temporal reg-
ularities. Since the observed spikes are nondeterministically related to the
population inputs (see equation 2.6), we employ a form of reinforcement
learning to improve the stochastic spiking behavior of the output neurons.
The population spiking probabilities P(ρT |−→ξT ) can be thought of as defin-
ing a stochastic policy that maps the observations (hT−1; ρT−1; ξT ) into the
probability distributions over the output neurons. That is, the spiking pol-
icy defines how each neuron should make the choice of being in one of two
states (spike or not spike) at each time step, based on the observations. The
policy is directly parameterized by the weights W and U and the temporal
decay constant β, which we summarize as �.

The learning objective is to maximize long-term average reward,

J (T) = 1
T

T∑
t=1

v(�, t), (3.1)

where v(�, t) is the reward signal at a particular time t.



Encoding and Decoding Spikes for Dynamic Stimuli 2333

This reward signal could take the form of some delayed reward based on
behavior governed in some manner by the population spikes. In this letter
we consider a more informative reward signal, a real-valued global signal
broadcast to all neurons at time T ,

v(�, T) = DK L

(
p(sT |−→ξT )||q (sT |−→ρT )

)
, (3.2)

where DK L (p(s)||q (s)) = ∑
s p(s) log p(s)

q (s) is the Kullback-Leibler (KL) diver-
gence, or relative entropy between the true distribution p(s) and the model
distribution q (s). This is a natural way to measure the discrepancy between
two probability distributions, having an extensive, information-theoretic
justification (MacKay, 2003; Cover & Thomas, 2006). This signal entails
knowing the posterior distribution p(sT |−→ξT ), based on the information avail-
able in the input spikes −→

ξT . We adopt this very informative learning signal in
order to assess whether a simple network can effectively combine temporal
priors with the population inputs to generate an independently decodable
representation.

The gradient with respect to � of the expected reward is not computable
in closed form since the output spikes are stochastically sampled. There-
fore, we resort to a stochastic gradient approach (Baxter & Bartlett, 2001),
where the gradient is estimated via simulation (see section A.1) and the
policy is improved by adjusting the parameters in the gradient direction.
The update rule for all the parameters in � has a simple gradient ascent
form:

� ← � + ∂ J
∂�

. (3.3)

The dominant term in the gradients of J with respect to the weights W
and U, respectively, takes the form (see equations A.13 and A.18 in the
appendix):

v(T)ξ i
T

[
ρ

j
T − σ

(
h j

T

)]
v(T)ρk

T−1

[
ρ

j
T − σ

(
h j

T

)]
, (3.4)

where we have dropped the dependence on � for ease of exposition. The
details are provided in sections A.2 and A.3. The update rule resembles
contrastive Hebbian learning (Ackley, Hinton, & Sejnowski, 1985). Here,
σ (h j

T ) is the predicted activity, and ρ
j
T is the true stochastic activity. The

update rule incorporates activity-dependent synaptic modification and a
mechanism that induces competition between synapses so that when certain
synapses to a postsynaptic neuron are strengthened, others are weakened.
The gradient with respect to β is derived in section A.4.

The reward signal v(T) conveys information on the state of all the
synapses at time T . The competition between synapses can be thought of as
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being caused by the term (ρ j
T − σ (h j

T )) that modifies the synaptic strengths.
This term equilibrates when the expected predicted activity is equal to
the expected true activity. Therefore, the unpredictability in spiking drives
learning; learning stops when the distribution of responses under the model
matches their empirical distribution.

In this formulation, the output units are conditionally independent given
the input spikes ξ T ; they are, however, marginally dependent (see equation
2.3). The network learns to optimize the forward and lateral connections
under this independence assumption, and since the decoder also follows
this assumption, the system consistently operates as if spikes from each
neuron can be independently interpreted by downstream neurons. The
fidelity of independent decoding on recoded spikes is evaluated using the
following measure for information loss:

IL = 1
T

T∑
t=1

DK L (p(sT |−→ξT )||q (sT |−→ρT ))

H(p(sT |−→ξT ))
, (3.5)

where H(p) is the entropy of p.

4 Network Instantiation

This formulation is not specific to any particular encoding or decoding
model, provided that there is an appropriate ideal observer that reports
p(sT |−→ξT ) . We simulated the special case that the input spikes −→

ξT are gener-
ated by a Poisson-gaussian spike generation model, that leads to a particu-
larly simple ideal observer (Huys et al., 2007) with a revealing structure.

4.1 Spike Generation Model. We adopt a standard (tuning curve plus
noise) spike generation model for the set of all the J spikes ξ ς ≡ {ξ i

tj
}J

j=1 at
times 0 < {tj }J

j=1 ≤ T evoked by the trajectory −→sT , where ς is a collection
of all spike times. Under this model, the population response is governed
by neurons whose expected responses are defined by partially overlapping
gaussian tuning functions and whose stochastic observed responses are
modeled as Poisson variables. The spikes are probabilistically related to the
stimulus by means of a tuning function defined for each neuron i in the
population as follows:

fi (stj ) = rmax exp
(

− (stj − θi )2

2σ 2

)
, (4.1)

where stj is the value of the stimulus variable at time tj , θi is the preferred
stimulus value of neuron i , rmax is the maximum input firing rate, and σ

is the tuning width. By this simple gaussian definition, each neuron fires
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maximally at its preferred value θi , and the activity drops off monotonically
according to σ as the stimulus stj drifts away from θi .

The actual observed spikes are generated as inhomogeneous and instan-
taneous Poisson processes governed by the tuning functions (Brown, Frank,
Tang, Quirk, & Wilson, 1998; Barbieri et al., 2004):

P(ξς |−→sT ) ∝
( ∏

j

fi( j)
(
stj

))
exp

(
−

∑
i

∑
t

fi (st)

)
. (4.2)

This spiking model entails some assumptions about the tuning properties
and response of the input neurons. In our abstraction, the spikes are condi-
tionally independent events given the stimulus, and the current response
is independent of past activity. The tuning properties of the input popula-
tion are constrained such that each neuron has the same maximum firing
rate and tuning width. Furthermore, the tuning functions are assumed to
span the stimulus state-space evenly and densely such that

∑
i
∑

t fi (st) is
approximately a constant. This leads to

P(ξς |−→sT ) ∝
( ∏

j

fi( j)
(
stj

))
. (4.3)

When the tuning function from equation 4.1 is substituted, the input spike
generation model is then

P(ξς |−→sT ) ∝ rmax exp
(

− (sς − θ(T))T (sς − θ (T))
2σ 2

)
, (4.4)

where sς is the vector of all the stimulus positions ordered by spike time
and θ (T) is the corresponding vector of preferred stimulus values of the
spiking neurons.

