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Abstract

We introduce two multimodal neural language models: models of natural lan-
guage that can be conditioned on other modalities. A multimodal neural language
model can be used to retrieve images given complex description queries, retrieve
phrase descriptions given image queries, as well as generate text conditioned on
images. We show that in the case of image-text modelling we can jointly learn
word representations and image features by training our models together with a
convolutional network. Unlike most existing methods, our approach can gen-
erate sentence descriptions for images without the use of templates, structured
prediction, and/or syntactic trees. While we focus on image-text modelling, our
algorithms can be easily applied to other modalities such as audio.

1 Introduction

Descriptive language is almost never isolated from other modalities. Advertisements come with
images of the product that is being sold, social media profiles contain both descriptions and images
of the user while multimedia websites that play audio and video have associated descriptions and
opinions of the content. Consider the task of creating an advertisement to sell an item. An algorithm
that can model both text descriptions and pictures of the item would allow a user to (a): search
for pictures given a text description of the desired content (b): find similar item descriptions given
uploaded images and (c): automatically generate text to describe the item given pictures. In a similar
fashion, a user could write a description of a style of song and retrieve songs to match the query
description or given a song, generate text to describe its style. What all these tasks have in common
is the need to go beyond bag-of-word representations of text to model complex descriptions with an
associated modality.

In this paper we introduce multimodal neural language models, models of natural language that can
be conditioned on other modalities. A multimodal neural language model can account for all the
previously described modelling challenges. Unlike most previous approaches to generating image
descriptions, our model makes no use of templates, structured models, or syntactic trees. Instead,
it relies on word representations learned from millions of words and conditioning the model on
high-level image features learned from deep neural networks. We introduce two methods based on
the log-bilinear model of [1]: the modality-biased log-bilinear model and the factored 3-way log-
bilinear model. We then show how to learn word representations and image features together by
jointly training our language models with a convolutional network. Experimentation is performed
on two datasets with image-text descriptions: IAPR TC-12 and the Attributes Discovery dataset.
We further illustrate the capabilities of our models through quantitative retrieval evaluation and
visualizations of our results.
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2 Related Work

Our related work can largely be separated into three groups: neural language models, image content
description and multimodal representation learning. We describe each of these areas separately as
well as indicate the relationships within these research areas.

Neural Language Models: A neural language model improves on n-gram language models by
reducing the curse of dimensionality through the use of distributed word representations. Each word
in the vocabulary is represented as a real-valued feature vector such that the cosine of the angles
between these vectors is high for semantically similar words. Several models have been proposed
based on feed-forward networks [2], log-bilinear models [1], skip-gram models [3] and recurrent
neural networks [4, 5]. The downside to these types of models is that naively, they often require
training times that are linear in the vocabulary size. To speed up training [6] explored the use of
noise-contrastive estimation while [7] inferred trees over words.

Image Description Generation: A growing body of research has been proposed on how to gener-
ate realistic text descriptions given an image. [8] consider learning an intermediate meaning space
to project image and sentence features allowing them to retrieve text from images and vice versa.
[9] construct a CRF using unary potentials from objects, attributes and prepositions and high-order
potentials from text corpora, using an n-gram model for decoding and templates for constraints.
To allow for more descriptive and poetic generation, [10] propose the use of syntactic trees con-
structed from 700,000 Flickr images and text descriptions. For large scale description generation,
[11] showed that non-parametric approaches are effective on a dataset of one million image-text
captions. We note that unlike most existing work, our generated text comes directly from language
model samples without any additional templates, structure, or constraints.

Multimodal Representation Learning: Deep learning methods have been successfully used to
learn representations from multiple modalities. [12] proposed using deep autoencoders to learn
features from audio and video, while [13] introduced the multimodal deep Boltzmann machine as
a joint model of images and text. Unlike [13], our proposed models are conditional and go beyond
bag-of-word features. More recently, [14] and [15] propose methods for mapping images into a text
representation space learned from a language model that incorporates global context [16] or a skip-
gram model [3], respectively . This allowed [14, 15] to perform zero-shot learning, generalizing to
classes the model has never seen before. Similar to our work, [15] combine convolutional networks
with a language model but our work instead focuses on text generation and retrieval as opposed to
object classification.

