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Abstract

We introduce two multimodal neural language
models: models of natural language that can
be conditioned on other modalities. An image-
text multimodal neural language model can be
used to retrieve images given complex sentence
queries, retrieve phrase descriptions given image
queries, as well as generate text conditioned on
images. We show that in the case of image-text
modelling we can jointly learn word representa-
tions and image features by training our models
together with a convolutional network. Unlike
many of the existing methods, our approach can
generate sentence descriptions for images with-
out the use of templates, structured prediction,
and/or syntactic trees. While we focus on image-
text modelling, our algorithms can be easily ap-
plied to other modalities such as audio.

1. Introduction
Descriptive language is almost never isolated from other
modalities. Advertisements come with images of the prod-
uct that is being sold, social media profiles contain both
descriptions and images of the user while multimedia web-
sites that play audio and video have associated descriptions
and opinions of the content. Consider the task of creat-
ing an advertisement to sell an item. An algorithm that can
model both text descriptions and pictures of the item would
allow a user to (a): search for pictures given a text descrip-
tion of the desired content; (b): find similar item descrip-
tions given uploaded images; and (c): automatically gen-
erate text to describe the item given pictures. What these
tasks have in common is the need to go beyond simple bag-
of-word representations of text alone to model complex de-
scriptions with an associated modality.
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In this paper we introduce multimodal neural language
models, models of natural language that can be condi-
tioned on other modalities. A multimodal neural language
model represents a first step towards tackling the previ-
ously described modelling challenges. Unlike most pre-
vious approaches to generating image descriptions, our
model makes no use of templates, structured models, or
syntactic trees. Instead, it relies on word representations
learned from millions of words and conditioning the model
on high-level image features learned from deep neural net-
works. We introduce two methods based on the log-bilinear
model of Mnih & Hinton (2007): the modality-biased log-
bilinear model and the factored 3-way log-bilinear model.
We then show how to learn word representations and im-
age features together by jointly training our language mod-
els with a convolutional network. Experimentation is
performed on three datasets with image-text descriptions:
IAPR TC-12, Attributes Discovery, and the SBU datasets.
We further illustrate capabilities of our models through
quantitative retrieval evaluation and visualizations of our
results.

2. Related Work
Our related work can largely be separated into three groups:
neural language models, image content description and
multimodal representation learning.

Neural Language Models: A neural language model im-
proves on n-gram language models by reducing the curse
of dimensionality through the use of distributed word rep-
resentations. Each word in the vocabulary is represented as
a real-valued feature vector such that the cosine of the an-
gles between these vectors is high for semantically similar
words. Several models have been proposed based on feed-
forward networks (Bengio et al., 2003), log-bilinear mod-
els (Mnih & Hinton, 2007), skip-gram models (Mikolov
et al., 2013) and recurrent neural networks (Mikolov et al.,
2010; 2011). Training can be sped up through the use of
hierarchical softmax (Morin & Bengio, 2005) or noise con-
trastive estimation (Mnih & Teh, 2012).
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Figure 1. Left two columns: Sample description retrieval given images. Right two columns: description generation. Each description
was initialized to ‘in this picture there is’ or ‘this product contains a’, with 50 subsequent words generated.

Image Description Generation: A growing body of re-
search has explored how to generate realistic text descrip-
tions given an image. Farhadi et al. (2010) consider learn-
ing an intermediate meaning space to project image and
sentence features allowing them to retrieve text from im-
ages and vice versa. Kulkarni et al. (2011) construct a
CRF using unary potentials from objects, attributes and
prepositions and high-order potentials from text corpora,
using an n-gram model for decoding and templates for con-
straints. To allow for more descriptive and poetic gen-
eration, Mitchell et al. (2012) propose the use of syntac-
tic trees constructed from 700,000 Flickr images and text
descriptions. For large scale description generation, Or-
donez et al. (2011) showed that non-parametric approaches
are effective on a dataset of one million image-text cap-
tions. More recently, Socher et al. (2014) show how to
map sentence representations from recursive networks into
the same space as images. We note that unlike most exist-
ing work, our generated text comes directly from language
model samples without any additional templates, structure,
or constraints.