4.2 Ideal Observer. In Huys et al. (2007), we provided the details for
deriving the optimal posterior distribution as a Bayesian inverse of the
above encoding model, together with a prior distribution over the stimu-
lus trajectories. The posterior distribution provides the target for training
the network parameters. Stimulus trajectories s(0,T] were defined over con-
tinuous rather than discrete time and were assumed to be drawn from a
gaussian process (GP). This means that for any finite collection of times
T = {ti }, the stimulus values sT are drawn from a multivariate gaussian
distribution with mean m and covariance matrix C,

p
(
s(0,T]

) ∼ N (m, C) Cti tj = c exp
(−α‖ti − tj‖ζ

)
, (4.5)
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where C is the matrix of Cti tj at the discretized times. Different values of ζ

determine the different classes of prior distributions, and c parameterizes
the overall scale of the process. The value of α scales the temporal extent of
the interactions in the stimulus.

Under the assumptions described above, the posterior distribution for an
observed population spike train can be derived as a gaussian distribution
with a mean µ(T) that is a weighted sum of the preferred positions of
neurons that fired and a variance ν2(T) that depends on only C and the
tuning width σ 2,

µ(T) = k(ξς , T) · θ (T) (4.6)

ν2(T) = CTT − k(ξς , T) · CςT , (4.7)

where CTT = c is the static stimulus variance at the observation time and CςT

is a vector of the cross-covariance between the spike times and observation
time T. The weight on each spike depends strongly on the time at which
the spike occurred:

k(ξς , T) = CTς (Cςς + Iσ 2)−1. (4.8)

Here, Cςς is the covariance matrix of the stimulus at all the spike times.

4.3 Decoding Kernels. In this letter, we focus on generating a new set
of output spikes −→ρT by keeping the decoding kernels fixed and adapting just
the network’s synaptic weights, such that decoding the output spikes with
the fixed kernels can approximate the optimal distribution. In a realistic net-
work architecture, both the kernels and the weights can be adapted, since
the kernels and the weights together determine the population responses.
While adapting the weights at one level has an effect on subsequent rep-
resentation of the input, adapting the kernels has an effect on the inter-
pretation of responses at that level. Then any change to the kernels at one
level affects proper spike interpretation at the next, since it entails possibly
complicated coordination of kernels across levels. Therefore, in this letter,
we concentrate exclusively on fixed kernels.

However, there is flexibility in the choice of these decoding kernels. In
section 2.2.2, we described simple separable kernels defined by only three
parameters: the preferred stimulus value s j of an output neuron j ; the
projective width ω, which is the same for all the neurons; and a temporal
integration constant γ . It is possible to have more complex kernels that
match the specific spatiotemporal dynamics of the stimulus trajectories. In
Huys et al. (2007), we explored one such case: we directly inferred a set of
kernels to match the spatiotemporal dynamics that governed the smooth
stimulus trajectories. We refer to these as optimized kernels κopt(i, s, t).
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The kernels were divided into discrete time and space intervals, defined
as a discrete array. The values for the bins in this nonparametric kernel
representation were inferred for the full input spike train by minimizing
the KL divergence between the optimal distribution and an approximate
distribution derived by independent decoding with these kernels:

κopt(i, s, t) ← κopt(i, s, t) + ε�κopt(i,s,t) DK L (p(sT |−→ξT )|| p̂(sT |−→ξT )). (4.9)

The gradient has the following form:

�κopt(i,s,t) DK L (p(sT |−→ξT )|| p̂(sT |−→ξT )) =
∑

T

[ p̂(sT |−→ξT ) − p(sT |−→ξT )]ξ i
(T−t).

(4.10)

Learning was carried out by generating stimulus trajectories and corre-
sponding spike trains −→

ξT , and continued until the update equations con-
verged. Although these kernels were optimized to fit the stimulus dynam-
ics, once learned, they were held fixed during decoding (in lieu of κstd( j, s, τ )
in equation 2.8).

5 Simulations and Results

In this section we examine the extent to which recoding can obviate the
need to maintain a spiking history for smooth stimuli and whether simple
independent decoding of the recoded spikes can be near optimal. All the
illustrations presenting the results below have the same format: true stim-
ulus trajectory in a dashed line and population response in white circles
(with the output population spikes in panel A and input spikes in B). As
noted earlier, the ordinate represents the one-dimensional stimulus space
and the abscissa, time. Each neuron (say, an input neuron i) has a preferred
stimulus value (θi ); if it emits a spike at time t, a shaded circle is drawn
at position (t; θi ). The preferred stimulus positions of the neurons span
the stimulus space in a regular manner, and the neurons are ordered by
their preferred value. The shaded circles in the following figures represent
the spiking activity of the entire population of neurons over time. The ap-
proximate independently decoded distribution is shaded in gray scale in
panel A of all the comparison plots and the optimal distribution (ideal ob-
server) in panel B unless otherwise noted; the approximate and optimal
posterior mean are in solid lines in the respective panels.

5.1 Stimulus Trajectories and Network Parameters. Stimulus trajecto-
ries −→sT are generated by sampling from the gaussian process prior distri-
bution defined in equation 4.5, and representing the spikes in a discrete
time format. The parameter ζ of the covariance matrix C determines the
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smoothness of the trajectories. By changing the value of ζ , we can consider
different classes of GP priors, each defining the density over a set of trajec-
tories with similar spatiotemporal dynamics. In our simulations, we test the
efficacy of the network implementation of the coding scheme in recovering
the optimal posterior for various classes of dynamics, but we focus primar-
ily on ecologically relevant smoothly varying stimuli where the trajectories
are non-Markovian. The parameter values used in the simulation are ζ = 2,
α = 0.05, c = 0.2.

