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ABSTRACT

Deep networks are increasingly being applied to problems involving image syn-
thesis, e.g., generating images from textual descriptions, or generating reconstruc-
tions of an input image in an autoencoder architecture. Supervised training of
image-synthesis networks typically uses a pixel-wise squared error (SE) loss to
indicate the mismatch between a generated image and its corresponding target
image. We propose to instead use a loss function that is better calibrated to human
perceptual judgments of image quality: the structural-similarity (SSIM) score of
Wang, Bovik, Sheikh, and Simoncelli (2004). Because the SSIM score is differ-
entiable, it is easily incorporated into gradient-descent learning. We compare the
consequences of using SSIM versus SE loss on representations formed in deep au-
toencoder and recurrent neural network architectures. SSIM-optimized represen-
tations yield a superior basis for image classification compared to SE-optimized
representations. Further, human observers prefer images generated by the SSIM-
optimized networks by nearly a 7:1 ratio. Just as computer vision has advanced
through the use of convolutional architectures that mimic the structure of the mam-
malian visual system, we argue that significant additional advances can be made
in modeling images through the use of training objectives that are well aligned to
characteristics of human perception.

1 INTRODUCTION

Recently, interest in developing methods for training neural networks to synthesize images has ex-
ploded. The reason for this surge is threefold. First, the problem of image generation spans a
wide range of difficulty, from synthetic images to handwritten digits to naturally cluttered and high-
dimensional scenes, the latter of which provides a fertile development and testing ground for gener-
ative models. Second, learning good generative models of images involves learning new representa-
tions. Such representations are believed to be useful for a variety of machine learning tasks, such as
classification or clustering, and can also transfer between tasks. Third, image generation is fun and
captures popular imagination, as efforts such as Google’s Inceptionism machine demonstrate.

One of the primary methods for learning generative models of images is the autoencoder architec-
ture. Autoencoders are made up of two functions, an encoder and a decoder. The encoder com-
presses an image into a feature vector, typically of low dimension, and the decoder takes that vector
as input and reconstructs the original image as output. The autoencoder is trained to reproduce an
image that is similar to the input, where similarity is typically measured in terms of the Euclidean
distance between the image and its reconstruction. In a probabilistic autoencoder, where the output
is viewed as a distribution over images, the model is trained to maximize the log-likelihood of the
original image under this distribution.

Autoencoders use a full-reference metric to compare an original image and its reconstruction. Such a
metric is based on the complete pixel-based representation of the image. The simplest full-reference
metric is mean square error (MSE), which is computed by averaging the square of the pixel intensity
differences for every pixel in an image. However, MSE is known to be a poor representation of
human judgments of quality. For example, a distorted image created by decreasing the contrast can
yield the same MSE as one created by increasing the contrast, but the two distortions can yield quite
different human judgments of visual quality; and distorting an image with salt-and-pepper impulse
noise obtains a small MSE but is judged as having low visual quality relative to the original image.
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In this paper, we explore the effects of incorporating a loss function that, unlike MSE, is grounded
in human perceptual judgements. We show that this perceptually-optimized loss leads to generated
images that are judged to be of higher quality. We also show that representations learned via this
perceptually-optimized loss are better suited for image classification.

2 RELATED WORK

2.1 MODELS FOR GENERATING IMAGES

The primary class of image-generating neural networks are autoencoders. There are two main types
of autoencoders. The first set are deterministic, which directly map the input through hidden layers
and output a reconstruction of the original image. Typically, MSE is used to evaluate the recon-
struction. The second type are probabilistic models. With these models the key issue concerns the
intractability of inference in the latent variables, e.g., Helmholtz Machines (Dayan et al., 1995) and
variational autoencoders (VAE) (Kingma & Welling, 2013). The encoder is used to approximate
a posterior distribution and the decoder is used to stochastically reconstruct the data from latent
variables. Gregor et al. (2015) further introduced the Deep Recurrent Attention Writer (DRAW),
extending the VAE approach by incorporating a novel differentiable attention mechanism. In all of
these methods, the model output is treated as a distribution, and the evaluation of this output is the
log-likelihood of the original image.

