
Generative Moment Matching Networks

Yujia Li1 YUJIALI@CS.TORONTO.EDU
Kevin Swersky1 KSWERSKY@CS.TORONTO.EDU
Richard Zemel1,2 ZEMEL@CS.TORONTO.EDU
1Department of Computer Science, University of Toronto, Toronto, ON, CANADA
2Canadian Institute for Advanced Research, Toronto, ON, CANADA

Abstract
We consider the problem of learning deep gener-
ative models from data. We formulate a method
that generates an independent sample via a sin-
gle feedforward pass through a multilayer pre-
ceptron, as in the recently proposed generative
adversarial networks (Goodfellow et al., 2014).
Training a generative adversarial network, how-
ever, requires careful optimization of a difficult
minimax program. Instead, we utilize a tech-
nique from statistical hypothesis testing known
as maximum mean discrepancy (MMD), which
leads to a simple objective that can be interpreted
as matching all orders of statistics between a
dataset and samples from the model, and can be
trained by backpropagation. We further boost
the performance of this approach by combining
our generative network with an auto-encoder net-
work, using MMD to learn to generate codes that
can then be decoded to produce samples. We
show that the combination of these techniques
yields excellent generative models compared to
baseline approaches as measured on MNIST and
the Toronto Face Database.

1. Introduction
The most visible successes in the area of deep learning have
come from the application of deep models to supervised
learning tasks. Models such as convolutional neural net-
works (CNNs), and long short term memory (LSTM) net-
works are now achieving impressive results on a number of
tasks such as object recognition (Krizhevsky et al., 2012;
Sermanet et al., 2014; Szegedy et al., 2014), speech recog-
nition (Graves & Jaitly, 2014; Hinton et al., 2012a), image
caption generation (Vinyals et al., 2014; Fang et al., 2014;
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Kiros et al., 2014), machine translation (Cho et al., 2014;
Sutskever et al., 2014), and more. Despite their successes,
one of the main bottlenecks of the supervised approach is
the difficulty in obtaining enough data to learn abstract fea-
tures that capture the rich structure of the data. It is well
recognized that a promising avenue is to use unsupervised
learning on unlabelled data, which is far more plentiful and
cheaper to obtain.

A long-standing and inherent problem in unsupervised
learning is defining a good method for evaluation. Gen-
erative models offer the ability to evaluate generalization
in the data space, which can also be qualitatively assessed.
In this work we propose a generative model for unsuper-
vised learning that we call generative moment matching
networks (GMMNs). GMMNs are generative neural net-
works that begin with a simple prior from which it is easy
to draw samples. These are propagated deterministically
through the hidden layers of the network and the output is
a sample from the model. Thus, with GMMNs it is easy
to quickly draw independent random samples, as opposed
to expensive MCMC procedures that are necessary in other
models such as Boltzmann machines (Ackley et al., 1985;
Hinton, 2002; Salakhutdinov & Hinton, 2009). The struc-
ture of a GMMN is most analogous to the recently pro-
posed generative adversarial networks (GANs) (Goodfel-
low et al., 2014), however unlike GANs, whose training in-
volves a difficult minimax optimization problem, GMMNs
are comparatively simple; they are trained to minimize a
straightforward loss function using backpropagation.

The key idea behind GMMNs is the use of a statistical hy-
pothesis testing framework called maximum mean discrep-
ancy (Gretton et al., 2007). Training a GMMN to mini-
mize this discrepancy can be interpreted as matching all
moments of the model distribution to the empirical data dis-
tribution. Using the kernel trick, MMD can be represented
as a simple loss function that we use as the core training
objective for GMMNs. Using minibatch stochastic gradi-
ent descent, training can be kept efficient, even with large
datasets.
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As a second contribution, we show how GMMNs can be
used to bootstrap auto-encoder networks in order to fur-
ther improve the generative process. The idea behind this
approach is to train an auto-encoder network and then ap-
ply a GMMN to the code space of the auto-encoder. This
allows us to leverage the rich representations learned by
auto-encoder models as the basis for comparing data and
model distributions. To generate samples in the original
data space, we simply sample a code from the GMMN and
then use the decoder of the auto-encoder network.

Our experiments show that this relatively simple, yet very
flexible framework is effective at producing good gener-
ative models in an efficient manner. On MNIST and the
Toronto Face Dataset (TFD) we demonstrate improved re-
sults over comparable baselines, including GANs. Source
code for training GMMNs will be made available at
https://github.com/yujiali/gmmn.

