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Abstract
When modeling structured outputs such as image seg-

mentations, prediction can be improved by accurately mod-
eling structure present in the labels. A key challenge is de-
veloping tractable models that are able to capture complex
high level structure like shape. In this work, we study the
learning of a general class of pattern-like high order po-
tential, which we call Compositional High Order Pattern
Potentials (CHOPPs). We show that CHOPPs include the
linear deviation pattern potentials of Rother et al. [26] and
also Restricted Boltzmann Machines (RBMs); we also es-
tablish the near equivalence of these two models.

Experimentally, we show that performance is affected
significantly by the degree of variability present in the
datasets, and we define a quantitative variability measure
to aid in studying this. We then improve CHOPPs perfor-
mance in high variability datasets with two primary contri-
butions: (a) developing a loss-sensitive joint learning pro-
cedure, so that internal pattern parameters can be learned
in conjunction with other model potentials to minimize ex-
pected loss;and (b) learning an image-dependent mapping
that encourages or inhibits patterns depending on image
features. We also explore varying how multiple patterns are
composed, and learning convolutional patterns. Quantita-
tive results on challenging highly variable datasets show
that the joint learning and image-dependent high order po-
tentials can improve performance.

1. Introduction
Many tasks in computer vision can be framed as mak-

ing predictions about complex, structured objects. For ex-
ample, image labeling problems like stereo depth estima-
tion, optical flow, and image segmentation can all be cast
as making predictions jointly over many correlated outputs.
The modeling frameworks that have found the most success
for this type of problems are those like Conditional Ran-
dom Fields (CRFs) and Structural Support Vector Machines
(SSVMs), which explicitly model the correlations over the
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Figure 1. (a) Images from Bird data set. (b) Ground truth la-
bels. (c) Patterns learned by the clustering-style approach of [26].
(d) Patterns learned by the compositional-style approach proposed
here.

outputs and make test-time predictions by either exactly or
approximately solving a joint inference task. These formu-
lations are collectively known as structured output learning,
or structured prediction, and are the focus of this work.

A key research issue that arises when working with struc-
tured output problems is how to best tradeoff expressivity
of the model with the ability to efficiently learn and per-
form inference (make predictions). Traditionally, these con-
cerns have led to the use of overly simplistic models over la-
belings that make unrealistic conditional independence as-
sumptions, such as pairwise models with grid-structured
topology. Recently, there have been successful efforts that
weaken these assumptions, either by moving to densely
connected pairwise models [13] or by enforcing smooth-
ness in higher order neighborhoods [10]. However, while
these approaches can lead to improved performance, they
do not capture much higher level structure in the data, such
as information about shape. As we look to build models that
more faithfully represent structure present in the world, it is
desirable to explore the use of models capable of represent-
ing this higher level structure.

One promising direction towards incorporating these
goals in the structured output setting appears to be the pat-
tern potentials of Rother et al. [26] and Komodakis & Para-
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gios [12], which are capable of modeling soft template
structures and can dramatically outperform pairwise mod-
els in highly structured settings that arise, e.g., when model-
ing regular textures. Yet despite the clearly powerful repre-
sentational ability of pattern potentials, they have not found
much success in more realistic settings, like those found in
the PASCAL VOC image labeling task [4].

A model that is appropriate in similar situtations and has
also found success modeling textures [9] is the Restricted
Boltzmann Machine (RBM). In fact, our starting observa-
tion in this work is that the similarity is not superficial—
mathematically, RBM models are nearly identical to the
pattern potentials of [26]. We will make this claim pre-
cise in Section 3, leading to the definition of a more general
class of high order potential that includes both pattern po-
tentials and RBMs. We call this class Compositional High
Order Pattern Potentials (CHOPPs). A primary benefit of
this observation is that there is a well-developed literature
on learning RBM models that becomes available for learn-
ing pattern-like potentials.

In this work we explore augmenting standard CRF mod-
els with CHOPPs. Our goal is to not only learn a tradeoff
parameter between the standard and high order parts of the
model, but also to learn internal pattern parameters. We
then focus on the question of how effective these potentials
are as the variability and complexity of the image segmenta-
tion task increases. We propose a simple method for assess-
ing the degree of variation in the labels, then show that the
performance of a vanilla application of CHOPPs degrades
relative to the performance of standard pairwise potentials
as this measure of variability increases.