The neural population i = {1, . . . , N} is defined such that the preferred
stimulus positions θ of the neurons are evenly distributed in the stimu-
lus space. We concentrate on a sparse spiking regime in our simulations
since input sparsity makes a more challenging case for recoding. It allows
us to evaluate empirically when and how the recoding population relies
on the prior information about stimulus dynamics to decode effectively.
Sparse inputs are generated in the simulations by assigning a low value
to the maximum input firing rate rmax = 0.144 and tuning width σ = 0.1
in equation 4.1. The preferred stimulus positions of the recoding recurrent
population j = {1, 2, . . . , M} are also distributed evenly in the stimulus
space; projective width ω = 0.2. The temporal integration constant γ of the
decoding kernel (see equation 2.12) tracks the value of the learned parame-
ter β (see equation 2.4) which specifies the dynamics of the spiking activity.
The input and recurrent output populations connect by feedforward W and
lateral synapses U to form a fully connected network. In the simulations
that follow, N = 100, M = 100.

Training time is a function of the number of input and output neu-
rons and initialization strategy used for the weight matrices W and U. The
weights could be initialized randomly; however, initializing the weights
based on a deterministic formulation of the network (detailed in Zemel,
Huys, Natarajan, & Dayan, 2005) resulted in faster convergence. For each
set of simulations, a network is trained on an average of 500 stimuli of length
200 each (discrete time bins), all generated from a gaussian process with the
same parameters. Learning is stopped once the gradient magnitudes drop
below a prespecified threshold = 0.25.

5.2 Decoding Smooth Trajectories. Figure 3 presents the results from
decoding a particular smooth stimulus; the approximate distribution
inferred by log-linear decoding on the recoded spikes (see Figure 3A)
is compared with the optimal distribution (see Figure 3B). Even in this
sparse input spike regime, the network is able to approximate the posterior
distribution over stimulus trajectory with high fidelity, in this particular
example with IL = 0.061. The gray arrows in Figure 3A point to two
interesting regions with respect to the dynamics of the posterior mean.
In the absence of spikes, the mean continues in the general direction of
the stimulus as observed from previous spiking activity. The decoded
distribution also accurately represents the uncertainty in the input. This
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Figure 3: Recoding a smooth stimulus, example 1. (A) Log-linear decoding on
network recoded spikes. (B) Decoding by ideal observer on input spikes. Gray
arrows point to two example instances showing that in the absence of spikes,
the recurrent network has captured the appropriate spatiotemporal regulari-
ties corresponding to this class of smooth stimuli, as evident from the effective
approximation of the optimal distribution. The mean of the approximate distri-
bution is also a good fit to the smooth trajectory.

is demonstrated by the fact that the variance of the decoded distri-
bution very closely approximates that of the optimal distribution (see
Figure 3B).

We show another example of decoding a smooth trajectory in Figure 4.
Here again, the network produces a recoded representation such that the
resulting spikes can be considered independently even if the information in
the input was encoded in combinations of spikes. In the absence of evidence
from the inputs, the network relies on the learned prior to produce a pat-
tern of activity such that the approximate posterior distribution is a good
estimate of the optimal distribution with IL = 0.072. The posterior mean
also matches the optimal mean quite well. The network correctly weighs
the history and the new input according to their associated uncertainties.
This is evident, as pointed to by the gray arrow, in how the posterior mean
suddenly shifts to the position indicated by the input spike.
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Figure 4: Recoding a smooth stimulus, example 2. (A) Log-linear decoding
on network recoded spikes. (B) Decoding by ideal observer on input spikes.
When a new input spike arrives, the posterior mean suddenly shifts to the new
position indicated by the spike, suggesting that the network correctly weighs
the history and the new evidence according to their associated uncertainties.
The gray arrow points to one example of this behavior.

5.3 Understanding the Recoding Mechanism. We can gain some in-
sight into how the network achieves these results by examining its learned
feedforward and lateral weights, temporal decay constant, and the decod-
ing kernels. The learned feedforward connection strengths W are illustrated
in Figure 5A in the form of a matrix where the rows i = {1, 2, . . . , N} and
columns j = {1, 2, . . . , M} correspond to the input and output neurons, re-
spectively. Each cell of the weight matrix is shaded according to the strength
of the synapse Wi j . These weights show that the network has learned a
strong local connectivity, with each input neuron having strong excitatory
connections to neurons in the recurrent population having the same or very
similar stimulus preference and inhibitory connections to their neighboring
neurons.

The learned lateral connection strengths U are illustrated in Figure 5B
in a similar matrix form with rows j = {1, 2, . . . , M} and columns k =
{1, 2, . . . , M} corresponding to the output neurons spatially laid out in the
stimulus space. Each cell of the weight matrix U is shaded according to
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Figure 5: Smooth stimulus: understanding the synaptic weights. (A) Feedfor-
ward weights from neurons of the input population to output neurons of the
recurrent population. (B) Lateral weights of 50 neurons of the recurrent pop-
ulation involved in recoding its input representation of a smooth stimulus
trajectory.

the strength of the synapse Ujk ; each neuron is seen to strongly excite its
immediate neighbors and also inhibit the ones farther away. The negative
weights allow one neuron’s spikes to decrease the membrane potential of
another. So the population activity not only indicates where the stimulus is
at any given time (by spiking when the stimulus is at the neuron’s preferred
position); it also actively indicates where the stimulus may not be.

Here the learned temporal decay constant β = 2.13 (see equation 2.5).
This allows the postsynaptic potential of neurons in the recoding population
to decay slowly with time; each spike will have half its potential after about
30 time-steps. This means that temporally distant spikes have very slowly
diminishing effects on the current population activity. The decay constant
reflects the temporal extent of the interactions in the stimulus, specified by
α in equation 4.5. This same rate of decay is applied to γ in the temporal
kernel (see equation 2.12) to decode the spikes; it implies that the influence
of a spike persists for a while, having a slowly decaying effect on the
representation at future times.

The standard spatial and temporal decoding kernels used in this sim-
ulation are shown in Figure 6A; they are convolved together in the figure
for the purpose of illustration. Only the kernel centered at the mean of
the state-space is shown here; kernels for all the other neurons are alike,
centered at their respective preferred stimulus positions. They have a very
simple structure that is only exponentially decaying over time, and they are
uniform across all neurons.