A second class of generative models are variants of Boltzmann Machines (Smolensky, 1986; Hinton
& Sejnowski, 1986) and Deep Belief Networks (Hinton et al., 2006) While these models are very
powerful, each iteration of training requires a computationally costly step of MCMC to approximate
derivatives of an intractable partition function (normalization constant), making it difficult to scale
them to large datasets.

A more recent approach to learning generative image models involves directly training a generator,
which maps samples drawn from a uniform distribution through a deep neural network that outputs
images, and trains to make the set of images generated by the model indistinguishable from real
images. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) is a paradigm that
involves training a discriminator that attempts to distinguish real from generated images, along with
a generator that attempts to trick the discriminator. Recently, Denton et al. (2015) have scaled
this approach by training conditional GANs at each level of a Laplacian pyramid of images. An
alternative approach, moment-matching networks (Li et al., 2015), directly trains the generator to
make the statistics of these two distributions match. Neither of these approaches, moment-matching
or adversarial, directly train the network to reconstruct each training image, so they do not utilize
any error measure on an image and its reconstruction.

Autoencoders and deep belief nets have one advantage over models that directly generate images,
such as GANs: they interpret images in addition to generating images. For example, Krizhevsky &
Hinton (2011) used deep autoencoders to discover compact codes that were better for classifying im-
ages than using the raw image data. In this paper, we use a similar autoencoder/image-classification
paradigm as a tool to compare and evaluate models.

2.2 PERCEPTION-BASED ERROR METRICS

As digitization of photos and videos became commonplace in the 1990s, the need for digital com-
pression became apparent. Lossy compression schemes distorted image data, and it was important
to quantify the drop in quality resulting from compression in order to optimize the compression
scheme. Because compressed digital artifacts are eventually used by humans, researchers attempted
to develop full-reference image quality metrics that take into account features to which the human
visual system is sensitive and that ignore features to which it is insensitive. Some of these metrics
are built on complex models of the human visual system, such as the Sarnoff JND model (Lubin,
1998), the visual differences predictor (Daly, 1992), the moving picture quality metric (Van den
Branden Lambrecht & Verscheure, 1996), and the perceptual distortion metric (Winkler, 1998).

Other metrics take more of an engineering approach, and are based on the extraction and analy-
sis of specific features of an image to which human perception is sensitive. The most popular of
these metrics is the structural similarity metric (SSIM) (Wang et al., 2004), which aims to match
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the luminance, contrast, and structure information in an image. Other such metrics are the visual
information fidelity metric (Sheikh & Bovik, 2006), which is an information theory-based measure,
and the visual signal-to-noise ratio (Chandler & Hemami, 2007).

Finally, there are transform-based methods, which compare the images after some transformation
has been applied. Some of these methods include DCT/wavelets, discrete orthonormal transforms,
and singular value decomposition.

2.2.1 STRUCTURAL SIMILARITY

In this paper, we train autoencoders with the structural-similarity (SSIM) metric and compare to
autoencoders trained with MSE. We chose the SSIM metric for our initial investigation because it
is well accepted and frequently utilized in the literature. Further, its pixelwise gradient has a simple
analytical form and is inexpensive to compute. In this work, we focus on the original grayscale
SSIM, although there are interesting variations and improvements including color SSIM (Hassan &
Bhagvati, 2012), and multiscale SSIM (Wang et al., 2003).