2. Maximum Mean Discrepancy
Suppose we are given two sets of samples X = {xi}Ni=1

and Y = {yj}Mj=1 and are asked whether the generating
distributions PX = PY . Maximum mean discrepancy is
a frequentist estimator for answering this question, also
known as the two sample test (Gretton et al., 2007; 2012a).
The idea is simple: compare statistics between the two
datasets and if they are similar then the samples are likely
to come from the same distribution.

Formally, the following MMD measure computes the mean
squared difference of the statistics of the two sets of sam-
ples.
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Taking φ to be the identity function leads to matching the
sample mean, and other choices of φ can be used to match
higher order moments.

Written in this form, each term in Equation (2) only in-
volves inner products between the φ vectors, and therefore
the kernel trick can be applied.
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The kernel trick implicitly lifts the sample vectors into
an infinite dimensional feature space. When this feature
space corresponds to a universal reproducing kernel Hilbert
space, it is shown that asymptotically, MMD is 0 if and only
if PX = PY (Gretton et al., 2007; 2012a).

For universal kernels like the Gaussian kernel, defined as
k(x, x′) = exp(− 1

2σ |x − x
′|2), where σ is the bandwidth

parameter, we can use a Taylor expansion to get an explicit
feature map φ that contains an infinite number of terms and
covers all orders of statistics. Minimizing MMD under this
feature expansion is then equivalent to minimizing a dis-
tance between all moments of the two distributions.

3. Related Work
In this work we focus on generative models due to their
ability to capture the salient properties and structure of
data. Deep generative models are particularly appealing
because they are capable of learning a latent manifold on
which the data has high density. The result of this is that
smooth variations in the latent space result in non-trivial
transformations in the original space, effectively travers-
ing between high density modes through low density ar-
eas (Bengio et al., 2013a). They are also capable of disen-
tangling factors of variation, which means that each latent
variable can become responsible for modelling a single,
complex transformation in the original space that would
otherwise involve many variables (Bengio et al., 2013a).
Even if we restrict ourselves to the field of deep learning,
there are a vast array of approaches to generative mod-
elling. Below, we outline some of these methods.

One popular class of generative models used in deep
learning are undirected graphical models, such as Boltz-
mann machines (Ackley et al., 1985), restricted Boltzmann
machines (Hinton, 2002), and deep Boltzmann machines
(Salakhutdinov & Hinton, 2009). These models are nor-
malized by a typically intractable partition function, mak-
ing training, evaluation, and sampling extremely difficult,
usually requiring expensive Markov-chain Monte Carlo
(MCMC) procedures.

Next there is the class of fully visible directed models such
as fully visible sigmoid belief networks (Neal, 1992) and
the neural autoregressive distribution estimator (Larochelle
& Murray, 2011). These admit efficient log-likelihood cal-
culation, gradient-based learning and efficient sampling,
but require that an ordering be imposed on the observ-
able variables, which can be unnatural for domains such
as images and cannot take advantage of parallel computing
methods due to their sequential nature.

More related to our own work, there is a line of research de-
voted to recovering density models from auto-encoder net-
works using MCMC procedures (Rifai et al., 2012; Bengio

https://github.com/yujiali/gmmn
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et al., 2013b; 2014). These attempt to use contraction op-
erators, or denoising criteria in order to generate a Markov
chain by repeated perturbations during the encoding phase,
followed by decoding.

Also related to our own work, there is the class of deep,
variational networks (Rezende et al., 2014; Kingma &
Welling, 2014; Mnih & Gregor, 2014). These are also
deep, directed generative models, however they make use
of an additional neural network that is designed to approxi-
mate the posterior over the latent variables. Training is car-
ried out via a variational lower bound on the log-likelihood
of the model distribution. These models are trained us-
ing stochastic gradient descent, however they either re-
quire that the latent representation is continuous (Kingma
& Welling, 2014), or require many secondary networks to
sufficiently reduce the variance of gradient estimates in or-
der to produce a sufficiently good learning signal (Mnih &
Gregor, 2014).

Finally there is some early work that proposed the idea
of using feed-forward neural networks to learn generative
models. MacKay (1995) proposed a model that is closely
related to ours, which also used a feed-forward network to
map the prior samples to the data space. However, instead
of directly outputing samples, an extra distribution is as-
sociated with the output. Sampling was used extensively
for learning and inference in this model. Magdon-Ismail &
Atiya (1998) proposed to use a neural network to learn a
transformation from the data space to another space where
the transformed data points are uniformly distributed. This
transformation network then learns the cumulative density
function.