Since the lateral weights and the decay constant are learned together in
an iterative manner with the decoding kernels fixed, they influence each
other very closely. Combined with the input spikes ξ t , they influence the
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Figure 6: Smooth stimulus: Understanding the decoding kernels. (A) Simple
spatial and temporal decoding kernels for a neuron j with a preferred value
s j = 0, convolved here for the purpose of illustration. A spike in this neuron at
time t adds negative log probability to s values in proportion to their distance
from s = 0 (see equation 2.8), making the estimated posterior more peaked
around 0 at that time (see equation 2.7). This contribution decays over time.
(B) Adapted spatiotemporal kernel inferred for smooth trajectories for a neuron
with preferred stimulus value si = 0. The kernels have the shape of difference
of gaussians for t = 0, falling off exponentially with time.

membrane potential ht (see equation 2.5) of neurons in the recurrently
connected population according to how the input population connects to
the recurrent population via the feedforward weights W.

In the absence of input spikes, recurrent activity contributes to the per-
sistent effect of previously observed spikes. This triggers a cascaded pattern
of activation among neurons of the recurrent population. As a result, the
approximate posterior distribution is a faithful estimate of the optimal dis-
tribution. This is evident in Figure 3, especially in the region indicated by
the gray arrows.

So what is it about the recoded representation that affects simple readout
of a distributional code that the input representation is unable to achieve?
One possible explanation is that the recoded spikes are first-order Markov,
that is, recoding produces temporally independent spikes and the decoding
kernels convolve them in such a way that information originally encoded
in temporal spike patterns can now be independently decoded to produce
a smooth, inferred distribution.

5.4 Decoding Input Spikes Versus Recoded Spikes. The results in
section 5.2 illustrate that independent decoding of the recoded representa-
tion (see Figure 3A) can closely match the ideal observer (see Figure 3B).
However, this alone does not show that recoding the input spikes is nec-
essary for smooth trajectory dynamics. An alternative approach is to find
decoding kernels directly for the input spikes such that the estimated poste-
rior closely approximates the optimal distribution. To evaluate this, we use
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Figure 7: Cumulative statistics from testing the recurrent network model on
250 different smooth trajectories. 〈IL〉 indicates the information loss averaged
over all the test cases. The effect of using standard parameterized kernels (A)
versus optimized nonparameterized kernels (B) is compared on the population
inputs and the recoded spikes. A proper combination of embedding the prior
in the decoding kernels as well in the lateral weights yields the lowest IL with
an optimally decoded distribution. The error bars provide an indication of the
uncertainty in the information loss estimates.

the optimized kernels (see section 4.3) to decode the input spike trains sep-
arately. We chose these particular kernels since unlike the standard kernels,
they were inferred to match the smooth dynamics of the trajectories.

An example optimized kernel is illustrated in Figure 6B for a neuron
with preferred stimulus at the center of the state-space. These kernels spec-
ify prior-dependent dynamics for the posterior distribution and take on a
complex shape for the smooth trajectories, nonseparable in space and time.
For t = 0, the kernels have the shape of difference of gaussians. As the time
from the observation of the last spike increases, the shape of the kernel
changes slightly.

We decoded the same input spikes shown in Figure 3B with these op-
timized kernels and obtained an information loss value of IL = 0.129. By
comparison, we reported in section 5.2 that our recoding procedure (and
even using nonoptimized kernels) achieved a much lower information loss
IL = 0.061. Recoding is important for smooth trajectories, since there is no
Markov property to license a simple representation of the whole spiking his-
tory. It is not possible to reverse the loss of information using fixed kernels,
even ones that had been adapted to the correct trajectories.

5.5 Cumulative Results. We now analyze and compare the cumulative
statistics derived from averaging over 250 test cases of decoding for smooth
stimuli, directly from both the input spikes and the recoded spikes; the
averaged IL values compared to the ideal observer are presented in Figure 7.
In all these tests, recoding with a particular choice of kernels meant that
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the network parameters were learned using a reward signal based on a
comparison of the ideal observer and decoded output spikes using those
kernels. Figure 7A shows that recoding with standard kernels and decoding
the resulting spikes far outperforms direct decoding of input spikes with
the same kernels.

In a second set of simulations, we examine the effect of the kernel on our
recoding and decoding results. We compare decoding of input spikes versus
recoded spikes using a different choice of decoding kernel, the optimized
kernels, in Figure 7B. Even with such kernels adapted to the stimulus dy-
namics, recoding improves the fidelity of independent decoding compared
to decoding the input spikes directly.

A third interesting result involves comparing Figures 7A and 7B. Recod-
ing with the standard kernels in Figure 7A lends a much better approxima-
tion to the optimal distribution than decoding with even optimized kernels
on the input spikes in Figure 7B. This result further supports the claim
that despite information being encoded in combinations of spikes, recod-
ing is capable of producing spikes that can be interpreted independently
downstream using simply specified kernels.

The fourth and final result here concerns comparing recoding with the
two different kernels. A natural approach would be to use apt kernels
adapted to the trajectories and recode. Comparing the IL for this kind of
recoding in Figure 7B with all others, we see that this strategy leads to
some improvement over either form of adaptation alone. The difference
between decoding using optimized kernels of the recoded spikes versus
input spikes (see figure 7B) is statistically significant with a p-value of 0.01.
The difference between decoding using optimized versus standard kernels
of the recoded spikes (second bar in Figures 7A and 7B) is also statistically
significant with a p-value of 0.01. Thus, regardless of the form of decoding
kernels used, recoding significantly improves the fidelity of independent
decoding of smooth trajectories, a particularly difficult case for decoding.

5.6 Recoding with the Wrong Prior. To investigate further the extent to
which the network learns dynamics from an ensemble of distributions over
stimulus trajectories, the input spike train for another smooth trajectory was
recoded by a network whose parameters were adapted to different, random
walk trajectories. Figure 8 illustrates some sample trajectories with first-
order Markov dynamics drawn from the prior distribution in equation 4.5
with ζ = 1. These trajectories are characterized by a slow drift to the prior
mean (m = 0 here for simplicity) of the state-space.

The feedforward weights (see Figure 9A) adapted to these dynamics
are very similar to those learned for smooth trajectories and simply
relay information to the output neurons. The learned lateral weights are
shown in Figure 9B. Compared with the weight matrix for the smooth
case in Figure 5B, the lateral connection pattern for the random walks
is significantly different. Each neuron has strong positive connections to
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Figure 8: Random walk stimuli. Sample trajectories with first-order Markov
dynamics, characterized by a slow drift to mean m = 0.