The remainder of the paper is structured as follows. We first review the log-bilinear model of [1] as
it forms the foundation for our work. We then introduce our two proposed models as well as how to
perform joint image-text feature learning. Finally, we describe our experiments and results.

3 The Log-Bilinear Language Model (LBL)

The log-bilinear language model (LBL) [1] is a deterministic model that may be viewed as a feed-
forward neural network with a single linear hidden layer. As a neural language model, the LBL
operates on word representation vectors. Each word w in the vocabulary is represented as a d-
dimension real-valued vector rw ∈ Rd. Let R denote the k × d matrix of word representation
vectors where k is the vocabulary size. Let (w1, . . . wn−1) be a tuple of n− 1 words where n− 1 is
the context size. The LBL model makes a linear prediction of the next word representation as

r̂ =

n−1∑
i=1

Cirwi
(1)

where Ci, i = 1, . . . , n − 1 are d × d context parameter matrices. Thus, r̂ is the predicted rep-
resentation of rwn

. The conditional probability P (wn = w|w1:n−1) of wn given w1, . . . , wn−1
is

P (wn = w|w1:n−1) =
exp(r̂T rw + bw)∑
j exp(r̂T rj + bj)

(2)

where b ∈ Rk is a bias vector with a word-specific bias bw. Eq. 2 may be seen as scoring the
predicted representation r̂ of wn against the actual representation rw through an inner product,
followed by normalization based on the inner products amongst all other word representations in the
vocabulary. In the context of a feed-forward neural network, the weights between the output layer
and linear hidden layer is the word representation matrix R where the output layer uses a softmax
activation. Learning can be done with standard backpropagation.
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Figure 1: Our proposed models. Left: The predicted next word representation r̂ is a linear prediction
of word features rw1 , rw2 , rw3 (blue connections) biased by image features x. Right: The word
representation matrix R is replaced by a factored tensor for which the hidden-to-output connections
are gated by x.

4 Multimodal Log-Bilinear Models

Suppose that along with each training tuple of words (w1, . . . wn) there is an associated vector
x ∈ Rm corresponding to the feature representation of the modality to be conditioned on, such as
an image. Assume for now that these features are computed in advance. In section 5 we show how
to jointly learn both text and image features.

4.1 Modality-Biased Log-Bilinear Model (MLBL-B)

Our first proposed model is the modality-biased log-bilinear model (MLBL-B) which is a straight-
forward extension of the LBL model. The MLBL-B model adds an additive bias to the next predicted
word representation r̂ which is computed as

r̂ =

(
n−1∑
i=1

Cirwi

)
+Cmx (3)

where Cm is a k ×m context matrix. Given the predicted next word representation r̂, computing
the conditional probability P (wn = w|w1:n−1,x) of wn given w1, . . . , wn−1 and x is

P (wn = w|w1:n−1,x) =
exp(r̂T rw + bw)∑
j exp(r̂T rj + bj)

(4)

which remains unchanged from the LBL model. The MLBL-B can be viewed as a feedforward
network by taking the LBL network and adding an additional context channel based on the modality
x, as shown in Fig. 1a. Learning in this model involves a straightforward application of backpropa-
gation as in the LBL model.

4.2 The Factored 3-way Log-Bilinear Model (MLBL-F)

A more powerful model to incorporate modality conditioning is to gate the word representation
matrix R by the features x. By doing this, R becomes a tensor for which each feature x can specify
its own hidden to output weight matrix. More specifically, let R(1), . . . ,R(m) be k × d matrices
specified by feature components 1, . . . ,m of x. The hidden to output weights corresponding to x
are computed as

Rx =

m∑
i=1

x(i)R(i) (5)

where Rx denotes the word representations with respect to x. The motivation for using a modality
specific word representation is as follows. Suppose x is an image containing a picture of a cat,
with context words (there, is, a). A language model that is trained without knowledge of image
features would score the predicted next word representation r̂ high with words such as dog, building
or car. If each image has a corresponding word representation matrix Rx, the representations for
attributes that are not present in the image would be modified such that the inner product of r̂ with
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the representation of cat would score higher than the inner product of r̂ with the representations of
dog, building or car.

