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Introduction & Related Work

Good representations should at least be Parsimonious, Interpretable and Generalizable.
Many existing methods try to achieve some of these goals. Methods like weight decay put reg-
ularizer on weights while Dropout, Denoise AutoEncoder, Contractive AutoEncoder, DeCov
directly regularize the hidden representations. Here we exploit clustering loss R as a regu-
larizer which leads to the overall objective £ + AR, where L is the conventional loss function,
like cross-entropy.

Clustering Regularization
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Figure 1: (A) Sample clustering and (B) spatial clustering. Samples, pixels, and channels
are visualized as multi-channel maps, cubes, and maps in depth respectively. The receptive
fields in the input image are denoted as red boxes.

Assuming the representation of one layer in a neural network is a 4-D tensor Y € RVXCxHxW.
we show three different types of clustering as below,

Sample Clustering
It captures global patterns shared among different samples,

N
2NC}HW D
n=1

2

Rsample<Ya p) =

Spatial Clustering
It captures local patterns shared among different spatial positions,
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Channel Co-Clustering

It captures global patterns shared among different samples and within each sample,
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Learning Parsimonious Representations

1: Initialization: Maximum training iteration R, batch size B, smooth weight «, set of
clustering layers S and set of cluster centers {u,%]k € |K|}, update period M

2: Foriterationt=1,2,..., R:

3: Forlayeri=1,2,..., L:

4; Compute the output representation of layer [ as .

5: Ifl € S:

6: Assigning cluster z, = argmin || X,, — p} (%, ¥n € [B].

k

7. Compute cluster center ji;. = Wlk\ > e, Xn, where Ny, = [B] {n|zn =
k}.

8: Smooth cluster center yif = iy + (1 — a)pb

9: End

10: End

11 Compute the gradients with cluster centers MZ fixed.

12: Update weights.

13: Update drifted cluster centers using Kmeans++ every M iterations.
14: End

Experiments

Auto-Encoder

Measurement

Train

Test

AE + Sample-Clustering

AE

2.69 +£0.12 3.61 £0.13
2.73 +£0.01 3.50 £ 0.01

Table 1: Autoencoder Experiments on MNIST. We report the average of mean reconstruction

error over 4 trials and the corresponding standard deviation.

Image Classification

Dataset CIFAR10 Train CIFAR10 Test CIFAR100 Train CIFAR100 Test
Caffe 9487 +£0.14 76.32 4+ 0.17| 68.01 = 0.64 46.21 + 0.34
Weight Decay 95.34 + 0.27 76.79 +0.31 | 69.32 4+ 051 46.93 + 0.42

DeCov 88.78 £ 0.23 79.72 + 0.14 77.92 40.34

Dropout 99.10 + 0.17 77.45+0.21 | 60.77 =0.47 48.70 + 0.38
Sample-Clustering 89.93 + 0.19 81.05+ 0.41 63.60+0.55 50.50 + 0.38
Spatial-Clustering 90.50 -+ 0.05 81.02+0.12 64.384+0.38 50.18 + 0.49
Channel Co-Clustering| 89.26 + 0.25 80.65 + 0.23 | 63.42 +1.34 49.80 + 0.25

Table 2: CIFAR10 and CIFAR 100 results. For DeCov, no standard deviation is provided for
the CIFAR100 results. All our approaches outperform the baselines.

Visualization on CIFAR10
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Figure 2: Visualization of clusterings on CIFAR10 dataset. Rows 1, 2 each show examples
belonging to a single sample-cluster; rows 3, 4 show regions clustered via spatial clustering.
Receptive fields are truncated to fit images.

Evaluation of Clustering

Method Baseline Sample-Clustering
NMI 0.4122 £ 0.0012 0.4914 + 0.0011

Table 3: Normalized mutual information of sample clustering on CIFAR100.

Fine-Grained Classification

Method Train  Test
DeCAF - 58.75
Sample-Clustering | 100.0 61.77
Spatial-Clustering | 100.0 61.67
Channel Co-Clustering | 100.0 61.49

Table 4: Classification accuracy on CUB-200-2011.

Visualization on CUB
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Figure 3: Visualization of sample and spatial clustering on CUB-200-2011 dataset. Row 1-4
and 5-8 show sample and spatial clusters respectively. Receptive fields are truncated to fit
Images.

Zero-Shot Learning

Based on the learned representations, we perform zero-shot learning via solving the following
unregularized structure SVM,

| N

min - 2 i {0, Alyn,y) + 2, W [ply) — qﬁ(zm)])} - (4)

The results are listed as below,

Method Top1 Accuracy
ALE 26.9
SJE 40.3
Sample-Clustering 46.1

Table 5: Zero-shot learning on CUB-200-2011.

Future Work

e Back-propagate the gradient through unrolled steps of K-means
e EXploit soft cluster assignments
e Apply to semi-supervised tasks

Code is available at https://github.com/lrjconan/deep_parsimonious.