Multimodal Representation Learning: Deep learning
methods have been successfully used to learn representa-
tions from multiple modalities. Ngiam et al. (2011) pro-
posed using deep autoencoders to learn features from audio
and video, while Srivastava & Salakhutdinov (2012) intro-

duced the multimodal deep Boltzmann machine as a joint
model of images and text. Unlike Srivastava & Salakhut-
dinov (2012), our proposed models are conditional and go
beyond bag-of-word features. More recently, Socher et al.
(2013) and Frome et al. (2013) propose methods for map-
ping images into a text representation space learned from
a language model that incorporates global context (Huang
et al., 2012) or a skip-gram model (Mikolov et al., 2013),
respectively . This allowed Socher et al. (2013); Frome
et al. (2013) to perform zero-shot learning, generalizing to
classes the model has never seen before. Similar to our
work, the authors combine convolutional networks with a
language model but our work instead focuses on text gen-
eration and retrieval as opposed to object classification.

The remainder of the paper is structured as follows. We first
review the log-bilinear model of Mnih & Hinton (2007) as
it forms the foundation for our work. We then introduce
our two proposed models as well as how to perform joint
image-text feature learning. Finally, we describe our exper-
iments and results.

3. The Log-Bilinear Model (LBL)
The log-bilinear language model (LBL) (Mnih & Hinton,
2007) is a deterministic model that may be viewed as a
feed-forward neural network with a single linear hidden
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layer. As a neural language model, the LBL operates on
word representation vectors. Each word w in the vocabu-
lary is represented as a D-dimensional real-valued vector
rw ∈ RD. Let R denote the K × D matrix of word rep-
resentation vectors where K is the vocabulary size. Let
(w1, . . . wn−1) be a tuple of n−1 words where n−1 is the
context size. The LBL model makes a linear prediction of
the next word representation as

r̂ =

n−1∑
i=1

C(i)rwi , (1)

where C(i), i = 1, . . . , n − 1 are D × D context param-
eter matrices. Thus, r̂ is the predicted representation of
rwn

. The conditional probability P (wn = i|w1:n−1) of wn

given w1, . . . , wn−1 is

P (wn = i|w1:n−1) =
exp(r̂T ri + bi)∑K

j=1 exp(r̂T rj + bj)
, (2)

where b ∈ RK is a bias vector with a word-specific bias
bi. Eq. 2 may be seen as scoring the predicted representa-
tion r̂ of wn against the actual representation rwn through
an inner product, followed by normalization based on the
inner products amongst all other word representations in
the vocabulary. In the context of a feed-forward neural net-
work, the weights between the output layer and linear hid-
den layer is the word representation matrix R where the
output layer uses a softmax activation. Learning can be
done with standard backpropagation.

4. Multimodal Log-Bilinear Models
Suppose that along with each training tuple of words
(w1, . . . wn) there is an associated vector x ∈ RM cor-
responding to the feature representation of the modality to
be conditioned on, such as an image. Assume for now that
these features are computed in advance. In Section 5 we
show how to jointly learn both text and image features.

4.1. Modality-Biased Log-Bilinear Model (MLBL-B)

Our first proposed model is the modality-biased log-
bilinear model (MLBL-B) which is a straightforward ex-
tension of the LBL model. The MLBL-B model adds an
additive bias to the next predicted word representation r̂
which is computed as

r̂ =

(
n−1∑
i=1

C(i)rwi

)
+C(m)x, (3)

where C(m) is a D × M context matrix. Given the pre-
dicted next word representation r̂, computing the con-
ditional probability P (wn = i|w1:n−1,x) of wn given
w1, . . . , wn−1 and x remains unchanged from the LBL

model. The MLBL-B can be viewed as a feedforward
network by taking the LBL network and adding a context
channel based on the modality x, as shown in Fig. 2a. This
model also shares resemblance to the quadratic model of
Grangier et al. (2006). Learning in this model involves
a straightforward application of backpropagation as in the
LBL model.