4. Generative Moment Matching Networks
4.1. Data Space Networks

The high-level idea of the GMMN is to use a neural net-
work to learn a deterministic mapping from samples of a
simple, easy to sample distribution, to samples from the
data distribution. The architecture of the generative net-
work is exactly the same as a generative adversarial net-
work (Goodfellow et al., 2014). However, we propose to
train the network by simply minimizing the MMD crite-
rion, avoiding the hard minimax objective function used in
generative adversarial network training.

More specifically, in the generative network we have a
stochastic hidden layer h ∈ RH with H hidden units at
the top with a prior uniform distribution on each unit inde-
pendently,

p(h) =

H∏
j=1

U(hj) (4)

Here U(h) = 1
2I[−1 ≤ h ≤ 1] is a uniform distribu-

Uniform Prior

ReLU

ReLU

ReLU

Sigmoid

GMMN

Sam
ple G

eneration

ReLU

Uniform Prior

Sigmoid Sigmoid

Sigmoid

Input Data Reconstruction

Auto-Encoder

GMMN

Dropout

Dropout

Sam
ple G

eneration

ReLU

ReLU

ReLU

Sigmoid

ReLU

(a) GMMN (b) GMMN+AE

Figure 1. Example architectures of our generative moment match-
ing networks. (a) GMMN used in the input data space. (b)
GMMN used in the code space of an auto-encoder.

tion in [−1, 1], where I[.] is an indicator function. Other
choices for the prior are also possible, as long as it is a
simple enough distribution from which we can easily draw
samples.

The h vector is then passed through the neural network and
deterministically mapped to a vector x ∈ RD in the D di-
mensional data space.

x = f(h;w) (5)

f is the neural network mapping function, which can con-
tain multiple layers of nonlinearities, and w represents the
parameters of the neural network. One example architec-
ture for f is illustrated in Figure 1(a), which has 3 inter-
mediate ReLU (Nair & Hinton, 2010) nonlinear layers and
one logistic sigmoid output layer.

The prior p(h) and the mapping f(h;w) jointly defines a
distribution p(x) in the data space. To generate a sample
x ∼ p(x) we only need to sample from the uniform prior
p(h) and then pass the sample h through the neural net to
get x = f(h;w).

Goodfellow et al. (2014) proposed to train this network by
using an extra discriminative network, which tries to distin-
guish between model samples and data samples. The gen-
erative network is then trained to counteract this in order
to make the samples indistinguishable to the discriminative
network. The gradient of this objective can be backprop-
agated through the generative network. However, because
of the minimax nature of the formulation, it is easy to get
stuck at a local optima. So the training of generative net-
work and the discriminative network must be interleaved
and carefully scheduled. By contrast, our learning algo-
rithm simply involves minimizing the MMD objective.

Assume we have a dataset of training examples xd1, ...,x
d
N

(d for data), and a set of samples generated from our model
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xs1, ...,x
s
M (s for samples). The MMD objective LMMD2 is

differentiable when the kernel is differentiable. For exam-
ple for Gaussian kernels k(x,y) = exp
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This gradient can then be backpropagated through the gen-
erative network to update the parameters w.

4.2. Auto-Encoder Code Space Networks

Real-world data can be complicated and high-dimensional,
which is one reason why generative modelling is such a
difficult task. Auto-encoders, on the other hand, are de-
signed to solve an arguably simpler task of reconstruction.
If trained properly, auto-encoder models can be very good
at representing data in a code space that captures enough
statistical information that the data can be reliably recon-
structed.

The code space of an auto-encoder has several advantages
for creating a generative model. The first is that the di-
mensionality can be explicitly controlled. Visual data, for
example, while represented in a high dimension often ex-
ists on a low-dimensional manifold. This is beneficial for a
statistical estimator like MMD because the amount of data
required to produce a reliable estimator grows with the di-
mensionality of the data (Ramdas et al., 2015). The sec-
ond advantage is that each dimension of the code space can
end up representing complex variations in the original data
space. This concept is referred to in the literature as disen-
tangling factors of variation (Bengio et al., 2013a).

For these reasons, we propose to bootstrap auto-encoder
models with a GMMN to create what we refer to as the
GMMN+AE model. These operate by first learning an
auto-encoder and producing code representations of the
data, then freezing the auto-encoder weights and learning
a GMMN to minimize MMD between generated codes and
data codes. A visualization of this model is given in Figure
1(b).