As is, the tensor R requires k × d × m parameters which makes using a general 3-way tensor
impractical even for modest vocabulary sizes. A common solution to this approach [17, 18] is to
factor R into 3 matrices Wfr̂, Wfx and Whf such that

RT
x = Whf � δ(Wfxx)�Wfr̂ (6)

where δ(·) denotes the matrix with its argument on the diagonal and � is the Hadamard product.
These matrices are parametrized by f , the number of factors, as shown in Fig. 1b.

Under this model, the predicted next word representation r̂ is

r̂ =

(
n−1∑
i=1

Ci(WhfWfr̂)
T
wi

)
+Cmx (7)

where (WhfWfr̂)
T
wi

denotes the column of (WhfWfr̂)
T for the word representation of wi. Given

a predicted next word representation r̂, the factor outputs are

f = (Wfr̂ r̂)� (Wfxx) (8)

with the conditional probability P (wn = w|w1:n−1,x) of wn given w1, . . . , wn−1 and x given by

P (wn = w|w1:n−1,x) =
exp(W(w)

hf f + bw)∑
j exp(W(j)

hf f + bj)
(9)

where W(w)
hf denotes the row of Whf corresponding to wordw. We call this the MLBL-F model. As

with the LBL and MLBL-B models, training can be achieved using a straightforward application of
backpropagation. Unlike the other models, extra care needs to be taken when adjusting the learning
rates for the matrices of the factored tensor.

It is sensible that pre-computed word embeddings could be used as a starting point to training, as
opposed to random initialization of the word representations. Indeed, all of our experiments use the
embeddings of [19] for initialization. In the case of the LBL and MLBL-B models, each pre-trained
word embedding can be used to initialize the rows of R. In the case of the MLBL-F model where
R is a factored tensor, let E denote the k × d matrix of pre-trained embeddings and observe that
E = (WhfWfr̂)

T . Thus to initialize the MLBL-F model with pre-trained embeddings, we simply
apply an SVD to E.

5 Joint Image-Text Feature Learning

Up until now we have not made any assumptions on the type of modality being used for the feature
representation x. In this section, we consider the case where the conditioned modality consists of
images and show how to jointly learn image and word features along with the model parameters.

One way of incorporating image representation learning is to use a convolutional network for which
the outputs are used either as an additive bias or for gating. Gradients from the loss could then be
backpropagated from the language model through the convolutional network to update filter weights.
Unfortunately, this architecture posses some issues. Since each training tuple of words comes with
an associative image, then the number of training elements becomes large even with a modest size
training set. For example, if the training set consisted of 10,000 images and each image had a
text description of 20 words, then the number of training instances for the model becomes roughly
200,000. For large image databases this could quickly scale to millions of training instances.

To speed up computation, we follow [20, 21] and choose to learn our convolutional networks
on small feature maps learned using k-means as opposed to the original images. We follow the
pipeline of [22]. Given training images, r × r patches are randomly extracted, contrast nor-
malized and whitened. These are used for training a dictionary with spherical k-means. These
filters are convolved with the image and a soft activation encoding is applied. If the image is
of dimensions nV × nH × 3 and kf filters are learned, the resulting feature maps are of size
(nV − r + 1) × (nH − r + 1) × kf . Each slice of this region is then split into a G × G grid
for which features within each region are max-pooled. This results in an output of size G×G× kf .
It is these outputs that are used as inputs to the convolutional network. For all of our experiments,
we use G = 9 and kf = 128.
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Each 9×9×128 input is convolved with 64 3×3 filters resulting in feature maps of size 7×7×64.
Rectified linear units (ReLUs) are used for activation followed by a response normalization layer
[23]. The response-normalized feature maps are then max-pooled with a pooling window of 3 × 3
and a stride of 2, resulting in outputs of size 3 × 3 × 64. One fully-connected layer with ReLU
activation is added. It is the feature responses at this layer that are used either for additive biasing or
gating in the MLBL-B and MLBL-F models, respectively.

6 Retrieval and Generation

In this section we describe how our models can perform generation and retrieval. The standard
approach to evaluating language models is through perplexity

log2C(w1:n|x) = −
1

N

∑
w1:n

log2P (wn = w|w1:n−1,x) (10)

where w1:n−1 runs through each subsequence of length n − 1 and N is the length of the sequence.
Here we use perplexity not only as a measure of performance but also as a link between both text
and the additional modality.

