High Order Regularization for Semi-Supervised Learning of Structured Output Problems

Yujia Li and Richard Zemel

University of Toronto Canadian Institute for Advanced Research

Structured Output Problems and Models

• Rich structure in data and labels

Image Segmentation

- Modeling such structure is beneficial
- Standard structured prediction models

$$\mathbf{y} = \operatorname*{argmax}_{\mathbf{y}'} f(\mathbf{x}, \mathbf{y}', \mathbf{w})$$

Structured Output Learning and Challenges

- Supervised learning: loss minimization
 - Max-margin method $\mathcal{L} = \max_{\mathbf{y}} [f(\mathbf{x}, \mathbf{y}, \mathbf{w}) + \Delta(\mathbf{y}, \mathbf{y}^*)] f(\mathbf{x}, \mathbf{y}^*, \mathbf{w})$
 - Probabilistic method $\mathcal{L} = -\log p(\mathbf{y}^* | \mathbf{x}, \mathbf{w})$
- Full labels needed for supervised learning but they are expensive to obtain

Classification	Segmentation	
ImageNet > 1M	PASCAL < 3k	

- Model capacity limited by small labeled data sets [Li et.al. 2013]
- Semi-supervised learning is important

Regularization Based Framework of Semi-Supervised Learning

• L labeled examples $\{\mathbf{x}_i, \mathbf{y}_i\}$, U unlabeled examples $\{\mathbf{x}_i\}$

$$\min_{\mathbf{w}} \sum_{i=1}^{L} \mathcal{L}(\mathbf{x}_i, \mathbf{y}_i, \mathbf{w}) + R\left(\{\mathbf{y}_j\}_{j=L+1}^{L+U}\right)$$

s.t. $\mathbf{y}_j = \operatorname*{argmax}_{\mathbf{y}} f(\mathbf{x}_j, \mathbf{y}, \mathbf{w}), \quad \forall j \ge L+1$

- Regularization based approach
 - Efficient at test time
 - Separation based methods and graph based methods fit in the framework
- Regularizer defined directly on model predictions
 - Lots of expressive regularizers can be used

Solving the Hard Optimization Problem

- The objective function is a complicated function of **w** due to the hard constraint
- Observation:

$$\mathbf{y}_j = \operatorname*{argmax}_{\mathbf{y}} f(\mathbf{x}_j, \mathbf{y}, \mathbf{w}) \quad \Leftrightarrow \quad f(\mathbf{x}_j, \mathbf{y}_j, \mathbf{w}) = \max_{\mathbf{y}} f(\mathbf{x}_j, \mathbf{y}, \mathbf{w})$$

- Constraint violation

$$\max_{\mathbf{y}} f(\mathbf{x}_j, \mathbf{y}, \mathbf{w}) - f(\mathbf{x}_j, \mathbf{y}_j, \mathbf{w})$$

• Relaxed objective, $\mathbf{Y}_U = (\mathbf{y}_{L+1}, ..., \mathbf{y}_{L+U})$

$$\min_{\mathbf{w},\mathbf{Y}_U} \quad \sum_{i=1}^L \mathcal{L}(\mathbf{x}_i,\mathbf{y}_i,\mathbf{w}) + R(\mathbf{Y}_U) + \mu \sum_{j=L+1}^{L+U} \left[\max_{\mathbf{y}} f(\mathbf{x}_j,\mathbf{y},\mathbf{w}) - f(\mathbf{x}_j,\mathbf{y}_j,\mathbf{w}) \right]$$

Alternating Optimization

$$\min_{\mathbf{w},\mathbf{Y}_U} \quad \sum_{i=1}^{L} \mathcal{L}(\mathbf{x}_i,\mathbf{y}_i,\mathbf{w}) + R(\mathbf{Y}_U) + \mu \sum_{j=L+1}^{L+U} \left[\max_{\mathbf{y}} f(\mathbf{x}_j,\mathbf{y},\mathbf{w}) - f(\mathbf{x}_j,\mathbf{y}_j,\mathbf{w}) \right]$$

- Relaxation decouples R and w
- Alternating optimization:

Step 1: fix w solve for \mathbf{Y}_{U} (MAP inference with high order potentials)

$$\min_{\mathbf{Y}_U} \quad R(\mathbf{Y}_U) - \mu \sum_{j=L+1}^{L+U} f(\mathbf{x}_j, \mathbf{y}_j, \mathbf{w})$$