The original SSIM metric, as described in Wang et al. (2004), is a pixelwise measure that compares
corresponding pixels in two images, denoted x and y, with three comparison functions—luminance
(I), contrast (C), and structure (S)—defined in Equation 1:

I(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
C(x, y) =

2σxσy + C2

σ2
x + σ2

y + C2
S(x, y) =

σxy + C3

σxσy + C3
(1)

The variables µx, µy , σx, and σy denote mean pixel intensity and the standard deviations of pixel
intensity in a local image patch centered at either x or y. Following Wang et al. (2004), we chose a
square neighborhood of 5 pixels on either side of x or y, resulting in 11× 11 patches. The variable
σxy denotes the sample correlation coefficient between corresponding pixels in the patches centered
at x and y. The constants C1, C2, and C3 are small values added for numerical stability. The three
comparison functions are combined to form the SSIM score:

SSIM(x, y) = I(x, y)α · C(x, y)β · S(x, y)γ (2)

In our work, we weight each function equally (α = β = γ = 1) and set C1 = C2 to end up with the
formula for SSIM:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3)

Our objective is to minimize the loss related to the sum of structural-similarity scores across all
image pixels,

L(X,Y ) = −
∑
i

SSIM(Xi, Yi),

whereX and Y are the original and reconstructed images, and i is an index over image pixels. Equa-
tion 2.2.1 has a simple analytical derivative, as found in Wang & Simoncelli (2008), and therefore it
is trivial to perform gradient descent in the SSIM-related loss.

3 METHODOLOGY

3.1 NETWORK ARCHITECTURES

Our primary experiments are based on two autoencoder architectures: a fully-connected network
and a convolutional network. Each architecture was constructed with a bottleneck layer—the middle
layer of the deep autoencoder; we used 256 nodes for the fully-connected net and either 256 or 512
nodes for the convolutional net. Each architecture was trained either with MSE or SSIM-related
loss. We refer to a specific model by its architecture, the size of the bottleneck layer, and the loss
function it was trained with. The fully-connected models are referred to as FC-256-{SSIM,MSE},
and the convolutional models are referred to as Conv-{256,512}-{SSIM,MSE}. Through the use of
multiple model variants, we aim to demonstrate that our results are robust to architectural details.
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3.1.1 FULLY CONNECTED ARCHITECTURE

We adopted the fully-connected autoencoder architecture of Krizhevsky & Hinton (2011), detailed
in the left panel of Table 1. Every layer has rectified linear activation functions, except the bottleneck
and output layers, which have tanh activations. Krizhevsky & Hinton (2011) trained their network
by stacking restricted Boltzmann machines and then fine tuning with back propagation. Instead, we
train our network from scratch using back propagation and stochastic gradient descent.

3.1.2 CONVOLUTIONAL ARCHITECTURE

Because of the popularity and power of convolutional nets for image processing, we included a
convolutional autoencoder in our experiments. The right panel of Table 1 shows the structure of our
model which uses convolutional layers to encode the input and then deconvolutional layers to decode
the feature representation in the bottleneck layer. The deconvolutional layers are implemented as
convolutional layers that are preceded by an upsampling step that creates a layer with 2 times the
dimensions of the input layer by repeating the values of the input. To explore the role of the capacity
of the convolutional layer, we built models with both 256 and 512 node bottlenecks. The specifics
of convolutional autoencoders are described in Masci et al. (2011).

outputs activation
1024 (Input)
8192 ReLU
4096 ReLU
2048 ReLU
1024 ReLU
512 ReLU
256 binary-tanh
512 ReLU
1024 ReLU
2048 ReLU
4096 ReLU
8192 ReLU
1024 tanh

size out kernel stride activation type
32×32×1 Input
15×15×32 4×4×1, 32 2 tanh convolution

6×6×64 4×4×32, 64 2 tanh convolution
256/512 binary-tanh FC
6×6×64 tanh FC

15×15×32 4×4×64, 32 2 tanh deconvolution
32×32×1 4×4×32, 1 2 tanh deconvolution

Table 1: Left: Details of the fully-connected (FC-256) architecture. Right: details of the convolu-
tional architectures (Conv-{256,512}). Convolutional and deconvolutional kernels are described in
the format (width×height×channels, filters).

3.1.3 ACTIVATION QUANTIZATION

In order to enforce a strong compression of the signal in our autoencoders, we force the activations
of nodes in the bottleneck layer to be binary (−1 or +1). Following Krizhevsky & Hinton (2011),
we threshold the activations in the forward pass and use the original continuous value for the purpose
of gradient calculation during back propagation. We perform this quanitization both during train-
ing and testing and all results reported are based on the quantized bottleneck-layer representations.
Krizhevsky & Hinton (2011) quantized in order to obtain binary codes for hash table indexing. Our
interest is to enforce a more categorical representation. We also experimented with models in which
the bottleneck layer was not quantized, and we found that the quantized representations were better
at predicting image classification (e.g., dog versus cat versus airplane).