First, consider the task of retrieving training images from a test description query w1:N . For each
image x in the training set, we compute C(w1:N |x) and return the images for which C(w1:N |x) is
lowest. Intuitively, images when conditioned on by the model that achieve low perplexity are those
that are a good match to the query description.

The task of retrieving text from an image query is trickier for the following reasons. It is likely
that there are many ‘easy’ descriptions for which the language model will assign low perplexity
to independent of the query image being conditioned on. Thus, instead of retrieving text from the
training set for which C(w1:N |x) is lowest conditioned on the query image x, we instead look at
the ratio C(w1:N |x)/C(w1:N |x̃) where x̃ denotes the mean image in the training set (computed in
feature space). Thus, if w1:N is a good explanation of x, then C(w1:N |x) < C(w1:N |x̃) and we can
simply retrieve the text for which this ratio is smallest.

While this leads to better search results, it is conceivable that using the image itself as a query
for other images and returning their corresponding descriptions may in itself work well as a query
strategy. For example, an image taken at night would ideally return a description describing this,
which would be more likely to occur if we first retrieved nearby images which were also taken
at night. We found the most effective way of performing description retrieval is as follows: first
retrieve the top kr training images as a shortlist based on the Euclidean distance of x and images in
the training set (in feature space). Then retrieve the descriptions for which C(w1:N |x)/C(w1:N |x̃)
is smallest for each description w1:N in the shortlist. We found that combining these two strategies
is more effective than using either alone. In the case when a convolutional network is used, we first
map the images through the convolutional network and use the output representations for computing
distances.

Finally, we generate text given an image as follows: Suppose we are given an initialization w1:ni .
We compute P (wn = w|w1:ni ,x) and obtain a sample w̃ from this distribution, appending w̃ to our
initialization. This procedure is then repeated for as long as desired.

7 Experiments

We perform experimental evaluation of our proposed models on two publicly available datasets:

IAPR TC-12 This data set consists of 20,000 images across various domains, such as landscapes,
portraits, indoor and sports scenes. Accompanied by each image is a text description of one to three
sentences describing the content of the image. The dataset was initially released for cross-lingual
retrieval [24] but has since been used extensively for other tasks such as image annotation. We used
the publicly available train/test split for our experiments.

Attribute Discovery This dataset contains roughly 40,000 images related to products such as bags,
clothing and shoes as well as subcategories of each product, such as high-heels and sneakers. Each
image is accompanied by a web-retrieved text description which often reads as an advertisement
for the product. Unlike the IAPR dataset, the text descriptions are not necessarily guaranteed to be
descriptive of the image and often contains noisy, unrelated text. This dataset was proposed as a
means of discovering visual attributes from noisy text [25]. We used a random train/test split for our
experiments which will be made publicly available.
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We chose to evaluate on these two datasets since they complement each other. The IAPR dataset
contains a wide variety of image scenes but the associated text is clean, descriptive and follows
a loose style that is consistent across images. On the other hand, the Attribute Discovery dataset
contains images which are easy to learn from: mostly centered on a white background but are
associated with noisy descriptions which are arguably more realistic to image data on the web.

7.1 Details of Experiments

We perform four experiments, three of which are quantitative and one of which is qualitative:

Bleu Evaluation Our main evaluation criteria is based on Bleu [26]. Bleu was designed for auto-
mated evaluation of statistical machine translation and can be used in our setting to measure simi-
larity of descriptions. Previous work on generating text descriptions for images use Bleu as a means
of evaluation, where the generated description is used as a candidate for the gold standard reference
generation. Given the diversity of possible image descriptions, Bleu may penalize candidates which
are arguably descriptive of image content as noted by [9], though Bleu remains the standard evalu-
ation criteria for such models. Given a model, we generate a candidate description as described in
section 6, generating as many words as there are in the reference description and compute the Bleu
score of the candidate with the reference. This is repeated over all test points ten times, in order to
account for the variability in the generated descriptions. For baselines, we also compare against the
log-bilinear model as well as image-conditioned models conditioned on random images as a control.
This allows us to obtain further evidence of the relevance of generated text. Finally, we compare
against the models of [27] and [28] who report Bleu scores for their models on the IAPR dataset. 1