Step 2: fix \mathbf{Y}_{U} update \mathbf{w} (no harder than standard structured output learning)

$$\min_{\mathbf{w}} \sum_{i=1}^{L} \mathcal{L}(\mathbf{x}_i, \mathbf{y}_i, \mathbf{w}) + \mu \sum_{j=L+1}^{L+U} \left[\max_{\mathbf{y}} f(\mathbf{x}_j, \mathbf{y}, \mathbf{w}) - f(\mathbf{x}_j, \mathbf{y}_j, \mathbf{w}) \right]$$

Example High Order Regularizers

• Graph regularizer

$$R_G(\mathbf{Y}_U) = \lambda \sum_{i,j:s_{ij}>0} s_{ij} \Delta(\mathbf{y}_i, \mathbf{y}_j)$$

- Decomposable for Hamming distance
- Efficient high order loss optimization for non-decomposable losses
- Cardinality regularizer $R_C(\mathbf{Y}_U) = \gamma \ h(1^{\top}\mathbf{Y}_U)$
 - Efficient inference for unary models by sorting
 - Decomposition methods for pairwise models
- Combining multiple regularizers
 - Dual decomposition inference

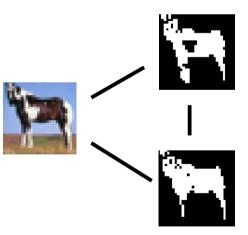
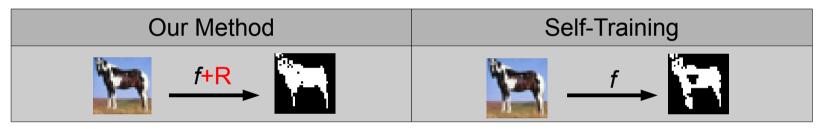


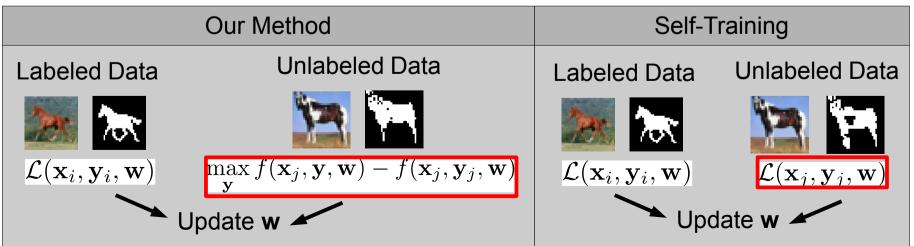
Illustration of the Learning Process

$$\min_{\mathbf{w},\mathbf{Y}_U} \quad \sum_{i=1}^{L} \mathcal{L}(\mathbf{x}_i,\mathbf{y}_i,\mathbf{w}) + R(\mathbf{Y}_U) + \mu \sum_{j=L+1}^{L+U} \left[\max_{\mathbf{y}} f(\mathbf{x}_j,\mathbf{y},\mathbf{w}) - f(\mathbf{x}_j,\mathbf{y}_j,\mathbf{w}) \right]$$

Step 1, fix w solve for \mathbf{Y}_U



Step 2, fix Y_uupdate w



Relation to Posterior Regularization

- PR [Ganchev, 2010] is a framework for probabilistic models
 - Regularizers defined on posterior distributions
 - Auxiliary distribution q and KL penalty

$$\min_{\mathbf{w},q} \quad \sum_{i=1}^{L} \mathcal{L}(\mathbf{x}_i, \mathbf{y}_i, \mathbf{w}) + \lambda R(q) + \mu \sum_{j=L+1}^{L+U} \mathrm{KL}(q_j(\mathbf{y}) || p_{\mathbf{w}}(\mathbf{y} | \mathbf{x}_j))$$

Temperature-augmented formulation

$$p_{\mathbf{w}}(\mathbf{y}|\mathbf{x},T) = \frac{1}{Z_T^p} \exp\left(\frac{f(\mathbf{x},\mathbf{y},\mathbf{w})}{T}\right) \qquad q(\mathbf{y},T) = \frac{1}{Z_T^q} \exp\left(\frac{g(\mathbf{y})}{T}\right)$$