Figure 9: Network weights adapted to random walks. (A) Feedforward weights
from 50 input neurons to output neurons of the recurrent population. (B) Lat-
eral connections between 50 neurons learned for an ensemble of random walk
stimuli. Contrast with the lateral connections from Figure 5B.

some (but not its immediate) neighbors, evident in the positive weights
shaded white in the matrix. However, the learned temporal decay constant
β = 0.85 is much lower than that of smooth dynamics.

Figure 10 compares the posterior distribution when this mismatched
network is used for recoding a smooth trajectory (panel A) with the optimal
distribution (panel B). The result shows that the decoding is suboptimal
(especially around the regions indicated by the gray arrows) since in the
absence of spikes, the distribution decays to the local mean right away
instead of predicting that the stimulus will continue in its trend first before
drifting back to the mean. The approximate posterior mean provides a
poor match to the optimal posterior mean (panel B). Information loss from
decoding with the wrong prior is high, with IL = 0.13.
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Figure 10: Recoding with the wrong prior. (A): Recoding a stimulus with a
network adapted to different dynamics. In this case, the trajectory is smooth,
but the network is trained on random walks. The decoding is suboptimal com-
pared with the ideal observer in B, indicating that prior information about the
dynamics is indeed embedded in learned network parameters.

When the value of β is substituted in equation 2.4, the postsynaptic
potential of neurons in the recoding population decays much more rapidly
with time, which does not match the slow variation in the smooth stimulus.
Temporally distant spikes have very little effect on the current population
activity. Since the lateral weights and the decay constant were adapted
together to the random walk dynamics in an iterative manner, they interact
to allow the recurrent population to forget quickly. Therefore, we do not
observe the persistent effect that was characteristic of the network recoding
for smooth stimuli. These decoding results strongly suggest that the prior
information about spatiotemporal regularities is embedded in the learned
network parameters, allowing linear mechanisms for efficient readout of a
distributional code.

5.7 Effect of Tuning Curve Manipulations. We examine the effect
of manipulations of the input population tuning curves on the fidelity
of the decoded distribution. Theoretical studies have concluded that the
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Figure 11: Effect of manipulations of input tuning curves. (A) Recoding input
spikes generated using broader tuning curves having a higher rmax than earlier
simulations. (B) Decoding by ideal observer on input spikes. Even when input
spikes carry imprecise information on the stimulus position due to wider tuning
curves, the network learns to correctly weigh the prediction given the past
spikes and the information from the current spikes in accordance with their
uncertainties. Solid and dashed gray arrows show evidence for this in the sloth
with which new evidence leads to changes in the distribution.

optimal values for tuning width σ and gain rmax for a population code
(see equation 4.1) depend critically on the covariance of noise in the input
(Pouget, Deneve, Ducom, & Latham, 1999). Given that we have chosen
to ignore noise correlations in this scheme, we are not concerned with the
effects of tuning widths on input representations −→

ξT in this architecture.
Instead we examine whether and how the learned network parameters
and the recoded representation −→ρT are sensitive to the different tuning
widths.

We consider a case in which the the maximum input firing rate rmax =
0.25 as well as the tuning width σ = 0.25 in equation 4.1 take on values
higher than those examined in the simulations so far. The individual input
spikes (solid white circles in Figure 11B) provide imprecise information
on the stimulus position. But the posterior distribution decoded using our
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scheme (see Figure 11A) is still a good approximation to the optimal distri-
bution in Figure 11B from the ideal observer. The estimated posterior mean
and variance closely match that of the ideal observer, and the information
loss in this experiment is IL = 0.072, similar to the previous cases using
sharper tuning curves.

The learned network weights indicate that the recoding population is
indeed sensitive to the differences in tuning curve parameters; the pattern
of weights is similar to that in Figure 5 but much broader across the diag-
onal. The lateral weights have stronger positive and negative connections.
Much like the case of narrow tuning curves in Figure 4, here too the network
correctly weighs the information from past spikes and the new evidence
according to their associated uncertainties; the solid and dashed gray ar-
rows in the figure point to two such instances. The network learns stronger
lateral weights than the feedforward weights, which indicates that it as-
signs higher weight to the prior information than the likelihood from input
spikes in this condition. Also notable is that the variance of the decoded
distributions is generally higher with wider input tuning curves. Overall,
this result suggests that the network can be trained on inputs from neurons
having a variety of tuning parameters and still learn to accurately capture
underlying spatiotemporal dynamics.

5.8 Limitations of the Network. We first refer to the result in
Figure 12A. In the absence of input spikes starting from the time indicated
by the gray arrow, the network relies on the prior information about
trajectories learned in the temporal decay constant and the lateral weights.
The variance of the approximate distribution correctly grows with time
until a new spike is encountered. However, the approximate posterior
mean during this time is a poor fit to the posterior mean of the optimal dis-
tribution (see Figure 12B), which gradually moves away from the center of
the state-space before reversing back. This limitation is largely attributable
to the simple dynamics and recurrence in the network, which allows only
a coarse account of population spike history to be retained. Although
the network seems not to capture subtle changes in the optimal posterior
mean, the approximate mean is in fact still within the optimal uncertainty
cloud.

The second limitation has to do with the density of recoded spikes. The
output firing rate is much higher than the inputs, especially during periods
of limited input, when encoding a high-variance distribution. Since the
network parameters are learned with the standard decoding kernels, this
could be a consequence of the simplicity of the decoder, stemming from the
interaction with the magnitude of the kernels. With the ideal observer, the
contribution of each spike (i.e., the effective number of bits of each spike) is
higher because the decoder is complex; hence, the same information could
be communicated with fewer spikes.
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Figure 12: Network limitations. In some cases, the network is unable to capture
subtle changes in the stimulus dynamics. Encoding produces dense output
spikes to code a high-variance distribution.

Our cumulative results in section 5.5 suggested that learning the network
parameters using the optimized kernels instead of standard kernels gave a
slight improvement in the IL values. Hence, we evaluated the efficacy of this
strategy in encoding input distributions with high variance. We present the
result in Figure 13, recoding the same trajectory and input spikes as those
in Figure 12.

The variance of the optimal distribution, as seen in Figure 12B, grows
steadily during the times when there are no input spikes. The variance
of the approximate distribution in Figure 13 matches this closely, and the
reconstructed posterior mean is also a good fit. More important, the recoded
spikes coding the high-variance distribution in Figure 13 are not as dense
as those observed in Figure 12A, meaning that each spike conveys more
bits. The information loss here is IL = 0.056.