4.2. The Factored 3-way Log-Bilinear Model
(MLBL-F)

A more powerful model to incorporate modality condition-
ing is to gate the word representation matrix R by the fea-
tures x. By doing this, R becomes a tensor for which each
feature x can specify its own hidden to output weight ma-
trix. More specifically, let R(1), . . . ,R(m) be K ×D ma-
trices specified by feature components 1, . . . ,M of x. The
hidden to output weights corresponding to x are computed
as

Rx =

M∑
i=1

xiR
(i), (4)

where Rx denotes the word representations with respect to
x. The motivation for using a modality specific word rep-
resentation is as follows. Suppose x is an image containing
a picture of a cat, with context words (there, is, a). A lan-
guage model that is trained without knowledge of image
features would score the predicted next word representa-
tion r̂ high with words such as dog, building or car. If each
image has a corresponding word representation matrix Rx,
the representations for attributes that are not present in the
image would be modified such that the inner product of r̂
with the representation of cat would score higher than the
inner product of r̂ with the representations of dog, building
or car.

As is, the tensor R requires K × D × M parameters
which makes using a general 3-way tensor impractical even
for modest vocabulary sizes. A common solution to this
approach (Memisevic & Hinton, 2007; Krizhevsky et al.,
2010) is to factor R into three lower-rank matrices Wfr̂ ∈
RF×D, Wfx ∈ RF×M and Wfh ∈ RF×K , such that

Rx = (Wfh)> · diag(Wfxx) ·Wfr̂, (5)

where diag(·) denotes the matrix with its argument on the
diagonal. These matrices are parametrized by F , the num-
ber of factors, as shown in Fig. 2b.

Let E = (Wfr̂)>Wfh denote the D ×K matrix of word
embeddings. Given the context w1, . . . , wn−1, the pre-
dicted next word representation r̂ is given by:

r̂ =

(
n−1∑
i=1

C(i)E(:, wi)

)
+C(m)x, (6)

where E(:, wi) denotes the column of E for the word repre-
sentation of wi. Given a predicted next word representation
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Figure 2. Our proposed models. Left: The predicted next word representation r̂ is a linear prediction of word features rw1 , rw2 , rw3

(blue connections) biased by image features x. Right: The word representation matrix R is replaced by a factored tensor for which the
hidden-to-output connections are gated by x.

r̂, the factor outputs are

f = (Wfr̂ r̂) • (Wfxx), (7)

where • is a component-wise product. The condi-
tional probability P (wn = i|w1:n−1,x) of wn given
w1, . . . , wn−1 and x can be written as

P (wn = i|w1:n−1,x) =
exp
(
(Wfh(:, i))>f + bi

)∑K
j=1 exp

(
(Wfh(:, j))>f + bj

) ,
where Wfh(:, i) denotes the column of Wfh correspond-
ing to word i. We call this the MLBL-F model. As with the
LBL and MLBL-B models, training can be achieved using
a straightforward application of backpropagation. Unlike
the other models, extra care needs to be taken when adjust-
ing the learning rates for the matrices of the factored tensor.

It is sensible that pre-computed word embeddings could be
used as a starting point to training, as opposed to random
initialization of the word representations. Indeed, all of our
experiments use the embeddings of Turian et al. (2010) for
initialization. In the case of the LBL and MLBL-B models,
each pre-trained word embedding can be used to initialize
the rows of R. In the case of the MLBL-F model where R
is a factored tensor, we can let E be the D ×K matrix of
pre-trained embeddings. Since E = (Wfr̂)>Wfh, we can
initialize the MLBL-F model with pre-trained embeddings
by simply applying an SVD to E.

5. Joint Image-Text Feature Learning
Up until now we have not made any assumptions on the
type of modality being used for the feature representation
x. In this section, we consider the case where the condi-
tioned modality consists of images and show how to jointly
learn image and word features along with the model param-
eters.

One way of incorporating image representation learning is
to use a convolutional network for which the outputs are

used either as an additive bias or for gating. Gradients from
the loss could then be backpropagated from the language
model through the convolutional network to update filter
weights. Unfortunately, learning on every image in this ar-
chitecture is computationally demanding. Since each train-
ing tuple of words comes with an associated image, then
the number of training elements becomes large even with
a modest size training set. For example, if the training set
consisted of 10,000 images and each image had a text de-
scription of 20 words, then the number of training elements
for the model becomes 200,000. For large image databases
this could quickly scale to millions of training instances.