We then turn attention to improving vanilla CHOPP-
augmented CRFs, and make two primary suggestions. The
first is to incorporate additional parameters

that allow the pattern activities to depend on information
in the image. This is analogous to allowing standard pair-
wise potentials to vary depending on local image color dif-
ferences [1] or more advanced boundary detector responses
like Pb [19]. The second is to utilize a loss function dur-
ing training that is tailored to the metric used for evalu-
ating the labeling results at test time. Our results indi-
cate that jointly training the CHOPP potentials with the rest
of the model improves performance, and training specifi-
cally for the evaluation criterion used at test time (we use
an intersection-over-union (IOU) measure throughout) im-
proves over a maximum likelihood-based objective. Fi-
nally, we explore (a) different forms of compositionality:
the ‘min’ version advocated by Rother et al. [26], which
is essentially a mixture model, versus the ‘sum’ version,
which is more compositional in nature; and (b) convolu-
tional applications of the high order potentials versus their
global application.

Since this work sits at the interface of structured out-

put learning and RBM learning, we conclude by suggesting
take-aways for both the RBM-oriented researcher and the
structured output-oriented researcher, proposing what each
approach has to offer the other and outlining possible direc-
tions for improving the applicability of pattern-based ap-
proaches to challenging structured output problems.

2. Background & Related Work
2.1. Structured Output Learning

In structured output learning, the goal is to predict a
vector of labels y ∈ Y = {1, . . . , C}Dv given inputs
x ∈ X , where Dv is the dimensionality of the out-
put. A standard approach, which is taken by e.g. struc-
tural SVMs, is to define an input-to-output mapping func-
tion gλ : X → Y that is governed by parameters λ.
Given feature functions {fj(y,x)}Jj=1, this mapping is con-
structed implicitly via the maximization of a scoring func-
tion, which can be interpreted as a conditional probabil-
ity distribution p(y |x;λ): gλ(x) = argmaxy p(y |x;λ),
where p(y |x;λ) ∝ exp

{∑J
j=1 λjfj(y,x)

}
. In practice,

we must restrict the form of fj(·) functions in order to en-
sure tractability, typically by forcing the function’s value
to depend on the setting of only a small number of dimen-
sions of y. Also, some fj(·) functions may ignore x, which
has the effect of adding input-independent prior constraints
over the label space. The result is a log-linear probability
distribution (log p(y |x;λ) is linear in λ), which may be
optimized using a variety of methods [31].

Latent Variable Models. To increase the representa-
tional power of a model, a common approach is to intro-
duce latent (or hidden) variables h ∈ H = {1, . . . ,H}J .
The above formulation can then be easily extended by defin-
ing feature functions f(x,y,h) that may include latent vari-
ables, which leads to a probability distribution p(y,h |x).

To make predictions, it is common to either maximize
out or sum out the latent variables. The former strategy is
employed by latent structural SVMs [35], while the latter
is employed by hidden CRF models [24]. A topic of on-
going investigation is the benefits of each, and alternative
strategies that interpolate between the two [20].

High Order Potentials. A related strategy for increas-
ing the representational power of a model is to allow fea-
ture functions to depend on a large number of dimensions
of y. These types of interactions are known collectively as
high order potentials and have received considerable atten-
tion in recent years. They have been used for several pur-
poses, including modeling higher order smoothness [10],
co-occurrences of labels in semantic image segmentation
[14], and cardinality-based potentials [33, 34]. While the
above examples provide interesting non-local constraints,
they do not encode shape-based information appropriate for
image labeling applications. There are other high order



models that come closer to this goal, e.g., modeling star
convexity [5], connectivity [32, 23], and a bounding box
occupancy constraint [17]. However, these still are quite re-
strictive notions of shape compared to what pattern-based
models are capable of representing.