Perplexity Evaluation Each of our proposed models are trained on both datasets and the perplexity
of the language models are evaluated. As baselines, we also include the basic log-bilinear model
as well as two n-gram models. To evaluate the effectiveness of using pre-trained word embeddings,
we also train a log-bilinear model where the word representations are randomly initialized. We
hypothesize that image-conditioned models should result in lower perplexity than models which are
only trained on text without knowledge of their associate images.

Retrieval Evaluation We quantitatively evaluate the performance of our model for doing retrieval.
First consider the task of retrieving images from description queries. Given a test description, we
compute the model perplexity conditioned on each test image and rank each image accordingly.
Let kr denote the number of retrieved images. We define a description to be correctly matched
if the matching image to the description query is ranked in the top kr images sorted by model
perplexity. Retrieving descriptions from image queries is performed equivalently. Since our models
use a shortlist (see section 6) of nearest images for retrieving descriptions, we restrict our search to
images within the shortlist, for which the matching description is guaranteed to be in.

For additional comparison, we include a bag-of-words baseline to determine whether a language
model (and word ordering) is necessary for image-description retrieval tasks. This model works as
follows: given image features (either the features of [29] or features learned through k-means), we
learn a projection onto independent logistic units, one for each word in the description. The score
of a description is then the sum of the probabilities of each word in the description, normalized by
the number of words. For retrieving images, we project each image and rank those which result in
the highest description score. For retrieving descriptions, we return those which result in the highest
score given the word probabilities computed from the image. Since we use a shortlist for our models
when performing description retrieval, we also use an equivalent shortlist for the baseline model to
allow for fair comparison. Training the baseline model was done using SGD with minibatch sizes
of 50, with a validation set used to tune the amount of weight decay.

Qualitative Results Finally, we qualitatively evaluate image to text retrieval, text to image retrieval
as well as samples from our models. Several additional qualitative results are displayed in the
appendix.

7.2 Details of Training

Each of our language models were trained using the same hyperparameters: all context matrices used
a weight decay of 1.0 × 10−4 while word representations used a weight decay of 1.0 × 10−5. All

1We note that an exact comparison cannot be made with these methods since [28] assume tags are given
as input along with images and both methods apply 10-fold CV. The use of tags can substantially boost the
relevance of generated descriptions. None the less, these methods provide us context for the results of our
models.
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other weight matrices, including the convolutional network filters use a weight decay of 1.0× 10−4.
We used batch sizes of 20 and an initial learning rate of 0.2 which was exponentially decreased
at each epoch by a factor of 0.998. Gated methods used an initial learning rate of 0.02. Initial
momentum was set to 0.5 and is increased linearly to 0.9 over 20 epochs. The word representation
matrices were initialized to the pre-trained embeddings of [19] with all other weights randomly
initialized from a zero mean Gaussian with a standard deviation of 0.01. We used a context size of
5 for each of our models. Non-convolutional methods used the fixed image features of [29] which
are 256 dimensional. For fair comparison, our convolutional models also used a 256-dimensional
output layer. Perplexity was computed starting with word C + 1 for all methods where C is the
largest context size used in comparison (5 in our experiments). Perplexity was not evaluated on
descriptions shorter than C + 3 words.

For each of our experiments, we split the training set into 80% training and 20% validation. Each
model was trained while monitoring the perplexity on the validation set. Once the perplexity no
longer improved for 5 epochs, the objective value on the training set was recorded. The training
and validation sets were then fused and training continued until the objective value on the validation
batch matched the recorded training objective. At this point, training stopped and evaluation was
performed on the test set.