3.2 DATA SETS AND TRAINING METHODOLOGY

We train autoencoders using a subset of approximately two million images of the 80 million tiny-
images data set (Torralba et al., 2008), consisting of the first 30 images for every English proper
noun. The images in this dataset have dimensions 32×32 pixels and consist of three RGB color chan-
nels. We mapped the three color channels to a single grayscale channel using the python pillow
library’s convert function. The input pixels are rescaled to the range [−1, 1], to match the tanh
activation function on all of our output layers.
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Figure 1: For each architecture and optimization metric, this plot shows the percent of test images
from the network trained to optimize that metric that score better than the other network; e.g., the
rightmost bar shows that the Conv-512 network trained to optimize MSE beat the same network
trained to optimize SSIM on 63% of the test images, when MSE was the comparison metric.

All testing and evaluation of our models used the CIFAR-10 data set, which consists of 60,000
color images, each drawn from one of ten categories. We chose a diverse data set for training in
order ensure that the autoencoders were learning general statistical characteristics of images, and
not peculiarities of the CIFAR-10 data set. The CIFAR-10 color images were converted to a single
grayscale channel, as was done for the training data set. We divided the CIFAR-10 images into
a search database (48,000 images) and a query list (12,000 images). The purpose of these two
subsets will be explained in our results section. One use of search database was as a validation set to
determine when to stop training: training terminated when the reconstruction error—as measured by
the appropriate training metric, either MSE or SSIM—stopped improving following one complete
pass through the training set.

We train using mini-batches of size 64. The SSIM and MSE metrics are scaled differently, so we
performed empirical explorations to set the learning rate appropriately for each. For MSE, we use a
learning rate of 5× 10−5, and for SSIM 5× 10−2. All architectures were trained with a momentum
of 0.9 and with weight decay of 5× 10−5.

4 RESULTS

As expected, the MSE-optimized nets tend to achieve better MSE reconstruction scores, and the
SSIM-optimized nets tend to achieve better SSIM reconstruction scores. Figure 1 shows the relative
performance of each network on the metric it is supposed to optimize. Each bar indicates the pro-
portion of images for which an architecture trained to optimize performance metric X obtains better
performance than an architecture trained to optimize the other performance metric, when evaluated
on metric X . The fact that all bars are above 50% indicates that training on one metric or the other
has a significant influence on the resulting models.

To further compare models trained with the SSIM and MSE metric, we utilize both subjective and
objective characteristics of the model output. Subjective characteristics are determined by asking hu-
mans to judge image reconstruction quality. Objective characteristics are determined by examining
categorical clustering of the bottleneck-layer representations.

4.1 JUDGMENTS OF IMAGE RECONSTRUCTION QUALITY

Do human observers prefer reconstructions produced by the SSIM-optimized networks or by the
MSE-optimized networks? We collected judgments of perceptual quality on Amazon Mechanical
Turk. Participants were presented with a sequence of image triplets with the original (reference)
image in the center and the SSIM- and MSE-optimized reconstructions on either side. Partici-
pants were instructed to select which of the two reconstructions they preferred. Half the time the
SSIM-optimized reconstruction appeared on the left and half the time it appeared on the right. All
reconstructions came from the FC-256-{SSIM,MSE} networks.
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Figure 2: Distribution of participant SSIM preference proportion for 100 image triplets. For exam-
ple, the graph shows that for 9 of the test triplets, 16 of the 20 participants preferred SSIM.

