
Introduction & Related Work
Good representations should at least be Parsimonious, Interpretable and Generalizable.
Many existing methods try to achieve some of these goals. Methods like weight decay put reg-
ularizer on weights while Dropout, Denoise AutoEncoder, Contractive AutoEncoder, DeCov
directly regularize the hidden representations. Here we exploit clustering loss R as a regu-
larizer which leads to the overall objective L + λR, where L is the conventional loss function,
like cross-entropy.

Clustering Regularization

(a)

Representations

C
W

H

N

(b)

…

Figure 1: (A) Sample clustering and (B) spatial clustering. Samples, pixels, and channels
are visualized as multi-channel maps, cubes, and maps in depth respectively. The receptive
fields in the input image are denoted as red boxes.

Assuming the representation of one layer in a neural network is a 4-D tensor Y ∈ RN×C×H×W ,
we show three different types of clustering as below,

Sample Clustering
It captures global patterns shared among different samples,

Rsample(Y, µ) =
1

2NCHW

N∑
n=1

∥∥∥T {N}×{H,W,C}(Y)n − µzn
∥∥∥2
. (1)

Spatial Clustering
It captures local patterns shared among different spatial positions,

Rspatial(Y, µ) =
1

2NCHW

NHW∑
i=1

‖T {N,H,W}×{C}(Y)i − µzi‖
2. (2)

Channel Co-Clustering
It captures global patterns shared among different samples and within each sample,

Rchannel(Y, µ) =
1

2NCHW

NC∑
i=1

‖T {N,C}×{H,W}(Y)i − µzi‖
2. (3)

Learning Parsimonious Representations

1: Initialization: Maximum training iteration R, batch size B, smooth weight α, set of
clustering layers S and set of cluster centers {µ0

k|k ∈ [K]}, update period M
2: For iteration t = 1, 2, ..., R:
3: For layer l = 1, 2, ..., L:
4: Compute the output representation of layer l as x.
5: If l ∈ S:
6: Assigning cluster zn = argmin

k
‖Xn − µt−1

k ‖
2,∀n ∈ [B].

7: Compute cluster center µ̂k = 1
|Nk|

∑
n∈Nk

Xn, where Nk = [B]
⋂
{n|zn =

k}.
8: Smooth cluster center µtk = αµ̂k + (1− α)µt−1

k
9: End

10: End
11: Compute the gradients with cluster centers µtk fixed.
12: Update weights.
13: Update drifted cluster centers using Kmeans++ every M iterations.
14: End

Experiments
Auto-Encoder

Measurement Train Test
AE 2.69 ± 0.12 3.61 ± 0.13

AE + Sample-Clustering 2.73 ± 0.01 3.50 ± 0.01

Table 1: Autoencoder Experiments on MNIST. We report the average of mean reconstruction
error over 4 trials and the corresponding standard deviation.

Image Classification

Dataset CIFAR10 Train CIFAR10 Test CIFAR100 Train CIFAR100 Test
Caffe 94.87 ± 0.14 76.32 ± 0.17 68.01 ± 0.64 46.21 ± 0.34

Weight Decay 95.34 ± 0.27 76.79 ± 0.31 69.32 ± 0.51 46.93 ± 0.42
DeCov 88.78 ± 0.23 79.72 ± 0.14 77.92 40.34
Dropout 99.10 ± 0.17 77.45 ± 0.21 60.77 ± 0.47 48.70 ± 0.38

Sample-Clustering 89.93 ± 0.19 81.05 ± 0.41 63.60 ± 0.55 50.50 ± 0.38
Spatial-Clustering 90.50 ± 0.05 81.02 ± 0.12 64.38 ± 0.38 50.18 ± 0.49

Channel Co-Clustering 89.26 ± 0.25 80.65 ± 0.23 63.42 ± 1.34 49.80 ± 0.25

Table 2: CIFAR10 and CIFAR 100 results. For DeCov, no standard deviation is provided for
the CIFAR100 results. All our approaches outperform the baselines.

Visualization on CIFAR10

FC
-4

FC
-4

C
on

v-
2

C
on

v-
2

Figure 2: Visualization of clusterings on CIFAR10 dataset. Rows 1, 2 each show examples
belonging to a single sample-cluster; rows 3, 4 show regions clustered via spatial clustering.
Receptive fields are truncated to fit images.

Evaluation of Clustering

Method Baseline Sample-Clustering
NMI 0.4122 ± 0.0012 0.4914 ± 0.0011

Table 3: Normalized mutual information of sample clustering on CIFAR100.

Fine-Grained Classification
Method Train Test
DeCAF - 58.75

Sample-Clustering 100.0 61.77
Spatial-Clustering 100.0 61.67

Channel Co-Clustering 100.0 61.49

Table 4: Classification accuracy on CUB-200-2011.

Visualization on CUB

C
on

v-
3

C
on

v-
3

FC
-7

FC
-7

C
on

v-
2

C
on

v-
2

C
on

v-
3

C
on

v-
3

Figure 3: Visualization of sample and spatial clustering on CUB-200-2011 dataset. Row 1-4
and 5-8 show sample and spatial clusters respectively. Receptive fields are truncated to fit
images.

Zero-Shot Learning

Based on the learned representations, we perform zero-shot learning via solving the following
unregularized structure SVM,

min
W

1

N

N∑
n=1

max
y∈Y

{
0,∆(yn, y) + x>nW [φ(y)− φ(yn)])

}
. (4)

The results are listed as below,

Method Top1 Accuracy
ALE 26.9
SJE 40.3

Sample-Clustering 46.1

Table 5: Zero-shot learning on CUB-200-2011.

Future Work

• Back-propagate the gradient through unrolled steps of K-means
• Exploit soft cluster assignments
• Apply to semi-supervised tasks

Code is available at https://github.com/lrjconan/deep_parsimonious.

Learning Deep Parsimonious Representations
Renjie Liao1, Alexander Schwing2, Richard S. Zemel1,3, Raquel Urtasun1

1University of Toronto 2University of Illinois at Urbana-Champaign 3Canadian Institute for Advanced Research
email: {rjliao, zemel, urtasun}@cs.toronto.edu, aschwing@illinois.edu

