Exploring Compositional High Order Pattern Potentials for Structured Output Learning

Yujia Li, Daniel Tarlow*, Richard Zemel

University of Toronto *Now at Microsoft Research Cambridge June 25, 2013

Structured Output Learning

- Lots of real world applications require structured outputs
 - Image segmentation, pose estimation, sequence labeling, etc.

Structured Output Learning

- Lots of real world applications require structured outputs
 - Image segmentation, pose estimation, sequence labeling, etc.

• Standard model – pairwise MRF/CRF

$$E(\mathbf{y}) = \sum_{i} f_i^u(y_i) + \sum_{i,j} f_{ij}^p(y_i, y_j)$$

Unary Potentials

Pairwise Potentials

- Sparse connections easier to learn and do inference
- Overly simplistic only modeling up to 2nd order correlation in outputs

Moving to More Expressive Models

- Densely connected CRFs [P. Krahenbuhl et al. NIPS'12]
 Still 2nd order connections but densely connected
- Robust High Order Potentials [P. Kohli et al. CVPR'08]
 Smoothness in a region
- Global Connectivity Potentials [S. Nowozin et al. CVPR'09]
 - Require the output to be connected
- Pattern Potentials [C. Rother et al. CVPR'09]
 - Consistency between the output and learned patterns

Pattern Potentials

• Penalize linearly if output deviates from a pattern

Pairwise CRF

• Multiple base pattern potentials can be combined to form more expressive composite pattern potentials

Restricted Boltzmann Machines (RBMs)

• RBM probabilistic model

$$E(\mathbf{y}, \mathbf{h}) = -\sum_{ij} w_{ij} y_i h_j - \sum_i b_i y_i - \sum_j c_j h_j$$
$$p(\mathbf{y}, \mathbf{h}) = \frac{1}{Z} \exp\left(-E(\mathbf{y}, \mathbf{h})\right)$$

Hidden variables \boldsymbol{h}

Visible variables y

- Sum out **h**, RBM becomes a high order potential on **y**
- Some success modeling object shape
 - The Shape Boltzmann Machine [S. M. Ali Eslami et al., CVPR'12]
 - Masked RBMs [N. Heess et al. ICANN'11]

CHOPP

• Compositional High Order Pattern Potential (CHOPP)

CHOPP-Augmented CRF

• Compositional High Order Pattern Potential (CHOPP)

$$f_T(\mathbf{y}) = -T \log \left(\sum_{\mathbf{h}} \exp \left(\frac{1}{T} \sum_{j} \left(c_j + \sum_{i} w_{ij} y_i \right) h_j \right) \right)$$

• CHOPP-augmented CRF Energy function $-E(\mathbf{y}|\mathbf{x}) = f^{u}(\mathbf{y}|\mathbf{x}) + f^{p}(\mathbf{y}|\mathbf{x}) + T \log \left(\sum_{\mathbf{h}} \exp \left(\frac{1}{T} \sum_{j} \left(c_{j} + \sum_{i} w_{ij} y_{j} \right) h_{j} \right) \right)$ Labels y

Hidden variables **h**

CHOPP

Input **x**

Standard CRF

"EM" Inference Algorithm

An Example for the "EM" Inference Algorithm

Original Unary Image Prediction

Ground Truth

Unary+ Pairwise

Initialize EM with this

An Example for the "EM" Inference Algorithm

An Example for the "EM" Inference Algorithm

with this

Learning by Minimizing Expected Loss

- Contrastive Divergence does not work well
- Expected loss objective

$$L = \sum p(\mathbf{y}|\mathbf{x};\theta)\ell(\mathbf{y},\mathbf{y}^*)$$

• Estimate gradient using a set of samples from $p(\mathbf{y}|\mathbf{x})$

Learning by Minimizing Expected Loss

- Contrastive Divergence does not work well
- Expected loss objective

$$L = \sum_{\mathbf{x}} p(\mathbf{y}|\mathbf{x}; \theta) \ell(\mathbf{y}, \mathbf{y}^*)$$

• Estimate gradient using a set of samples from $p(\mathbf{y}|\mathbf{x})$

Learning by Minimizing Expected Loss

- Contrastive Divergence does not work well
- Expected loss objective

$$L = \sum p(\mathbf{y}|\mathbf{x};\theta)\ell(\mathbf{y},\mathbf{y}^*)$$

• Estimate gradient using a set of samples from $p(\mathbf{y}|\mathbf{x})$

Probability 🖡

Datasets and Settings

- Weizmann horse dataset
- PASCAL VOC 2011: image inside the bounding box
 - Class "person" and class "bird"
- All images resized to 32x32
- *T*=1, Intersection Over Union (IOU) performance measure

Experiment I

• Train RBM independently (unsupervised)

Method	Horse IOU	Bird IOU	Person IOU
Unary Only	0.5119	0.5055	0.4979
iPW	0.5736	0.5585	0.5094
iPW+RBM	0.6722	0.5647	0.5126

- Adding an RBM always helps
 - But not equally on different datasets

Experiment I Analysis: Dataset Variability

Experiment II and III

• Jointly learning RBM parameters by minimizing expected loss

Method	Horse IOU	Bird IOU	Person IOU
iPW+RBM	0.6722	0.5647	0.5126
iPW+jRBM	0.6990	0.5773	0.5253

Experiment II and III

• Jointly learning RBM parameters by minimizing expected loss

Method	Horse IOU	Bird IOU	Person IOU
iPW+RBM	0.6722	0.5647	0.5126
iPW+jRBM	0.6990	0.5773	0.5253

• Making the RBM hidden bias conditioned on the image

Method	Bird IOU	Person IOU
PW	0.5321	0.5082
iPW	0.5585	0.5094
iPW+jRBM	0.5773	0.5253
iPW+ijRBM	0.5858	0.5252

Examples

Most Improvement

Average Improvement

Least Improvement

Conclusion and Future Work

- Theoretical contribution
 - Relationship between RBMs and Pattern Potentials
- Algorithmic contribution
 - Inference and learning algorithms for CHOPP-augmented CRFs
- Empirical contribution
 - Dataset variability measure
- Looking forward:
 - Convolutional and deeper models
 - Fully explore the variants of CHOPP
 - Challenge: lack of labeled data

Q & A

Exploring Compositional High Order Pattern Potentials for Structured Output Learning

Yujia Li, Daniel Tarlow*, Richard Zemel

University of Toronto *Now at Microsoft Research Cambridge June 25, 2013

Learned Patterns

(a) Horse filters

(b) Bird filters

(c) Person filters.