Learning High Order Potentials. In addition to a
weighting coefficient that governs the relative contribution
of each feature function to the overall scoring function, the
features also have internal parameters. This is the case in
CHOPPs, where internal parameters dictate the target pat-
tern and the costs for deviating from it. These parameters
also need to be set, and the approach we take in this work
is to learn them. We emphasize the distinction between first
learning the internal parameters offline and then learning
(or fixing by hand) the tradeoff parameters that controls the
relative strength of the high order terms, versus the joint
learning of both types of parameters. While there is much
work that takes the former approach [11, 26, 14], there is
little work on the latter in the context of high order poten-
tials. Indeed it is more challenging, as standard learning
formulations become less appropriate (e.g., using a variant
on standard SSVM learning for CHOPPs leads to a degen-
eracy where all patterns become equivalent), and objectives
are generally non-convex.

2.2. Restricted Boltzmann Machines
A Restricted Boltzmann Machine (RBM) [28] is a form

of undirected graphical model that uses hidden variables
to model high-order regularities in data. It consists of the
I visible units v = (v1, . . . , vI)

> that represent the ob-
servations, or data; and (2) the J hidden or latent units
h = (h1, . . . , hJ)

> that mediate dependencies between the
visible units. The system can be seen as a bipartite graph,
with the visibles and the hiddens forming two layers of ver-
tices in the graph; the restriction is that no connection exists
between units in the same layer.

The aim of the RBM is to represent probability distribu-
tions over the states of the random variables. The pattern of
interaction is specified through the energy function:

E(v,h) = −v>Wh− b>v − c>h, (1)

where W ∈ RI×J encodes the hidden-visible interactions,
b ∈ RI are the input biases, and c ∈ RJ are the hidden
biases. The energy function specifies the probability distri-
bution over the joint space (v,h) via the Boltzmann distri-
bution

p(v,h) =
1

Z
exp(−E(v,h)) (2)

with the partition function Z given by∑
v,h exp(−E(v,h)). Based on this definition, the

probability for any subset of variables can be obtained by
conditioning and marginalization.

Learning in RBMs. For maximum likelihood learn-
ing, the goal is to make the data samples likely, which en-
tails computing the probability for any input v; this can be
derived by performing the exponential sum over all pos-
sibly hidden vectors h: p(v) =

∑
h p(v,h), effectively

marginalizing them out. For an RBM with J binary hidden
units, this takes on a particular nice form:

p(v) =
∑
h

1

Z
exp

(
v>Wh+ b>v + c>h

)
=

1

Z
exp

(
b>v +

J∑
j=1

log
(
1 + exp(v>wj + cj)

))
, (3)

where each of the terms inside the summation over j is
known as a softplus. The standard approach to learning in
RBMs uses an approximation to maximum likelihood learn-
ing known as Contrastive Divergence (CD) [8].

Vision Applications. There have been numerous appli-
cations of RBM to vision problems. RBMs are typically
trained to model the input data such as an image, and most
vision applications have focused on this unsupervised train-
ing paradigm. For example, they have been used to model
object shape [2], images under occlusion [18], and noisy
images [30]. They have also been applied in a discrimina-
tive setting, as joint models of inputs and a class [15].

The focus of the RBMs we explore here, as models of
image labels, has received relatively little attention. Note
that in this case the visible units of the RBM now corre-
spond to the image labels y. The closest work to our’s is
that of [7]. That work did not address shape information as
we do, and it also combined the RBM with a very restricted
form of CRF. [21] also tried to use RBMs for structured
output problems, but there are no pairwise connections be-
tween labels, and the actual loss was not considered during
training. Also related is the work of [3], which uses a gen-
erative framework to model labels and images.

3. Equating Pattern Potentials and RBMs
In [26], the basic pattern potential is defined as g(y) =

min {d(y) + θ0, θmax}, where θ0 and θmax are constants,
d(y) =

∑
i wiyi + K is a deviation cost for y to devi-

ate from a specific pattern Y, and wi specifies the cost
of assigning yi to be 1: wi > 0 when Yi = 0 and
wi < 0 when Yi = 1. Rother et al. propose two meth-
ods for compositing several of these potentials. In the
“sum” case, they sum over these potentials, and in the
“min” case they minimize, yielding a potential of the form
g(y) = min{d1(y) + θ1, ..., dJ(y) + θJ}, where we as-
sume one deviation function is constant (i.e. all wi are 0).
In the supplementary material, we give more details and
show that the “sum” case is equivalent to the free energy
that arises after summing out hidden units in an RBM, up to
the approximation that min{x, 0} ≈ − log(1 + exp(−x))



(alternatively, they are exactly equivalent if hidden units are
maximized out). In the same sense, the “min” case is equiv-
alent to an RBM with a constraint that only one hidden unit
can be active. See Table 1 in the supplementary material.