• Equivalent to our max-margin formulation when T=0 $T\text{KL}(q_j(\mathbf{y}, T)||p_{\mathbf{w}}(\mathbf{y}|\mathbf{x}_j, T)) \rightarrow \max_{\mathbf{y}} f(\mathbf{x}_j, \mathbf{y}, \mathbf{w}) - f(\mathbf{x}_j, \mathbf{y}_j, \mathbf{w})$ $q_j(\mathbf{y} = 1, T) \rightarrow \mathbf{y}_j$

Negative log-likelihood \rightarrow Max-margin loss

Experiment Settings

Binary segmentation tasks

	Train	Test	Unlabeled
Horse	Weizmann	Weizmann	CIFAR-10
Bird	PASCAL	CUB	CUB

- Images resized to 32x32 as all images in CIFAR-10 are of this size
- Base model is a pairwise CRF, with neural network
 unary potentials
- Semi-supervised learning of NN parameters
- See paper for a few more settings

Initial: base model trained without using unlabeled data

Self-Training: self-training baseline

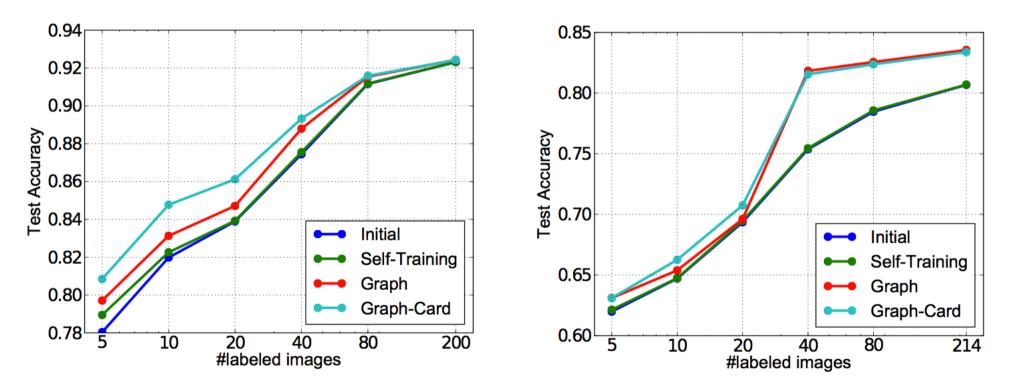
Graph: SSL with graph regularizer R_G

Graph-Card: SSL with both graph and cardinality regularizers $R_G + R_C$

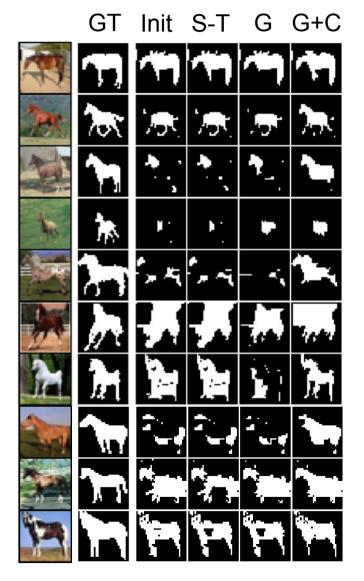
Experiment Results

Semi-supervised learning (Horse)

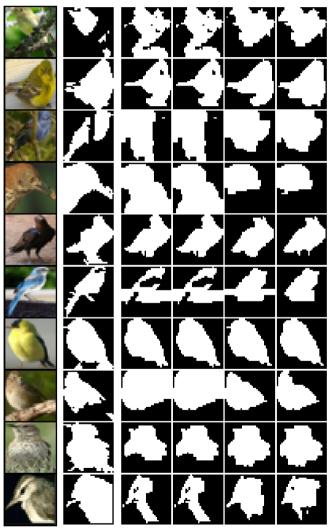
Transfer learning (Bird)



Segmentation Examples



GT Init S-T G G+C



GT: ground truth. Init: Initial. S-T: Self-Training. G: Graph. G+C: Graph-Card.

Q & A

High Order Regularization for Semi-Supervised Learning of Structured Output Problems

Yujia Li and Richard Zemel

University of Toronto Canadian Institute for Advanced Research