7.3 Generation and Perplexity Results

Table 1 shows results on the IAPR and Attributes dataset, respectively. On both datasets, each of
our multimodal models outperforms both the log-bilinear and n-gram models on Bleu scores. What
is perhaps most surprising is that simple language models independent of images can also achieve
non-trivial Bleu scores. For further comparison, we also computed Bleu scores on the convolutional
MLBL-B model when random images are used for conditioning. This gives us strong evidence that
the gains in Bleu scores are directly from capturing and associating word representations from image
content. 2

Table 1: Results on IAPR (top) and Attributes (bottom).
PPL refers to perplexity while B-n indicates Bleu scored
with n-grams. Back-off GTn refers to n-grams with Good-
Turing discounting. Models which use a convolutional net-
work are indicated by -conv, while -conv-R indicates using
random images for conditioning. The MLBL-B and MLBL-
F models use the fixed publicly available features from [29].

MODEL TYPE PPL. B-1 B-2 B-3
BACK-OFF GT2 54.5 0.323 0.145 0.059
BACK-OFF GT3 55.6 0.312 0.131 0.059
LBL 20.1 0.327 0.144 0.068
MLBL-B-CONV-R 28.7 0.325 0.143 0.069
MLBL-B 18.0 0.349 0.161 0.079
MLBL-F 20.3 0.348 0.165 0.085
MLBL-B-CONV 20.6 0.349 0.165 0.085
MLBL-F-CONV 21.7 0.341 0.156 0.073
GUPTA ET AL. 1 - 0.15 0.06 0.01
GUPTA & MANNEM 1 - 0.33 0.18 0.07
BACK-OFF GT2 117.7 0.163 0.033 0.009
BACK-OFF GT3 93.4 0.166 0.032 0.011
LBL 97.6 0.161 0.031 0.009
MLBL-B-CONV-R 154.4 0.166 0.035 0.012
MLBL-B-CONV 99.2 0.189 0.048 0.017
MLBL-F-CONV 113.2 0.175 0.042 0.014

One observation from our results is
that perplexity does not appear to be
correlated with Bleu scores. On the
IAPR dataset, the best perplexity is
obtained using the MLBL-B model
with fixed features, even though the
best Bleu scores are obtained with
a convolutional model. Similarly,
both Back-off GT3 and LBL have the
lowest perplexities on the Attributes
dataset but are worse with respect to
Bleu. Using more than 3-grams did
not improve results on either dataset.
The combination of perplexity and
Bleu may better be seen as mea-
suring readability and relevance, re-
spectively. For additional compari-
son, we also ran an experiment train-
ing LBL on both datasets using ran-
dom word initialization, achieving
perplexity scores of 23.4 and 109.6.
This indicates the benefit of initializa-
tion from pre-trained word represen-
tations. Perhaps unsurprisingly, per-
plexity is much worse on the convo-
lutional MLBL-B model when random images are used for conditioning.

7.4 Retrieval Results

Figure 2 illustrates the results of our retrieval experiments. We observe that all models perform
comparatively when retrieving from a small percentage of the test set, while our models are able
to outperform the baseline when retrieving from a larger percentage on all experiments except for
description retrieval on the Attributes dataset. Interestingly, both convolutional models outperform

2We also evaluted Bleu scores after stopword removal and observed the same trend in performance.
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(b) IAPR TC-12 (I → T )
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(c) Attributes (T → I)
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Figure 2: Retrieval results on IAPR TC-12 (top) and the Attributes dataset (bottom) when using
descriptions to retrieve images (T → I , left) and images to retrieve descriptions (I → T , right).
bow-f refers to the bag of words baseline applied to the features of [29] and bow-k equivalently for
k-means feature maps (the inputs used to our convolutional models). Retrieving descriptions from
image queries (right) use a shortlist size of 100. For the Attributes dataset, we used a random subset
of 5000 test images.

all other approaches for description retrieval on IAPR TC-12, while the additive model performs
the best when retrieving images. We hypothesize that due to the noisy text present in the Attributes
dataset, using a language model for retrieving text would likely have little advantage over a bag of
words model in this scenario. This may partially explain the outcome of figure 2(d).