4. The CHOPP-Augmented CRF
Understanding the equivalence between RBMs and pat-

tern potentials leads us to define a more general potential,

f(y;T ) = −T log

(∑
h

exp

(
1

T
(y>Wh+ c>h)

))
, (4)

where T is a temparature parameter. Setting T = 1 gives
the exact RBM high order potential (softplus functions in
Eq. 3). If there is no constraint on hidden variables, setting
T → 0 gives the “sum” compositional high order pattern
potential. If we restrict hidden variables to have a 1-of-J
constraint, setting T → 0 then gives the “min” composi-
tional high order pattern potential.

Therefore the temperature T interpolates the RBM and
pattern potential and the constraints on hidden variable
activities interpolates the “sum” and “min” composition
strategies. [6, 27] used similar techniques to interpolate
“sum” and “min”. A longer derivation of these claims is
given in the supplementary materials.

In this section, we augment a standard pairwise CRF
with the CHOPP and describe inference and learning algo-
rithms. We do not enforce any constraint on hidden vari-
ables in the following discussion, but it is possible to derive
the inference and learning algorithms for the case where we
have a soft sparsity or hard 1-of-J constraint on hidden vari-
ables, e.g. using cardinality potentials [29].

4.1. Model

The conditional distribution of a labeling y given input
image x is defined as

p(y|x) = 1

Z(x)
exp

{
λu

I∑
i=1

fi(yi|x) +
∑
k

λp
k

∑
i,j

fk
ij(yi, yj |x)

+b>y + T log

(∑
h

exp

(
1

T
(y>Wh+ c>h)

))}
(5)

where fi(yi|x) are unary potentials, fkij(yi, yj |x) areK dif-
ferent types of pairwise potentials, λu and λpk are trade-off
parameters for unary and pairwise potentials respectively,
and W, b, c are RBM parameters. To simplify notation,
for a given x we use shorthand ψu(y) = λu

∑
i fi(yi|x)

for unary potentials and ψp(y) =
∑
k λ

p
k

∑
i,j f

k
ij(yi, yj |x)

for pairwise potentials.
T = 1 Special Case. For the special case T = 1, the

posterior distribution p(y|x) is equivalent to a joint distri-
bution over y and h, with h summed out

p(y,h|x) ∝ exp
(
ψu(y) + ψp(y) + y>Wh+ b>y + c>h

)
.

(6)

Given y, the distribution of h factorizes, and we have

p(hj = 1|y,x) = σ

(
cj +

I∑
i=1

wijyi

)
, (7)

where σ is the logistic function σ(x) = 1
1+exp(−x) .

Given h, the distribution of y becomes a pairwise MRF
with only unary and pairwise potentials

p(y|h,x) ∝ exp
(
(b+Wh)

>
y + ψu(y) + ψp(y)

)
, (8)

where (b+Wh)>y + ψu(y) is the new unary potential.
Model Variants. One way to make this model even

more expressive is to allow CHOPP terms to depend on
the input image x. The current formulation of CHOPPs is
purely unconditional, but knowing some image evidence
can help the model determine which pattern should be ac-
tive. We achieve this by making the hidden biases c a func-
tion of the input image feature vector φ(x). The simplest
form of this is a linear function c(x) = c0 + W>

0 φ(x),
where c0 and W0 are parameters.

Another variant of the current formulation is to make the
CHOPPs convolutional, which entails shrinking the win-
dow of image labels y on which a given hidden unit de-
pends, and devoting a separate hidden unit to each appli-
cation of one of these feature functions to every possible
location in the image [16, 22]. These can be trained by ty-
ing together the weights between y and hidden variables h
at all locations in an image. This significantly reduces the
number of parameters in the model, and may have the effect
of making the CHOPPs capture more local patterns.