In a first study, twenty participants provided preference judgments on the same set of 100 randomly
selected images from the CIFAR-10 data set. For each image triple, we recorded the proportion
of participants who choose the SSIM reconstruction of the image over the MSE reconstruction.
Figure 2 shows the distribution of inter-participant preference for SSIM reconstructions across all
100 images. If participants were choosing randomly, we would expect to see roughly 50% preference
for most images. However, a plurality of images have over 90% inter-participant agreement on
SSIM, and almost no images have MSE reconstructions that are preferred over SSIM reconstructions
by a majority of participants.

Figure 3a shows the sixteen image triplets for which the largest proportion of participants preferred
the SSIM reconstruction. The original image is shown in the center of the triplet and the MSE- and
SSIM-optimized reconstructions appear on the left and right, respectively. (In the actual experiment,
the two reconstructions were flipped on half of the trials.) In this Figure, the SSIM reconstructions
all show important object details that are lost in the MSE reconstructions.

Figure 3b shows the sixteen image triples for which the smallest proportion of participants preferred
the SSIM reconstruction. In the first 15 of these images, still a majority (55-80%) of participants
preferred the SSIM reconstruction to the MSE reconstruction; only in the image in the lower right
corner did a majority prefer the MSE reconstruction (60%). In this Figure, the SSIM-optimized
reconstructions still seem to show as much detail as the MSE-optimized reconstructions, and the
inconsistency in the ratings may indicate that the two reconstructions are of about equal quality.

In a second study on Mechanical Turk, twenty new participants each provided preference judg-
ments on a randomly drawn set of 100 images and their reconstructions. The images were different
for each participant; consequently, a total of 2000 images were judged. Participants preferred the
SSIM- over MSE-optimized reconstructions by nearly a 7:1 ratio: the SSIM reconstruction was cho-
sen for 86.25% of the images. Examining individual participants, The participant choosing SSIM
reconstructions the least still preferred them 63% of the time, and the participant choosing SSIM
reconstructions the most preferred them 99% of the time.

4.2 EVALUATION OF LEARNED REPRESENTATIONS

In the previous section, we showed that using a perceptually-aligned training objective improves the
quality of image synthesis, as judged by human observers. In this section, we go further and claim
that the SSIM objective leads to the discovery of internal representations in the neural net that are
more closely tied to the category associated with an image.

We examine the compressed representations of the image in the bottleneck layer, which we’ll refer
to as the image code. As explained in the Methodology section above, these codes are binary vectors
of either 256 or 512 elements. If the SSIM objective biases learning toward the discovery of codes
that convey good information about the object present in an image, then we should see categorical
clustering of codes. That is, the code associated with the image of one dog should be more similar
to codes for images of other dogs than perhaps the code for an image of a visually similar cat. Using
the method of Krizhevsky & Hinton (2011), we probe the network with a set of query images and
we use the corresponding code to index into a search database—a set of 48,000 images whose codes
and category labels have been stored. Using the search database to identify the k nearest neighbors
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(a) (b)

Figure 3: Examples of both MSE and SSIM image reconstructions. Image triples are sorted, from
top to bottom and left to right, by the percentage of participants that preferred SSIM. (a) Sixteen im-
ages for which participants strongly preferred the SSIM reconstruction over the MSE reconstruction.
Participants preferred the SSIM reconstruction of the top 10 unanimously, and only 1 participant (of
20) preferred MSE on the last six. (b) Sixteen images for which the smallest proportion of partici-
pants preferred the SSIM reconstruction. In the first 15 of these images, only 20-45% of participants
preferred the MSE reconstruction, and the last image 60%.

in Hamming distance, we can compute the proportion of the nearest k that have the same category
label as the query image. Codes that embody category information will yield a higher score.

Figure 4 shows the k-NN classification results for each of the six models on the CIFAR-10 test set.
The abscissa specifies k ∈ {1, ..., 10} and the ordinate indicates the mean proportion of the k nearest
neighbors that are of the same class as the query. For each of the three architectures, the SSIM-
optimized model obtains better classification performance than the MSE-optimized model. The
difference is larger for the two convolutional architectures than for the fully connected architecture.
We speculate that convolutional nets might benefit more because the SSIM measure itself is also
based on a convolution operator, and convolutional networks are able to more efficiently represent
the type of information that SSIM tries to preserve.