Our method for training a GMMN+AE proceeds as fol-
lows:

1. Greedy layer-wise pretraining of the auto-encoder
(Bengio et al., 2007).

2. Fine-tune the auto-encoder.

3. Train a GMMN to model the code layer distribution
using an MMD objective on the final encoding layer.

We found that adding dropout to the encoding layers can be
beneficial in terms of creating a smooth manifold in code
space. This is analogous to the motivation behind contrac-
tive and denoising auto-encoders (Rifai et al., 2011; Vin-
cent et al., 2008).

4.3. Practical Considerations

Here we outline some design choices that we have found to
improve the peformance of GMMNs.

Bandwidth Parameter. The bandwidth parameter in the
kernel plays a crucial role in determining the statistical ef-
ficiency of MMD, and optimally setting it is an open prob-
lem. A good heuristic is to perform a line search to obtain
the bandwidth that produces the maximal distance (Sripe-
rumbudur et al., 2009), other more advanced heuristics are
also available (Gretton et al., 2012b). As a simpler approx-
imation, for most of our experiments we use a mixture of
K kernels spanning multiple ranges. That is, we choose the
kernel to be:

k(x, x′) =

K∑
q=1

kσq
(x, x′) (7)

where kσq is a Gaussian kernel with bandwidth parameter
σq . We found that choosing simple values for these such as
1, 5, 10, etc. and using a mixture of 5 or more was sufficient
to obtain good results. The weighting of different kernels
can be further tuned to achieve better results, but we kept
them equally weighted for simplicity.

Square Root Loss. In practice, we have found that better
results can be obtained by optimizing LMMD =

√
LMMD2 .

This loss can be important for driving the difference be-
tween the two distributions as close to 0 as possible. Com-
pared to LMMD2 which flattens out when its value gets
close to 0, LMMD behaves much better for small LMMD

values. Alternatively, this can be understood by writing
down the gradient of LMMD with respect to w

∂LMMD

∂w
=

1

2
√
LMMD2

∂LMMD2

∂w
(8)

The 1/(2
√
LMMD2) term automatically adapts the effec-

tive learning rate. This is especially beneficial when both
LMMD2 and ∂LMMD2

∂w become small, where this extra factor
can help by maintaining larger gradients.

Minibatch Training. One of the issues with MMD is that
the usage of kernels means that the computation of the ob-
jective scales quadratically with the amount of data. In
the literature there have been several alternative estimators
designed to overcome this (Gretton et al., 2012a). In our
case, we found that it was sufficient to optimize MMD us-
ing minibatch optimization. In each weight update, a small
subset of data is chosen, and an equal number of samples
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Algorithm 1: GMMN minibatch training

Input : Dataset {xd1, ...,xdN}, prior p(h), network
f(h;w) with initial parameter w(0)

Output: Learned parameter w∗

1 while Stopping criterion not met do
2 Get a minibatch of data Xd ← {xdi1 , ...,x

d
ib
}

3 Get a new set of samples Xs ← {xs1, ...,xsb}
4 Compute gradient ∂LMMD

∂w on Xd and Xs

5 Take a gradient step to update w

6 end

are drawn from the GMMN. Within a minibatch, MMD
is applied as usual. As we are using exact samples from
the model and the data distribution, the minibatch MMD is
still a good estimator of the population MMD. We found
this approach to be both fast and effective. The minibatch
training algorithm for GMMN is shown in Algorithm 1.

5. Experiments
We trained GMMNs on two benchmark datasets MNIST
(LeCun et al., 1998) and the Toronto Face Dataset (TFD)
(Susskind et al., 2010). For MNIST, we used the standard
test set of 10,000 images, and split out 5000 from the stan-
dard 60,000 training images for validation. The remaining
55,000 were used for training. For TFD, we used the same
training and test sets and fold splits as used by (Goodfellow
et al., 2014), but split out a small set of the training data and
used it as the validation set. For both datasets, rescaling the
images to have pixel intensities between 0 and 1 is the only
preprocessing step we did.