To speed up computation, we follow Wang et al. (2012);
Swersky et al. (2013) and learn our convolutional networks
on small feature maps learned using k-means as opposed
to the original images. We follow the pipeline of Coates &
Ng (2011). Given training images, r × r patches are ran-
domly extracted, contrast normalized and whitened. These
are used for training a dictionary with spherical k-means.
These filters are convolved with the image and a soft acti-
vation encoding is applied. If the image is of dimensions
nV ×nH×3 and kf filters are learned, the resulting feature
maps are of size (nV − r+ 1)× (nH − r+ 1)× kf . Each
slice of this region is then split into a G×G grid for which
features within each region are max-pooled. This results in
an output of size G × G × kf . It is these outputs that are
used as inputs to the convolutional network. For all of our
experiments, we use G = 9 and kf = 128.

Each 9 × 9 × 128 input is convolved with 64 3 × 3 filters
resulting in feature maps of size 7× 7× 64. Rectified lin-
ear units (ReLUs) are used for activation followed by a re-
sponse normalization layer (Krizhevsky et al., 2012). The
response-normalized feature maps are then max-pooled
with a pooling window of 3 × 3 and a stride of 2, result-
ing in outputs of size 3×3×64. One fully-connected layer
with ReLU activation is added. It is the feature responses at
this layer that are used either for additive biasing or gating
in the MLBL-B and MLBL-F models, respectively.
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6. Generation and Retrieval
The standard approach to evaluating language models is
through perplexity

log2C(w1:n|x) = −
1

N

∑
w1:n

log2P (wn = i|w1:n−1,x),

where w1:n−1 runs through each subsequence of length
n − 1 and N is the length of the sequence. Here we use
perplexity not only as a measure of performance but also
as a link between text and the additional modality.

First, consider the task of retrieving training images from
a text query w1:N . For each image x in the training set,
we compute C(w1:N |x) and return the images for which
C(w1:N |x) is lowest. Intuitively, images when conditioned
on by the model that achieve low perplexity are those that
are a good match to the query description.

The task of retrieving text from an image query is trick-
ier for the following reasons. It is likely that there are
many ‘easy’ sentences for which the language model will
assign low perplexity to independent of the query image
being conditioned on. Thus, instead of retrieving text
from the training set for which C(w1:N |x) is lowest con-
ditioned on the query image x, we instead look at the ratio
C(w1:N |x)/C(w1:N |x̃) where x̃ denotes the mean image in
the training set (computed in feature space). Thus, if w1:N

is a good explanation of x, then C(w1:N |x) < C(w1:N |x̃)
and we can simply retrieve the text for which this ratio is
smallest.

While this leads to better search results, it is conceivable
that using the image itself as a query for other images
and returning their corresponding descriptions may in itself
work well as a query strategy. For example, an image taken
at night would ideally return a description describing this,
which would be more likely to occur if we first retrieved
nearby images which were also taken at night. We found
the most effective way of performing description retrieval
is as follows: first retrieve the top kr training images as
a shortlist based on the Euclidean distance between x and
images in the training set. Then retrieve the descriptions for
which C(w1:N |x)/C(w1:N |x̃) is smallest for each descrip-
tion w1:N in the shortlist. We found that combining these
two strategies is more effective than using either alone. In
the case when a convolutional network is used, we first map
the images through the convolutional network and use the
output representations for computing distances.

Finally, we generate text given an image as follows: Sup-
pose we are given an initialization w1:n−1, where n − 1 is
the context size. We compute P (wn = i|w1:n−1,x) and
obtain a sample w̃ from this distribution, appending w̃ to
our initialization. This procedure is then repeated for as
long as desired.

7. Experiments
We perform experimental evaluation of our proposed mod-
els on three publicly available datasets:

IAPR TC-12 This data set consists of 20,000 images
across various domains, such as landscapes, portraits, in-
door and sports scenes. Accompanying each image is a text
description of one to three sentences describing the content
of the image. The dataset was initially released for cross-
lingual retrieval (Grubinger et al., 2006) but has since been
used extensively for other tasks such as image annotation.
We used a publicly available train/test split for our experi-
ments.

Attribute Discovery This dataset contains roughly 40,000
images related to products such as bags, clothing and shoes
as well as subcategories of each product, such as high-
heels and sneakers. Each image is accompanied by a web-
retrieved text description which often reads as an advertise-
ment for the product. Unlike the IAPR dataset, the text de-
scriptions are not guaranteed to be descriptive of the image
and often contain noisy, unrelated text. This dataset was
proposed as a means of discovering visual attributes from
noisy text (Berg et al., 2010). We used a random train/test
split for our experiments which will be made publicly avail-
able.