4.2. MAP Inference

The task of inference is to find the y that maximizes the
log probability log p(y|x) for a given x. Direct optimiza-
tion is hard because of the CHOPP, but we utilize a varia-
tional lower bound:

− f(y;T ) ≥ (c+W>y)>Eq[h] +H(q), (9)

where q(h) is any distribution of h, H(q) is the entropy
of q. Note the temperature T canceled out. The difference
between the left and right side is the KL divergence between
q and p∗ where

p∗(h|y) =
exp

(
1
T (c+W>y)>h

)∑
h exp

(
1
T (c+W>y)>h

) . (10)

When there is no constraint on h, this is also a factorial
distribution. Therefore

log p(y|x) ≥ψu(y) + ψp(y) + b>y (11)

+ (c+W>y)>Eq[h] +H(q) + const.



We can use the EM algorithm to optimize this lower bound.
Starting from an initial labeling y, we alternate the follow-
ing E step and M step:

In the E step, we fix y and maximize the bound with
respect to q, which is achieved by setting q = p∗. When
T = 1 this becomes Eq. 7; when T → 0, it puts all the
mass on one configuration of h, i.e. minimizes the energy
over hidden units.

In the M step, we fix q and find the y that maximizes the
bound. The relevant terms are

(b+WEq[h])> y + ψu(y) + ψp(y), (12)

which is again just a set of unary potentials plus pairwise
potentials, so we can use standard optimization methods for
pairwise CRFs to find an optimal y; we use graph cuts. If
the CRF inference algorithm used in the M step is exact,
this algorithm will find a sequence of y’s that monotonically
increase the log probability, and is guaranteed to converge.

Note that this is not the usual EM algorithm used for
learning parameters in latent variable models. Here all pa-
rameters are fixed and we use the EM algorithm to make
predictions.

Remark. When there is no sparsity constraint on h, it is
possible to analytically sum out the hidden variables, which
leads to a collapsed energy function with J high order fac-
tors, one for each original hidden unit. It is then possible to
develop a linear program relaxation-based inference routine
that operates directly on the high order model. We did this
but found its performance inferior to the above EM proce-
dure. More details are in the supplementary materials.

4.3. Learning

Here we fix the unary and pairwise potentials and focus
on learning the parameters in the CHOPP.

For the T = 1 case, we can use Contrastive Divergence
(CD) [8] to approximately maximize the conditional likeli-
hood of data under our model, which is standard for learning
RBMs. However we found that CD does not work very well
because it is only learning the shape of the distribution in a
neighborhood around the ground truth (by raising the prob-
ability of the ground truth and lowering the probability of
everything else). In practice, when doing prediction using
the EM algorithm on test data, inference does not generally
start near the ground truth. In fact, it typically starts far from
the ground truth (we use the prediction by a model with only
unary and pairwise potentials as the initialization), and the
model has not been trained to move the distribution from
this region of label configurations towards the target labels.

Instead, we train the model to minimize expected loss
which we believe allows the model to more globally learn
the distribution. For any image x and the ground truth la-
beling y∗, we have a loss `(y,y∗) ≥ 0 for any y. The
expected loss is defined as L =

∑
y p(y|x)`(y,y∗), where

p(y|x) is the marginal distribution attained by summing out
h. The expected loss for a dataset is simply a sum over all
individual data cases. The following discussion will be for
a single data case to simplify notation.

Taking the derivative of the expected loss with respect to
model parameter γ, which can be b, c or W (c0 and W0 as
well if we use the conditioned CHOPPs), we get

∂L

∂γ
= Ey

[
(`(y,y∗)− Ey[`(y,y

∗)])

[
−∂E(y)

∂γ

]]
, (13)

where Ey[.] is the expectation under p(y|x), E(y) is the
energy of CHOPP-augmented CRF and we have

− ∂E(y)

∂γ
= Ep∗(h|y)

[
−∂E(y,h)

∂γ

]
. (14)

p∗(h|y) is given in Eq. 10 andE(y,h) is the standard RBM
energy in Eq. 1 with v substituted by y.

Using a set of samples {yn}Nn=1 from p(y|x), we can
compute an unbiased estimation of the gradient

∂L

∂γ
≈

1

N − 1

N∑
n=1

`(yn
,y
∗
)−

1

N

N∑
n′=1

`(y
n′
,y
∗
)

[−∂E(yn)

∂γ

]
.