On both datasets, we trained the GMMN network in both
the input data space and the code space of an auto-encoder.
For all the networks we used in this section, a uniform
distribution in [−1, 1]H was used as the prior for the
H-dimensional stochastic hidden layer at the top of the
GMMN, which was followed by 4 ReLU layers, and the
output was a layer of logistic sigmoid units. The auto-
encoder we used for MNIST had 4 layers, 2 for the encoder
and 2 for the decoder. For TFD the auto-encoder had 6 lay-
ers in total, 3 for the encoder and 3 for the decoder. For both
auto-encoders the encoder and the decoder had mirrored
architectures. All layers in the auto-encoder network used
sigmoid nonlinearities, which also guaranteed that the code
space dimensions lay in [0, 1], so that they could match the
GMMN outputs. The network architectures for MNIST are
shown in Figure 1.

The auto-encoders were trained separately from the
GMMN. Cross entropy was used as the reconstruction loss.
We first did standard layer-wise pretraining, then fine-tuned

Model MNIST TFD
DBN 138 ± 2 1909 ± 66

Stacked CAE 121 ± 1.6 2110 ± 50
Deep GSN 214 ± 1.1 1890 ± 29

Adversarial nets 225 ± 2 2057 ± 26
GMMN 147 ± 2 2085 ± 25

GMMN+AE 282 ± 2 2204 ± 20

Table 1. Log-likelihood of the test sets under different models.
The baselines are DBN and Stacked CAE from (Bengio et al.,
2013a), Deep GSN from (Bengio et al., 2014) and Adversarial
nets (GANs) from (Goodfellow et al., 2014).

all layers jointly. Dropout (Hinton et al., 2012b) was used
on the encoder layers. After training the auto-encoder, we
fixed it and passed the input data through the encoder to get
the corresponding codes. The GMMN network was then
trained in this code space to match the statistics of gen-
erated codes to the statistics of codes from data examples.
When generating samples, the generated codes were passed
through the decoder to get samples in the input data space.

For all experiments in this section the GMMN networks
were trained with minibatches of size 1000, for each mini-
batch we generated a set of 1000 samples from the net-
work. The loss and gradient were computed from these
2000 points. We used the square root loss function LMMD

throughout.

Evaluation of our model is not straight-forward, as we do
not have an explicit form for the probability density func-
tion, it is not easy to compute the log-likelihood of data.
However, sampling from our model is easy. We therefore
followed the same evaluation protocol used in related mod-
els (Bengio et al., 2013a), (Bengio et al., 2014), and (Good-
fellow et al., 2014). A Gaussian Parzen window (kernel
density estimator) was fit to 10,000 samples generated from
the model. The likelihood of the test data was then com-
puted under this distribution. The scale parameter of the
Gaussians was selected using a grid search in a fixed range
using the validation set.

The hyperparameters of the networks, including the learn-
ing rate and momentum for both auto-encoder and GMMN
training, dropout rate for the auto-encoder, and number
of hidden units on each layer of both auto-encoder and
GMMN, were tuned using Bayesian optimization (Snoek
et al., 2012; 2014)1 to optimize the validation set likelihood
under the Gaussian Parzen window density estimation.

The log-likelihood of the test set for both datasets are
shown in Table 1. The GMMN is competitive with other
approaches, while the GMMN+AE significantly outper-

1We used the service provided by https://www.
whetlab.com

https://www.whetlab.com
https://www.whetlab.com
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(e) GMMN nearest neighbors for MNIST samples

(a) GMMN MNIST samples (b) GMMN TFD samples (f) GMMN+AE nearest neighbors for MNIST samples

(g) GMMN nearest neighbors for TFD samples

(c) GMMN+AE MNIST samples (d) GMMN+AE TFD samples (h) GMMN+AE nearest neighbors for TFD samples

Figure 2. Independent samples and their nearest neighbors in the training set for the GMMN+AE model trained on MNIST and TFD
datasets. For (e)(f)(g) and (h) the top row are the samples from the model and the bottom row are the corresponding nearest neighbors
from the training set measured by Euclidean distance.

forms the other models. This shows that despite being rel-
atively simple, MMD, especially when combined with an
effective decoder, is a powerful objective for training good
generative models.

Some samples generated from the GMMN models are
shown in Figure 2(a-d). The GMMN+AE produces the
most visually appealing samples, which are reflected in its
Parzen window log-likelihood estimates. The likely expla-
nation is that any perturbations in the code space corre-
spond to smooth transformations along the manifold of the
data space. In that sense, the decoder is able to “correct”
noise in the code space.