SBU Captioned Photos We obtained a subset of roughly
400,000 images from the SBU dataset (Ordonez et al.,
2011) which contain images and short text descriptions.
This dataset is used to induce word embeddings learned
from both images and text for qualitative comparison.

7.1. Details of Experiments

We perform four experiments, three of which are quantita-
tive and one of which is qualitative:

Bleu Evaluation Our main evaluation criteria is based on
Bleu (Papineni et al., 2002). Bleu was designed for auto-
mated evaluation of statistical machine translation and can
be used in our setting to measure similarity of descriptions.
Previous work on generating text descriptions for images
use Bleu as a means of evaluation, where the generated
sentence is used as a candidate for the gold standard ref-
erence generation. Given the diversity of possible image
descriptions, Bleu may penalize candidates which are ar-
guably descriptive of image content as noted by Kulkarni
et al. (2011) and may not always be the most effective eval-
uation (Hodosh et al., 2013), though Bleu remains the stan-
dard evaluation criteria for such models. Given a model,
we generate a candidate description as described in Sec-
tion 6, generating as many words as there are in the refer-
ence sentence and compute the Bleu score of the candidate
with the reference. This is repeated over all test points ten
times, in order to account for the variability in the gener-
ated sentences. For baselines, we also compare against the
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Table 1. Sample neighbors (by cosine similarity) of words learned from the SBU dataset. First row: neighbors from Collobert & Weston
(2008) (C&W). Second row: neighbors from a LBL model (without images). Third row: neighbors from a MLBL-F model (with
images).

tranquil sensuous somber bleak cheerful dreary
gloomy dismal slower feeble realistic brighter strong

hazy stormy foggy crisp cloudless dull
laptop dorm desk computer canteen darkroom

classroom pub cabin library bedroom office cottage
library desk restroom office cabinet kitchen

bamboo silk gold bark flesh crab
flower bird tiger monster cow fish leaf

plant flowers fruit green plants rose
breakwater icefield lagoon nunnery waterway walkway

lighthouse monument lagoon kingdom mosque skyline truck
pier ship dock castle marina pool

championship trophy bowl league tournament cups
cup cider bottle needle box fashion shoe

bag bottle container oil net jam
shorelines topography vegetation convection canyons slopes

terrain seas paces descent yards rays floors
headland chasm creekbed ranges crest pamagirri

log-bilinear model was well as image-conditioned models
conditioned on random images. This allows us to obtain
further evidence of the relevance of generated text. Finally,
we compare against the models of Gupta et al. (2012) and
Gupta & Mannem (2012) who report Bleu scores for their
models on the IAPR dataset.1

Perplexity Evaluation Each of our proposed models are
trained on both datasets and the perplexity of the language
models are evaluated. As baselines, we also include the
basic log-bilinear model as well as two n-gram models. To
evaluate the effectiveness of using pre-trained word embed-
dings, we also train a log-bilinear model where the word
representations are randomly initialized. We hypothesize
that image-conditioned models should result in lower per-
plexity than models which are only trained on text without
knowledge of their associated images.

Retrieval Evaluation We quantitatively evaluate the per-
formance of our model for doing retrieval. First consider
the task of retrieving images from sentence queries. Given
a test sentence, we compute the model perplexity condi-
tioned on each test image and rank each image accordingly.
Let kr denote the number of retrieved images. We define a
sentence to be correctly matched if the matching image to
the sentence query is ranked in the top kr images sorted by
model perplexity. Retrieving sentences from image queries
is performed equivalently. Since our models use a shortlist
(see Section 6) of nearest images for retrieving sentences,
we restrict our search to images within the shortlist, for

1We note that an exact comparison cannot be made with these
methods since Gupta & Mannem (2012) assume tags are given
as input along with images and both methods apply 10-fold CV.
The use of tags can substantially boost the relevance of generated
sentences. Nonetheless, these methods provide context for our
results.

which the matching sentence is guaranteed to be in.