To more directly link SSIM with codes that embody object-category information, Figure 5 shows
mean MSE and SSIM reconstruction scores for the six architectures (top and middle rows), along
with the proportion correct classification for k = 10 (bottom row). Note that the classification
performance is correlated with the SSIM score but not the MSE score.

4.3 QUALITATIVE EXPERIMENTS ON RECURRENT IMAGE GENERATION

In order to further explore the role of perceptual losses in learning models for image generation, we
adapt the DRAW model of Gregor et al. (2015) to be trained with an arbitrary differentiable image
similarity metric. The DRAW model generates an image by sampling a latent zt ∼ P (Zt) for each
of a fixed number of timesteps. Each zt is passed as input to a decoder RNN. The output of the
decoder RNN is used to update ct, the model’s accumulated representation of the output image (also
known as the canvas). Due to the intractable posterior over zt given an image x, the decoder RNN is
simultaneously trained with an encoder RNN that produces a variational approximation Q(Zt|x) to
the true posterior. During training, the expected sum of the KL-divergence of P (Zt) from Q(Zt|x)
and the negative log probability of x under the model is minimized:
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LDRAW = Ez∼Q

[
T∑
t=1

KL(Q(Zt|x)||P (Zt))− logD(x|cT )

]
(4)

where D(X|cT ) is the model of the input data given the canvas at the final timestep. We modify
this learning objective by replacing − logD(x|cT ) with an arbitrary loss between images ∆(x, y)
and weighting the resulting sum. We call this modification Expected-Loss DRAW (EL-DRAW). Its
objective takes the following form:

LEL−DRAW = Ez∼Q

[
T∑
t=1

KL(Q(Zt|x)||P (Zt)) + C ·∆(x, x̂)

]
(5)

where C is a constant governing the trade-off between the latent loss and image-specific loss, and
x̂ = f(cT |z) is the model’s deterministic prediction of the image given the final state of the canvas.

We trained EL-DRAW on grayscale 32 x 32 images of dogs from the CIFAR-10 dataset. We ex-
perimented with both MSE and negative SSIM as our image-specific loss ∆ and trained models
with a range of C for each. Models trained with different loss functions will in general require
separately chosen settings of C due to differences in scaling. We chose a setting for each loss that
represented a comparable tradeoff between reconstruction error and KL-divergence from the prior.
Details regarding the dataset and experimental hyperparameters are provided in Section 6.1 of the
supplementary material, and our method for selecting C values that makes the comparison fair is
described in Section 6.2.

Test reconstructions produced by both the MSE-optimized and SSIM-optimized EL-DRAW models
are shown in Figure 6. Samples from both models are visualized in Figure 7. The reconstructions
and samples from the SSIM-optimized EL-DRAW model are noticeably sharper than those of the
MSE-optimized model. The superiority of the former samples is due to the use of a perceptually-
grounded loss, which is better suited to capturing—and generating—salient details in images.

5 DISCUSSION AND FUTURE WORK

We have investigated the consequences of replacing the standard MSE loss function with a
perceptually-grounded loss function, SSIM, in neural networks that generate images. Human ob-
servers judge SSIM-optimized images to be of higher quality than MSE-optimized images. Beyond
this subjective measure, we also showed that the compressed representations of SSIM-optimized
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Figure 6: EL-DRAW test results.
Each triple consists of the in-
put image (center), and the MSE-
and SSIM-optimized reconstruc-
tions (left and right, respectively).

Figure 7: Samples from MSE- and SSIM-optimized EL-
DRAW models (left and right panels, respectively). Samples
from the SSIM-optimized model are sharper and contain more
easily recognizable features such as noses and ears.

autoencoders preserve more information about object categories as compared to those of MSE-
optimized autoencoders. These key results hold for both fully-connected and convolutional archi-
tectures and for various bottleneck sizes. In addition, we have shown that recurrent neural network
architectures also benefit from training with SSIM in that they produce qualitatively better recon-
structions and generated samples compared to those obtained from training with MSE.