To determine whether the models learned to merely copy
the data, we follow the example of (Goodfellow et al.,
2014) and visualize the nearest neighbour of several sam-
ples in terms of Euclidean pixel-wise distance in Figure
2(e-h). By this metric, it appears as though the samples
are not merely data examples.

One of the interesting aspects of a deep generative model
such as the GMMN is that it is possible to directly ex-
plore the data manifold. Using the GMMN+AE model,
we randomly sampled 5 points in the uniform space and
show their corresponding data space projections in Fig-
ure 3. These points are highlighted by red boxes. From left
to right, top to bottom we linearly interpolate between these

points in the uniform space and show their corresponding
projections in data space. The manifold is smooth for the
most part, and almost all of the projections correspond to
realistic looking data. For TFD in particular, these transfor-
mations involve complex attributes, such as the changing of
pose, expression, lighting, gender, and facial hair.

6. Conclusion and Future Work
In this paper we provide a simple and effective framework
for training deep generative models called generative mo-
ment matching networks. Our approach is based off of opti-
mizing maximum mean discrepancy so that samples gener-
ated from the model are indistinguishable from data exam-
ples in terms of their moment statistics. As is standard with
MMD, the use of the kernel trick allows a GMMN to avoid
explicitly computing these moments, resulting in a simple
training objective, and the use of minibatch stochastic gra-
dient descent allows the training to scale to large datasets.

Our second contribution combines MMD with auto-
encoders for learning a generative model of the code layer.
The code samples from the model can then be fed through
the decoder in order to generate samples in the origi-
nal space. The use of auto-encoders makes the gener-
ative model learning a much simpler problem. Com-
bined with MMD, pretrained auto-encoders can be read-
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(a) MNIST interpolation

(b) TFD interpolation

Figure 3. Linear interpolation between 5 uniform random points
from the GMMN+AE prior projected through the network into
data space for (a) MNIST and (b) TFD. The 5 random points are
highlighted with red boxes, and the interpolation goes from left
to right, top to bottom. The final two rows represent an interpo-
lation between the last highlighted image and the first highlighted
image.

ily bootstrapped into a good generative model of data. On
the MNIST and Toronto Face Database, the GMMN+AE
model achieves superior performance compared to other
approaches. For these datasets, we demonstrate that the
GMMN+AE is able to discover the implicit manifold of
the data.

There are many interesting directions for research using
MMD. One such extension is to consider alternatives to the
standard MMD criterion in order to speed up training. One
such possibility is the class of linear-time estimators that
has been developed recently in the literature (Gretton et al.,

2012a).

Another possibility is to utilize random features (Rahimi
& Recht, 2007). These are randomized feature expansions
whose inner product converges to a kernel function with an
increasing number of features. This idea was recently ex-
plored for MMD in (Zhao & Meng, 2014). The advantage
of this approach would be that the cost would no longer
grow quadratically with minibatch size because we could
use the original objective given in Equation 2. Another ad-
vantage of this approach is that the data statistics could be
pre-computed from the entire dataset, which would reduce
the variance of the objective gradients.

Another direction we would like to explore is joint train-
ing of the auto-encoder model with the GMMN. Currently,
these are treated separately, but joint training may encour-
age the learning of codes that are both suitable for recon-
struction as well as generation.

While a GMMN provides an easy way to sample data, the
posterior distribution over the latent variables is not readily
available. It would be interesting to explore ways in which
to infer the posterior distribution over the latent space. A
straightforward way to do this is to learn a neural network
to predict the latent vector given a sample. This is reminis-
cent of the recognition models used in the wake-sleep al-
gorithm (Hinton et al., 1995), or variational auto-encoders
(Kingma & Welling, 2014).

An interesting application of MMD that is not directly re-
lated to generative modelling comes from recent work on
learning fair representations (Zemel et al., 2013). There,
the objective is to train a prediction method that is invariant
to a particular sensitive attribute of the data. Their solution
is to learn an intermediate clustering-based representation.
MMD could instead be applied to learn a more powerful,
distributed representation such that the statistics of the rep-
resentation do not change conditioned on the sensitive vari-
able. This idea can be further generalized to learn represen-
tations invariant to known biases.

Finally, the notion of utilizing an auto-encoder with the
GMMN+AE model provides new avenues for creating gen-
erative models of even more complex datasets. For exam-
ple, it may be possible to use a GMMN+AE with convolu-
tional auto-encoders (Zeiler et al., 2010; Masci et al., 2011;
Makhzani & Frey, 2014) in order to create generative mod-
els of high resolution color images.
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