For additional comparison, we include a strong image-
based bag-of-words baseline to determine whether a lan-
guage model (and word ordering) is necessary for image-
description retrieval tasks. This model works as follows:
given image features, we learn a linear transformation onto
independent logistic units, one for each word in the descrip-
tion. Descriptions are scored as − 1

N

∑
w1:n

logP (wn =
w|x). For retrieving images, we project each image and
rank those which result in the highest description score.
For retrieving sentences, we return those which result in
the highest score given the word probabilities computed
from the image. Since we use a shortlist for our models
when performing sentence retrieval, we also use the same
shortlist (relative to the image features used) to allow for
fair comparison. A validation batch was used to tune the
weight decay.

Qualitative Results We trained a LBL model and a
MLBL-F model on the SBU examples. Both language
models were trained on the same text, but the MLBL-F
also conditioned on images using DeCAF features (Don-
ahue et al., 2013). Both models were trained using per-
plexity as a criteria for early stopping, and with the same
context size and vocabulary. Table 1 shows sample nearest
neighbors from both models. When trained on images and
text, the MLBL-F model can learn to capture both visual
and semantic similarities, resulting in very different near-
est neighbors than the LBL model and C&W embeddings.
These word embeddings will be made publicly available.

We use three types of image features in our experiments:
Gist (Oliva & Torralba, 2001), DeCAF (Donahue et al.,
2013), and features learned jointly with a convolutional net.



Multimodal Neural Language Models

Table 2. Results on IAPR TC-12. PPL refers to perplexity while
B-n indicates Bleu scored with n-grams. Back-off GTn refers to
n-grams with Katz backoff and Good-Turing discounting. Mod-
els which use a convolutional network are indicated by -conv,
while -conv-R indicates using random images for conditioning.
skmeans refers to the features of Kiros & Szepesvári (2012).

MODEL TYPE PPL. B-1 B-2 B-3

BACK-OFF GT2 54.5 0.323 0.145 0.059
BACK-OFF GT3 55.6 0.312 0.131 0.059
LBL 20.1 0.327 0.144 0.068
MLBL-B-CONV-R 28.7 0.325 0.143 0.069
MLBL-B-SKMEANS 18.0 0.349 0.161 0.079
MLBL-F-SKMEANS 20.3 0.348 0.165 0.085
MLBL-B-GIST 20.8 0.348 0.164 0.083
MLBL-F-GIST 28.8 0.341 0.151 0.074
MLBL-B-CONV 20.6 0.349 0.165 0.085
MLBL-F-CONV 21.7 0.341 0.156 0.073
MLBL-B-DECAF 24.7 0.373 0.187 0.098
MLBL-F-DECAF 21.8 0.361 0.176 0.092
GUPTA ET AL. - 0.15 0.06 0.01
GUPTA & MANNEM - 0.33 0.18 0.07

7.2. Details of Training

Each of our language models were trained using the follow-
ing hyperparameters: all context matrices used a weight de-
cay of 1.0×10−4 while word representations used a weight
decay of 1.0 × 10−5. All other weight matrices, includ-
ing the convolutional network filters use a weight decay of
1.0× 10−4. We used batch sizes of 20 and an initial learn-
ing rate of 0.2 (averaged over the minibatch) which was
exponentially decreased at each epoch by a factor of 0.998.
Gated methods used an initial learning rate of 0.02. Ini-
tial momentum was set to 0.5 and was increased linearly to
0.9 over 20 epochs. The word representation matrices were
initialized to the 50 dimensional pre-trained embeddings of
Turian et al. (2010). We used a context size of 5 for each of
our models. Perplexity was computed starting with word
C + 1 for all methods where C is the largest context size
used in comparison (5 in our experiments). Perplexity was
not evaluated on descriptions shorter than C + 3 words for
all models. Since features used have varying dimension-
ality, an additional layer was added to map images to 256
dimensions, so that across all experiments the input size to
the bias and gating units are equivalent. Note that we did
not explore varying the word embedding dimensionalities,
context sizes or number of factors.

For each of our experiments, we split the training set into
80% training and 20% validation. Each model was trained
while monitoring the perplexity on the validation set. Once
the perplexity no longer improved for 5 epochs, the objec-
tive value on the training set was recorded. The training and
validation sets were then fused and training continued un-
til the objective value on the validation batch matched the
recorded training objective. At this point, training stopped

Table 3. Results on the Attributes Discovery dataset.