7.5 Qualitative results

On the left of Figure 3, we illustrate sample results for retrieving text from images. Each test image is
displayed along with the top query for which the perplexity was lowest on a shortlist of 15 images.
In general, the model does a good job at retrieving text with general characteristics of a scene or
retrieving the correct type of product on the Attributes Discovery dataset, being able to distinguish
between different kinds of sub-products, such as shoes and boots. The most common mistakes that
the model makes are retrieving text with extraneous descriptions that do not exist in the image, such
as describing people that are not present. On the right of Figure 3 are sample text generation results.
The model was initialized with ‘in this picture there is’ or ’this product contains a’ and proceeded
to generate 50 words conditioned on the image. We generated 5-10 examples and show the result
we found to be either the most accurate or amusing. The model is often able to describe the general
content of the image, even if it does not get specifics correct such as colors of clothing. This gives
visual confirmation of the increased Bleu scores from our models.

We also illustrate results of retrieving images given a text query in figure 4. For each test description,
we retrieved the top 4 training images for which the perplexity was lowest when conditioned on.
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The bottom-right image depicts a case where the model completely misses the desired result. We
observed that this occurs most often on shorter queries where single words, such as sunset and lake,
indicate key visual concepts that the model is not able to pick up on. Contrast this to the shoe images
on the top left, where the model can correctly identify the difference between a sneaker and a clog,
even though these two words only appear once or twice in the description.

8 Conclusion

In this paper we proposed multimodal neural language models. We described two novel language
models and showed in the context of image-text learning how to jointly learn word representations
and image features. Interestingly, our models can obtain comparable Bleu scores to existing ap-
proaches for description generation simply from sampling from the model while improving over a
strong bag-of-words baseline for description and image retrieval.

From our experiments, it is not immediately clear the advantages of our proposed models in com-
parison to each other and whether or not incorporating a convolutional net offers any significant
advantage over a fixed image representation. We strongly suspect the success of the additive bias
models are due in part to use of high-level image feature representations learned from multi-layer ar-
chitectures. Recently, [30] showed that a convolutional network trained on ImageNet can be used as
a general feature extractor by computing features from the top fully connected layers. We anticipate
that using these fixed feature representations would be the most effective for our models.

This work takes a first step towards generating image descriptions with a multimodal language
model. Ideally, we should be able to take into account interactions of objects within scenes. Consider
two pictures: one with a cat sitting on a box and the other with a box on top of a cat. We would like
to be able to extend our models to learn latent representations of these interactions and incorporate
them into our models to obtain better fine-grained descriptions. We suspect that in these tasks, the
theoretical strengths of the multiplicative models will become much more apparent.

Acknowledgments

This research was supported by OGS and NSERC. We would also like to thank the anonymous
reviewers for their valuable comments and suggestions.

References
[1] Andriy Mnih and Geoffrey Hinton. Three new graphical models for statistical language modelling. In

Proceedings of the 24th international conference on Machine learning, pages 641–648. ACM, 2007.

[2] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic language
model. J. Mach. Learn. Res., 3:1137–1155, March 2003.

[3] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781, 2013.

[4] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recurrent neural
network based language model. In INTERSPEECH, pages 1045–1048, 2010.

[5] Tomas Mikolov, Anoop Deoras, Daniel Povey, Lukas Burget, and Jan Cernocky. Strategies for train-
ing large scale neural network language models. In Automatic Speech Recognition and Understanding
(ASRU), 2011 IEEE Workshop on, pages 196–201. IEEE, 2011.

[6] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic language
models. arXiv preprint arXiv:1206.6426, 2012.

[7] Andriy Mnih and Geoffrey E Hinton. A scalable hierarchical distributed language model. In Advances in
neural information processing systems, pages 1081–1088, 2008.

[8] Ali Farhadi, Mohsen Hejrati, Mohammad Amin Sadeghi, Peter Young, Cyrus Rashtchian, Julia Hocken-
maier, and David Forsyth. Every picture tells a story: Generating sentences from images. In Computer
Vision–ECCV 2010, pages 15–29. Springer, 2010.

[9] Girish Kulkarni, Visruth Premraj, Sagnik Dhar, Siming Li, Yejin Choi, Alexander C Berg, and Tamara L
Berg. Baby talk: Understanding and generating simple image descriptions. In Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1601–1608. IEEE, 2011.

[10] Margaret Mitchell, Xufeng Han, Jesse Dodge, Alyssa Mensch, Amit Goyal, Alex Berg, Kota Yamaguchi,
Tamara Berg, Karl Stratos, and Hal Daumé III. Midge: Generating image descriptions from computer
vision detections. In Proceedings of the 13th Conference of the European Chapter of the Association for
Computational Linguistics, pages 747–756. Association for Computational Linguistics, 2012.