These results further suggest that searching in the space of decoding
kernels to find an appropriate set might improve the recoding efficacy. One
option is to allow varieties of spatial kernels, perhaps through adaptation
of the kernels, so that a single spike in a neuron with a broad projective
width could directly encode a high-variance posterior.
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Figure 13: Recoding with optimized kernels. The input spikes for trajectory
in Figure 12 are recoded here using a network, the parameters of which were
learned by decoding using optimized kernels. The network produces output
spikes that are less dense than using standard kernels. Adapting both the net-
work weights and the decoding kernels may be a better strategy for recoding.

6 Summary and Discussion

We have studied the spiking population code representation of transient
stimulus variables whose values follow a trajectory through time. Earlier
studies have shown that neurons in a variety of sensory systems can faith-
fully encode information about stimuli that vary on ecologically relevant
timescales (approximately 30 ms) with high efficiency (Vickers et al., 2001;
Dean, Harper, & McAlpine, 2005). Maintaining an accurate representation
of rapidly varying stimuli provides a difficult computational challenge for
spiking population codes. In our model, the network’s output spikes convey
information associated not only with the mean of the stimulus trajectory
but also with the full posterior distribution, and in particular the variance
reflecting the uncertainty arising from noise in sensation.

Accurate perception requires this dynamically changing uncertainty to
be represented, manipulated, and learned about correctly. Thus, the main
biological motivation for our work is to investigate how populations of
neurons can code stable representations of the stimulus value along with
the uncertainty, allowing consistent semantics of inputs and outputs at
every level of the neural hierarchy. As we show using a simple two-layer
recurrent network in our simulations, this can be achieved by employing a
fixed decoder (i.e., using kernels that are fixed at the output) and adapting
the network parameters to recode the inputs into a stable representation
that can be faithfully interpreted under the specified decoding scheme.

This form of temporal recoding can be considered a natural extension of
the line attractor scheme of Pouget, Zhang, Deneve, and Latham (1998). Both
methods formulate feedforward and recurrent connections so that a simple
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decoding of the output can match optimal but complex decoding applied
to the inputs. The model presented here extends this approach to spiking
networks and, more important, to dynamically varying inputs associated
with a prior that must be learned. The latter part of our discussion below
outlines some potential ways of applying our model to experiments on real
neural systems.

6.1 Summary. The highlights of our proposal as to how neural popula-
tions might encode continuous dynamic stimulus variables are as follows.
We first specified a biologically motivated decoder for downstream neural
access to information encoded in the population inputs. The decoder did
not require any difficult assumptions about neuronal selectivity, the dis-
tribution, or tuning of neural reponses. It is based only on the idea that
downstream neurons must be able to interpret the afferent inputs in a sim-
ple and fast manner; to this end, the decoder ignored all correlations in the
input and treated each spike independently.

Second, we described how this independent treatment of input spikes
during decoding is an unfaithful model for naturalistic stimuli that have
smooth spatiotemporal dynamics. In Huys et al. (2007), we showed that
under such ecologically relevant dynamics, the input spike history needs
to be maintained in memory for accurate linear decoding. In this letter,
we suggested that a neural population, rather than employing different
decoding strategies for different stimulus dynamics, can recode the input
representation into one that can be decoded independently regardless of
stimulus dynamics. This recoding allows simple and faithful access to the
encoded information and thus may facilitate downstream processing.

Third, we proposed a neurally plausible implementation of the recod-
ing scheme using a simple nonlinear recurrent network that could learn
the spatiotemporal regularities in stimulus dynamics using a local learning
rule. The learning rule was based on the correspondence between the in-
ferred distribution over stimulus values and the Bayes-optimal distribution
encoded in the neural responses, under one of the conventional spike gen-
eration models. Finally, we illustrated using many simulations with smooth
stimulus trajectories that the efficacy of the neural implementation of our
proposed scheme closely matches that of optimal decoding.

6.2 Related Work. Several aspects of our framework bear interesting
relationships to earlier work. First, our independent decoding scheme can
be compared to other proposals for decoding trajectories from neural pop-
ulation responses. Bayesian methods have been employed previously to
infer the 2D location of a rat from hippocampal place-cell activity (Brown
et al., 1998; Twum-Danso & Brockett, 2001). These methods adopt gaussian
approximations to a nonlinear, recursive Bayesian decoding scheme and
provide a framework for a sequence of predictions needed for dynamically
evolving behavioral applications such as neural prosthetics.
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The application of Bayesian decoding to motor cortical data was
proposed in Gao, Black, Bienenstock, Shoham, and Donoghue (2002) with
various Kalman filter formulations. While these formulations are valid
for stimulus trajectories with simple first-order Markovian dynamics (the
generative model underlying Kalman filters), it may not be appropriate for
stimuli with smooth autocorrelations. Our results in section 5.6 indicate
qualitatively what information is lost by applying Kalman-filter-like
formulations to decoding smooth stimuli.

Another approach extends the Kalman filter to reformulate the spike
generation model (likelihood) as a probabilistic mixture of linear gaussian
models and uses a switching Kalman filter for decoding with the mixture
model (Wu et al., 2004). This approach naturally generalizes the posterior
distribution since it can produce multimodal posteriors but requires a spec-
ification of the number of components in the mixture.

Other studies have used particle filtering to solve the recursive Bayesian
decoding task with nonlinear, nongaussian likelihoods (Gao et al., 2002;
Brockwell, Rojas, & Kass, 2004). Brockwell et al. (2004), for example, con-
structed a statistical coding model for monkey hand movements during
ellipse-tracing experiments. They used adapted parametric tuning func-
tions with nonuniform density to model directional tuning in motor cortex.
Although the experiments generated trajectories with smoothly varying ac-
celeration, the movement trajectories were modeled as a first-order Markov
process in which states corresponded to velocity values, and the states were
constrained to evolve smoothly from one time-step to the next. Optimal
Bayesian decoding was approximated with particle filters. The formulation
also assumed that motor cortex codes movement in terms of firing rates. By
contrast, our approach employed a simple model of neural responses that
nonetheless handled spikes rather than firing rates and a more complicated
trajectory model, directly representing the smoothness constraint with a
gaussian process. We then approximated optimal Bayesian decoding with
a recurrent neural network and a simple log-linear spike decoder.