MODEL TYPE PPL. B-1 B-2 B-3

BACK-OFF GT2 117.7 0.163 0.033 0.009
BACK-OFF GT3 93.4 0.166 0.032 0.011
LBL 97.6 0.161 0.031 0.009
MLBL-B-CONV-R 154.4 0.166 0.035 0.012
MLBL-B-GIST 95.7 0.185 0.044 0.013
MLBL-F-GIST 115.1 0.182 0.042 0.013
MLBL-B-CONV 99.2 0.189 0.048 0.017
MLBL-F-CONV 113.2 0.175 0.042 0.014
MLBL-B-DECAF 98.3 0.186 0.045 0.014
MLBL-F-DECAF 133.0 0.178 0.041 0.012

and evaluation was performed on the test set.

7.3. Generation and Perplexity Results

Tables 2 and 3 show results on the IAPR and Attributes
dataset, respectively. On both datasets, each of our mul-
timodal models outperforms both the log-bilinear and n-
gram models on Bleu scores. Our multimodal models also
outperform Gupta et al. (2012) and result in comparable
performance to Gupta & Mannem (2012). It should be
noted that Gupta & Mannem (2012) assumes that both im-
ages and tags are given as input, where the presence of
tags give substantial information about general image con-
tent. What is perhaps most surprising is that simple lan-
guage models independent of images can also achieve non-
trivial Bleu scores. For further comparison, we computed
Bleu scores on the convolutional MLBL-B model when
random images are used for conditioning. Moreover, we
also computed Bleu scores on IAPR with LBL and MLBL-
B-DeCAF when stopwords are removed, obtaining (0.166,
0.052, 0.013) and (0.224, 0.082, 0.028) respectively. This
gives us strong evidence that the gains in Bleu scores are
obtained directly from capturing and associating word rep-
resentations from image content.

One observation from our results is that perplexity does not
appear to be correlated with Bleu scores.2 On the IAPR
dataset, the best perplexity is obtained using the MLBL-B
model with fixed features, even though the best Bleu scores
are obtained with a convolutional model. Similarly, both
Back-off GT3 and LBL have the lowest perplexities on the
Attributes dataset but are worse with respect to Bleu. Us-
ing more than 3-grams did not improve results on either
dataset. For additional comparison, we also ran an experi-
ment training LBL on both datasets using random word ini-
tialization, achieving perplexity scores of 23.4 and 109.6.
This indicates the benefit of initialization from pre-trained
word representations. Perhaps unsurprisingly, perplexity

2This is likely due to high variance on held-out perplexities
due to the shortness of text. We note that perplexity is lower on
the training set with multimodal models.
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Table 4. F-scores for retrieval on IAPR TC-12 when a text query
is used to retrieve images (T → I) or when an image query is
used to retrieve text (I → T ). Each row corresponds to DeCAF,
Conv and Gist features, respectively.

T → I I → T

BOW MLBL-B MLBL-F BOW MLBL-B MLBL-F

0.890 0.889 0.899 0.755 0.731 0.568
0.726 0.788 0.851 0.687 0.719 0.736
0.832 0.799 0.792 0.599 0.675 0.612

is much worse on the convolutional MLBL-B model when
random images are used for conditioning.

7.4. Retrieval Results

Tables 4 and 5 illustrate the results of our retrieval ex-
periments. In the majority of our experiments either the
multimodal models outperform or are competitive with the
bag-of-words baseline. The baseline when combined with
DeCAF features is exceptionally strong. Perhaps this is
unsurprising, given that these features were trained to pre-
dict object classes on ImageNet. The generality of these
features also make it effective for predicting word occur-
rences, particularly if they are visual. For non-DeCAF ex-
periments, our models improve on the baseline for 6 out of
8 tasks and result in near similar performance on another.
The MLBL-F model performed best when combined with
a convolutional net on IAPR while the MLBL-B model
performed better on the remaining tasks. All 12 retrieval
curves are included in the supplementary material.

7.5. Qualitative results

The supplementary material contains qualitative results
from our models. In general, the model does a good job
at retrieving text with general characteristics of a scene or
retrieving the correct type of product on the Attributes Dis-
covery dataset, being able to distinguish between different
kinds of sub-products, such as shoes and boots. The most
common mistakes that the model makes are retrieving text
with extraneous descriptions that do not exist in the image,
such as describing people that are not present. We also ob-
served errors on shorter queries where single words, such
as sunset and lake, indicate key visual concepts that the
model is not able to pick up on.