With respect to the experiments on recurrent image generation, we plan to go beyond qualitative
assessment of the EL-DRAW model, both by collecting human judgments of reconstruction quality,
and by evaluating held-out data likelihood. The latter could be accomplished for example by Parzen
window estimation, or by Hybrid Monte Carlo (HMC) methods as done by Kingma & Welling
(2013). We are also investigating how probabilistic generative models can be formulated by taking
into account perceptual loss.

Given our encouraging results, it seems appropriate to investigate other perceptually-grounded loss
functions. SSIM is the low-hanging fruit because it is differentiable. Nonetheless, even black-
box loss functions can be cached into a forward model neural net (Jordan & Rumelhart, 1992)
that maps image pairs into a quality measure. We can then back propagate through the forward
model to transform a loss derivative expressed in perceptual quality into a loss derivative expressed
in terms of individual output node activities. This flexible framework will allow us to combine
multiple perceptually-grounded loss functions. Further, we can refine any perceptually-grounded
loss functions with additional data obtained from human preference judgments, such as those we
collected in the present set of experiments.
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6 SUPPLEMENTARY MATERIAL

6.1 EXPERIMENTAL DETAILS OF EL-DRAW TRAINING

For the experiments with the EL-DRAW model in section 4.3, we used the predefined test splits of
CIFAR-10 to form a test set of 1,000 images with class dog, and randomly selected 4,500 of the
training images of class dog as our training set. We used the remaining 500 images of class dog for
validation.

As in the original DRAW model, we took P (Z) to be a standard Gaussian with zero mean and
unit variance for each latent dimension. We chose the logistic sigmoid function to be the activation
applied to the final canvas, i.e. x̂ = σ(cT |z) = 1

1+exp(−cT ) .

We used similar hyperparameters to those of the CIFAR DRAW model trained by Gregor et al.
(2015): 400 hidden units for the encoder and decoder LSTM, 200 dimensions for each latent zt,
and 5x5 size for read and write operations. Our deviation in architecture was to use 32 timesteps
rather than 64 in order to mitigate difficulties training the model due to exploding gradients. We
clipped gradients during training by independently scaling the gradient for each weight matrix and
bias vector such that the norm of each gradient was at most 10. We used the Adam method of
Kingma & Ba (2014) to optimize the network.

6.2 CHOICE OF C IN EL-DRAW OBJECTIVE

The value of C in the EL-DRAW objective (Equation 5) governs the trade-off between the KL loss
and reconstruction error. As C increases, the model will put greater emphasis on reconstructions.
At the same time, the KL-divergence of the prior from the approximate posterior will increase,
leading to poorer samples. Selecting a value of C is further complicated due to the different scaling
depending on the choice of the image-specific loss ∆.

We trained MSE-optimized and SSIM-optimized EL-DRAW models with a range of values of C
from 1 to 1000. We then evaluated the KL component of LEL−DRAW on the validation set and
attempted to select a setting of C for each loss that yielded comparable KL divergences. We chose
C = 10 for MSE, yielding a validation KL loss of 52.8535 and C = 500 for SSIM, which yielded

Figure 8: Test reconstructions of
EL-DRAW with C = 1 and ∆ as
binary cross-entropy.

Figure 9: Samples from EL-DRAW with C = 1 and
∆ as binary cross-entropy.
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a validation KL loss of 57.4709. Thus we would expect the SSIM-optimized model to have slightly
better reconstructions at the expense of slightly worse samples. However, despite this, we observe
in Figure 7 that samples from the SSIM-optimized network are noticeably better.

6.3 DRAW AS A SPECIAL CASE OF EL-DRAW

As mentioned by Gregor et al. (2015), a natural choice of D for the DRAW model in the case of
binary data is the Bernoulli distribution. We note that this setting of DRAW can be viewed as a
special case of EL-DRAW, in which C is set to be 1 and ∆ is taken to be binary cross-entropy. For
the sake of completeness, we provide reconstructions and samples of EL-DRAW trained with this
setting of C and ∆ in Figures 8 and 9, respectively.
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