The choice of decoder applied to the output spikes is crucial, especially
for ecologically relevant, smoothly varying trajectories. If we allow a com-
plex decoder, for example, the Bayesian decoder discussed in section 4.2,
then the network needs access to all the input spikes. To prevent infinite
regress, the decoder applied to the output spikes should access the type
of information that biological neurons might reasonably be expected to ex-
tract. In our case, this is particularly a decoder that does not require access
to all spikes at all times. We chose an independent decoder that integrates
the information provided by spikes recursively, which is likely the way
real neurons integrate information and has the advantage of being well
understood in its own right.

The second highlight of our work, the recoding objective, can be
considered in the light of earlier attempts to formulate the accuracy of
simple decoding as an objective for population responses. Pouget et al.



Encoding and Decoding Spikes for Dynamic Stimuli 2353

(1998) proposed that the processing in a recurrently connected population
can be viewed as facilitating the ability of a linear decoder to faithfully
match maximum likelihood decoding of the population inputs. Similarly,
Wu, Nakahara, and Amari (2001) examined the efficiency of an unfaithful
decoder that neglected pair-wise correlations between neuronal activities
against that of an optimal maximum-likelihood inference. Their results
showed that the simple decoder reduced computational complexity remark-
ably, maintained high decoding accuracy and efficiency in the asymptotic
range when neuronal correlation is uniform, and was biologically imple-
mentable in a recurrent network. Our approach extends this same objective
along two dimensions: to apply to spiking networks and dynamic input
variables.

A third line of related work concerns other attempts to learn spiking net-
works that can faithfully represent dynamic stimuli. There are relatively few
proposals specifying how the strength of synaptic connections within and
between spiking populations can be learned to carry out difficult informa-
tion processing tasks, particularly those that change on the fast timescales
that make timing important. Notable examples such as Smith and Lewicki
(2005) and Hinton and Brown (2000), develop methods for learning rep-
resentations of complex signals in a population of spiking neurons. These
proposals, however, lack a method of performing online inference; that
is, the mapping from the input signal to the spikes is not causal. Instead
of adapting the kernels to the stimulus statistics, the recoding framework
adapts the synaptic weights to re-represent the information in inputs into
spike trains that can be easily interpreted downstream using a fixed set of
kernels; causality of decoding is maintained throughout.

6.3 Limitations. Our proposal has several relevant limitations. First,
the system was tested using a very constrained input spiking scenario. The
population inputs are produced by a Poisson-gaussian spike generation
model, where the model neurons exhibit only roughly realistic smooth
unimodal tuning curves, each having the same shape and asymptoting at 0,
differing only in their centers (preferred stimulus values) being separated by
a fixed distance in the stimulus state-space. While several authors (Pouget
et al., 1998; Zhang & Sejnowski, 1999; Seung & Sompolinsky, 1993) have
made the same assumptions, various issues about the model are actively
debated. The associated criticism stems from our use of the work of Huys
et al. (2007) as providing a suitable test case for which a close approximation
to the true posterior distribution is straightforward to calculate.

Our proposed framework can readily generalize to other spike gener-
ation processes with more realistic tuning curves. Our characterization of
the distribution of the neurons can be seen as one particular case of a more
general functional description by Twum-Danso and Brockett (2001), where
the geometry of hippocampal place cell distribution is parameterized such
that the space of neural preferences is a function of the higher-dimensional
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stimulus state-space and the spacing between the neurons can be adjusted.
Such nonhomogeneity in tuning curves might improve the accuracy of in-
put representation. One consequence of this generalization would be that
the variance of the optimal posterior distribution in our scheme would then
depend not just on the spike timing, as it does now, but also on the relative
tuning preferences of the spiking neurons.

Another assumption is that the input spikes are independent across
time and neurons, with no dependence on stimulus history. However, the
stimulus-induced correlations that we assumed in the neural activity de-
pend only on the nature of the temporal prior (ζ value in equation 4.5) and
not on the particular spiking model assumed; this argument was elaborated
in Huys et al. (2007). Thus, the complexity of the decoding task (in having
to retain past spikes in memory to account for smooth autocorrelations)
primarily derives from the dynamics of the underlying variable, particu-
larly since we focus only on the sparse spiking regime. The dependence
on stimulus history could be approximated in some manner similar to the
linear-nonlinear-Poisson model neurons (Paninski, 2003). In that case, we
suppose that the network would still be useful for accumulating informa-
tion about past spiking activity on longer timescales.

A second limitation in the model is the fact that the learning procedure
is driven by supervision. The network assumes access to a global reward
signal: knowledge of the optimal posterior based on the available informa-
tion in the input spikes. The objective of learning in this setup was to assess
whether any set of synaptic weights could be found that could recode the
inputs to an independently decodable representation. If the aim extends to
making the learning plausible in a biological context, then some feedback
about the optimal distribution over stimulus values would be required.
While information about the true underlying value can be plausibly de-
rived, it is more challenging to envision how information about the optimal
distribution could be obtained.

Finally, we consider the ability of our framework to represent more
general distributions in the light of earlier proposals that populations can
represent arbitrary probability distributions over stimulus values, and even
multiple values (Zemel, Dayan, & Pouget, 1998; Pouget, Dayan, & Zemel,
2003). In all the simulations in this letter, the independent decoder always
aimed to form gaussian posterior distributions. This stems from the lim-
itation of the optimal decoder under a gaussian process prior, which can
derive only gaussian posterior distributions with a mean that is a weighted
average of the preferred values of the spiking neurons. However, our frame-
work can construct general forms of unimodal and multimodal posterior
distributions in a causal manner. Yet representing multiplicity is not as
straightforward. There is evidence that sensory neurons can encode several
environmental stimuli simultaneously in their activity. It is not readily ob-
vious how the model can encode more than one stimulus, allowing for an
internal representation of this form of uncertainty as well.
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6.4 Current Directions. A factor that potentially complicates recoding
concerns the computations carried out by the population as a function
of its inputs: the computations can have a considerable effect on the
representation of the relevant input variable. However, computational
issues are orthogonal to our recoding hypothesis, and our recoding and
decoding scheme as well as the results do not address the network’s
ability to manipulate information in such a way as to achieve a particular
computation. While a network will in general face both of these issues (i.e.,
both issues will have to be solved by any realistic network architecture), we
concentrated purely on the issue of information access in this letter. Hence,
we have focused on a case where the same input variable is recoded and
then decoded, ignoring any kind of computation performed on the input.