For generating text, the model was initialized with ‘in this
picture there is’ or ’this product contains a’ and proceeded
to generate 50 words conditioned on the image. The model
is often able to describe the general content of the image,
even if it does not get specifics correct such as colors of
clothing. This gives visual confirmation of the increased
Bleu scores from our models. Several additional results are

Table 5. F-scores for retrieval on Attributes Discovery when a text
query is used to retrieve images (T → I) or when an image query
is used to retrieve text (I → T ). Each row corresponds to DeCAF,
Conv and Gist features, respectively.

T → I I → T

BOW MLBL-B MLBL-F BOW MLBL-B MLBL-F

0.808 0.852 0.835 0.579 0.580 0.504
0.730 0.839 0.815 0.607 0.590 0.576
0.826 0.844 0.818 0.555 0.621 0.579

included on the web page of the first author.

8. Conclusion
In this paper we proposed multimodal neural language
models. We described two novel language models and
showed in the context of image-text learning how to jointly
learn word representations and image features. Our models
can obtain improved Bleu scores to existing approaches for
sentence generation while generally outperforming a strong
bag-of-words baseline for description and image retrieval.

To our surprise, we found additive biasing with high-level
image features to be quite effective. A key advantage of the
multiplicative model though is speed of training: even with
learning rates an order of magnitude smaller these mod-
els typically required substantially fewer epochs to achieve
the same performance. Unlike MLBL-B, MLBL-F requires
additional care in early stopping and learning rate selection.

This work takes a first step towards generating image de-
scriptions with a multimodal language model and sets a
baseline when no additional structures are used. For future
work, we intend to explore adding additional structures to
improve syntax as well as combining our methods with a
detection algorithm.
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Stratos, Karl, and Daumé III, Hal. Midge: Generating image
descriptions from computer vision detections. In EACL, pp.
747–756, 2012.

Mnih, Andriy and Hinton, Geoffrey. Three new graphical mod-
els for statistical language modelling. In ICML, pp. 641–648.
ACM, 2007.

Mnih, Andriy and Teh, Yee Whye. A fast and simple algorithm for
training neural probabilistic language models. arXiv preprint
arXiv:1206.6426, 2012.

Morin, Frederic and Bengio, Yoshua. Hierarchical probabilistic
neural network language model. In AISTATS, pp. 246–252,
2005.

Ngiam, Jiquan, Khosla, Aditya, Kim, Mingyu, Nam, Juhan, Lee,
Honglak, and Ng, Andrew. Multimodal deep learning. In
ICML, pp. 689–696, 2011.

Oliva, Aude and Torralba, Antonio. Modeling the shape of the
scene: A holistic representation of the spatial envelope. IJCV,
42(3):145–175, 2001.

Ordonez, Vicente, Kulkarni, Girish, and Berg, Tamara L. Im2text:
Describing images using 1 million captioned photographs. In
NIPS, pp. 1143–1151, 2011.

Papineni, Kishore, Roukos, Salim, Ward, Todd, and Zhu, Wei-
Jing. Bleu: a method for automatic evaluation of machine
translation. In ACL, pp. 311–318. ACL, 2002.

Socher, Richard, Ganjoo, Milind, Manning, Christopher D, and
Ng, Andrew. Zero-shot learning through cross-modal transfer.
In NIPS, pp. 935–943, 2013.

Socher, Richard, Le, Quoc V, Manning, Christopher D, and Ng,
Andrew Y. Grounded compositional semantics for finding and
describing images with sentences. TACL, 2014.

Srivastava, Nitish and Salakhutdinov, Ruslan. Multimodal learn-
ing with deep boltzmann machines. In NIPS, pp. 2231–2239,
2012.

Swersky, Kevin, Snoek, Jasper, and Adams, Ryan. Multi-task
bayesian optimization. In NIPS, 2013.

Turian, Joseph, Ratinov, Lev, and Bengio, Yoshua. Word repre-
sentations: a simple and general method for semi-supervised
learning. In ACL, pp. 384–394. Association for Computational
Linguistics, 2010.

Wang, Tao, Wu, David J, Coates, Adam, and Ng, Andrew Y. End-
to-end text recognition with convolutional neural networks. In
ICPR, pp. 3304–3308. IEEE, 2012.