9



[11] Vicente Ordonez, Girish Kulkarni, and Tamara L Berg. Im2text: Describing images using 1 million
captioned photographs. In Advances in Neural Information Processing Systems, pages 1143–1151, 2011.

[12] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Ng. Multimodal
deep learning. In Proceedings of the 28th International Conference on Machine Learning (ICML-11),
pages 689–696, 2011.

[13] Nitish Srivastava and Ruslan Salakhutdinov. Multimodal learning with deep boltzmann machines. In
Advances in Neural Information Processing Systems 25, pages 2231–2239, 2012.

[14] Richard Socher, Milind Ganjoo, Hamsa Sridhar, Osbert Bastani, Christopher D Manning, and Andrew Y
Ng. Zero-shot learning through cross-modal transfer. arXiv preprint arXiv:1301.3666, 2013.

[15] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeffrey Dean, Marc’Aurelio Ranzato, and
Tomas Mikolov. Devise: A deep visual-semantic embedding model. 2013.

[16] Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. Improving word represen-
tations via global context and multiple word prototypes. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long Papers-Volume 1, pages 873–882. Association for
Computational Linguistics, 2012.

[17] Roland Memisevic and Geoffrey Hinton. Unsupervised learning of image transformations. In Computer
Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.

[18] Alex Krizhevsky, Geoffrey E Hinton, et al. Factored 3-way restricted boltzmann machines for modeling
natural images. In International Conference on Artificial Intelligence and Statistics, pages 621–628, 2010.

[19] Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings of the 25th international conference on Machine
learning, pages 160–167. ACM, 2008.

[20] Tao Wang, David J Wu, Adam Coates, and Andrew Y Ng. End-to-end text recognition with convolutional
neural networks. In Pattern Recognition (ICPR), 2012 21st International Conference on, pages 3304–
3308. IEEE, 2012.

[21] Kevin Swersky, Jasper Snoek, and Ryan Adams. Multi-task bayesian optimization. In Advances in Neural
Information Processing Systems, 2013.

[22] Adam Coates and Andrew Ng. The importance of encoding versus training with sparse coding and vector
quantization. In Proceedings of the 28th International Conference on Machine Learning (ICML-11),
pages 921–928, 2011.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems 25, pages 1106–1114, 2012.

[24] Michael Grubinger, Paul Clough, Henning Müller, and Thomas Deselaers. The iapr tc-12 benchmark:
A new evaluation resource for visual information systems. In International Workshop OntoImage, pages
13–23, 2006.

[25] Tamara L Berg, Alexander C Berg, and Jonathan Shih. Automatic attribute discovery and characterization
from noisy web data. In Computer Vision–ECCV 2010, pages 663–676. Springer, 2010.

[26] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting on association for computational
linguistics, pages 311–318. Association for Computational Linguistics, 2002.

[27] Ankush Gupta, Yashaswi Verma, and CV Jawahar. Choosing linguistics over vision to describe images.
In AAAI, 2012.

[28] Ankush Gupta and Prashanth Mannem. From image annotation to image description. In Neural Informa-
tion Processing, pages 196–204. Springer, 2012.

[29] Ryan Kiros and Csaba Szepesvári. Deep representations and codes for image auto-annotation. In Ad-
vances in Neural Information Processing Systems 25, pages 917–925, 2012.

[30] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Dar-
rell. Decaf: A deep convolutional activation feature for generic visual recognition. arXiv preprint
arXiv:1310.1531, 2013.

10



Figure 3: Left: Description retrieval given images, returning the top query. Right: Description
generation. Descriptions were initialized with either ‘in this picture there is’ or ‘this product contains
a’.

Figure 4: Sample image retrieval given descriptions. The top 4 results are displayed.
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Additional qualitative results: description retrieval

Figure 5: Sample description retrieval given an image. The top result is displayed.
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Additional qualitative results: description generation

Figure 6: Sample description generation.
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Additional qualitative results: image retrieval

Figure 7: Sample image retrieval given descriptions. The top 4 results are displayed.
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