We are currently extending the model in two directions. First, we are
developing a recursive, hierarchical formulation of the system in which
recoded information can be manipulated easily and integrated efficiently
in a hierarchical manner to perform neural computations through time.
Instead of generating the input spikes using a gaussian-Poisson model as
in our current simulations, we apply the recoding scheme and then use the
resulting spikes as one of the inputs to another downstream population.
This latter population could in turn integrate recoded spikes from this
and several other disparate input populations characterized by varying
temporal dynamics, each conveying information on different aspects of
stimulus. As mentioned at the beginning of this section, the decoding or
interpretation of the the spikes would be fixed at each level of the hierarchy.

Second, we are applying the framework to a specific statistical com-
putation, dynamic cue combination, in which information from sensory
cues must be mapped from representations specific to each cue to a tar-
get representation, such as motor output. Particularly, we consider how
a neural system might employ the proposed coding scheme recursively
to dynamically reweight and integrate information about the current state
from different sensory modalities. For example, one population can encode
dynamic information from one modality such as proprioception, while an-
other represents visual information. Both utilize the recoding scheme to
efficiently represent a state variable such as position. Then a third popula-
tion takes these recoded spikes as inputs, combines them, and, using the
same representational scheme, produces a spike-based representation of
the posterior distribution over current position. The aim is then to relate the
model to experimental results, such as those of Körding and Wolpert (2004)
on probabilistic computation during sensorimotor processing.

Unfortunately, there are as yet few experimental constraints on our, or
indeed other, models of probabilistic representation and processing. How-
ever, the stronger claims we are making about the temporal statistics of
stimuli and their sensory inputs should admit more powerful experimen-
tal tests. Our study makes several predictions that may help initiate such
experiments. First, for smooth stimuli, the learned value of β was higher
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than for random walk stimuli, which implies that the temporal dynamics
of spiking reflect the temporal dynamics of the stimuli themselves. Second,
lateral connections play a critical role in encoding the temporal prior over
stimulus dynamics, so that spikes during periods of limited input can be
read out as making predictions about the underlying stimulus. In particular,
during such periods, we expect to observe the way that the increased un-
certainty (i.e., posterior variance) is coded. In the hierarchical computation
described above, when the inputs to a multisensory population (such as
model superior colliculus neurons) from disparate sources (such as visual
and somatosensory systems) are combined together, we expect to observe
the influence of the sensory cues on the final estimate following dynamic
reweighting of each cue based on its reliability. We expect to observe this un-
der various experimental conditions, such as multimodal prior distributions
and varying levels of noise both over time and across sensory modalities.

Appendix: Stochastic Gradient Estimation

A.1 Gradient Estimation via Simulation. The probability of generating
the spike vector ρt at any time t given the population spike vector ρ(t−1) at
time t − 1 and the inputs ξ t at time t was specified as

P(t) ≡ P(ρt | −→
ξ t ) = P(ρt | ht−1; ρt−1; ξ t) =

∏
j

σ
(
h j

t
)ρ

j
t
(
1 − σ

(
h j

t
))(1−ρ

j
t )
.

(A.1)

The global reward signal at time t is defined as

v(�, t) = DK L

(
p(st | −→

ξ t )||q (st | −→ρt )
)

. (A.2)

The reward directly depends on the parameters �. Given an objective func-
tion J (t) that maximizes the average reward, the gradient with respect to
� of the expected reward cannot be computed in closed form since the out-
put spikes are stochastically sampled. We resort to approximate gradient
approaches where the gradient is estimated by simulation and the policy is
improved by adjusting the parameters in the gradient direction (Baxter &
Bartlett, 2001). We employ a version of the GPOMDP algorithm to produce
gradient estimates.

The approximate gradient with respect to � takes the form

∂ J (t)
∂�

= (t − 1)
t

∂ J (t − 1)
∂�

+ 1
t
v(t)z(t), (A.3)
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where the eligibility trace z(t) that relates the output spikes ρ(0,T] with
weights W and U and integration constant β, is defined as

z(t) = τ z(t − 1) + 1
P(t)

∂ P(t)
∂�

. (A.4)

The second term in the eligibility trace is derived to be

1
P(t)

∂ P(t)
∂�

= ∂log P(t)
∂�

, (A.5)

where the log probability is

log P(t) =
∑

j

ρ
j

t σ
(
h j

t
) + (

1 − ρ
j

t
)(

1 − σ
(
h j

t
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. (A.6)

This derivative of this log with respect to the parameters � is found to be

∂log P(t)
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, (A.7)

which can be simplified as

∂log P(t)
∂�

=
∑

j

∂h j
t

∂�

(
ρ

j
t − σ

(
h j

t
))

. (A.8)

Now, the gradient with respect to each of the parameters in � can be derived
as shown in the following sections.

A.2 Gradient with Respect to W. The approximate gradient of the
objective function with respect to the feed-forward weights W is

∂ J (t)
∂Wi j

= (t − 1)
t

∂ J (t − 1)
∂Wi j

+ 1
t
v(t)z(t) (A.9)

z(t) = τ z(t − 1) + 1
P(t)

∂ P(t)
∂Wi j

(A.10)

∂log P(t)
∂Wi j

=
∑

j
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t
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(
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j
t − σ

(
h j

t
))

(A.11)

∂h j
t

∂Wi j
= ξ i

t + η(1)
∂h j

t−1

∂Wi j
. (A.12)



2358 R. Natarajan, Q. Huys, P. Dayan, and R. Zemel

Plugging these values back into equation A.9 yields

∂ J (t)
∂Wi j

= (t − 1)
t

∂ J (t − 1)
∂Wi j

+ 1
t
v(t)

×
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t + η(1)
∂h j
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) (
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j
t − σ

(
h j

t
)) . (A.13)

A.3 Gradient with Respect to U. The approximate gradient of the ob-
jective function with respect to the lateral weights U is

∂ J (t)
∂Uk j

= (t − 1)
t

∂ J (t − 1)
∂Uk j

+ 1
t
v(t)z(t) (A.14)

z(t) = τ z(t − 1) + 1
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Plugging these values back into equation A.14 yields
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A.4 Gradient with Respect to β. The approximate gradient of the ob-
jective function with respect to the temporal integration constant β is

∂ J (t)
∂β

= (t − 1)
t

∂ J (t − 1)
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+ 1
t
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