(15)

This gradient has an intuitive explanation: if a sample has
a loss lower than the average loss of the batch of samples,
then we should reward it by raising its probability, and if
its loss is higher than the average, then we should lower its
probability. Therefore even when the samples are far from
the ground truth, we can still adjust the relative probabilities
of the samples. In the process, the distribution is shifted in
the direction of lower loss.

For the T = 1 case, we sample from the joint distribution
p(y,h|x) using standard block Gibbs sampling and discard
h to get samples from p(y|x). We also use several per-
sistent Markov chains for each image to generate samples,
where in the first iteration of learning each chain is initial-
ized at the same initialization as is used for inference. The
model parameters are updated after every sampling step.

For the other choices of T , it is not easy to get sam-
ples from p(y|x), but we can sample from p∗(h|y) and
p(y|h,x) alternatively, as if we are running block Gibbs
sampling. It is not clear what properties the samples that re-
sult from this procedure have. It will be an interesting topic
for future research.

5. Experiments
We evaluate our CHOPP-augmented CRF on synthetic

and real data sets. The settings for synthetic data sets will
be explained later. For all the real datasets, we extracted
a 107 dimensional descriptor for each pixel in an image
by applying a filter bank. We trained a neural network
classifier using these descriptors as input and use the log
probability of each class for each pixel as the unary po-
tentials. For pairwise potentials, we used a standard 4-
connected grid neighborhood and the common Potts model,



where fij(yi, yj |x) = pijI[yi 6= yj ] and pij is a penalty
for assigning different labels for yi and yj . Three differ-
ent ways to define pij yield three pairwise potentials, where
the first is image-independent: (1) Set pij to be constant,
this would enforce smoothing for the whole image; (2) Set
pij to incorporate local contrast information by computing
RGB differences between pairs of pixels as in [1]; (3) Set
pij to represent higher level boundary information given
by Pb boundary detector [19], more specifically, we define
pij = −max{logPbi, logPbj} where Pbi and Pbj are the
probability of boundary for pixel i and j.

For each dataset, we hold out a part of the data to make
a validation set and use it to choose hyper-parameters, e.g.
the number of iterations to run in training. We choose the
model that performs the best on validation set and report its
performance on test set.

For all experiments, we always set T = 1, so CHOPP
becomes equivalent to an RBM high order potential.

In minimum expected loss learning, we use 2 persistent
sampling chains for each image, generate 1 sample from
each chain, divide (y,h) into 3 blocks of variables (h and
2 y blocks for the 4-connected grid structure) and update
parameters after every full block Gibbs sampling pass.

Additional results are in the supplementary material.

5.1. Data Sets & Variability
Throughout the experiments, we use six synthetic and

three real world data sets. To explore data set variability
in a controlled fashion, we generated a series of increas-
ingly variable synthetic data sets. The datasets are com-
posed of between 2 and 4 ellipses with centers and sizes
chosen to make the figures look vaguely human-like (or at
least snowman-like). We then added noise to the generation
procedure to produce a range of six increasingly difficult
data sets, which are illustrated in Fig. 2 (top row). To gen-
erate associated unary potentials, we added Gaussian noise
with standard deviation 0.5. In addition, we added struc-
tured noise to randomly chosen 5-pixel diameter blocks.

The real world data sets come from two sources: first, we
use the Weizmann horses and resized all images as well as
the binary masks to 32×32; second, we use the PASCAL
VOC segmentation data [4] to construct a bird and a person
data set. For these, we took all bounding boxes containing
the target class and created a binary segmentation inside the
bounding box, labeling all pixels of the target class as 1,
and all other pixels as 0. We then transformed these bound-
ing boxes to be 32×32. This gives us a set of silhouettes
that preserve the challenging aspects of modeling shape in
a realistic structured output setting.

The two PASCAL datasets are challenging due to vari-
ability in the images and segmentations, while the number
of images is quite small, especially compared to the settings
where RBM models are typically used. When we are only

training the trade-off parameters, this is not a major prob-
lem, because the number of parameters is small. But here
we also train internal parameters of high order potentials,
which require more data for training to work well. To deal
with this problem, we generated 5 more examples for each
original bounding box by randomly shifting coordinates by
a small amount. We also mirrored all images and segmen-
tations. This augmentation gives us 11 times more data.

For each data set, we then evaluated variability using a
measure inspired by the learning procedure suggested by
Rother et al. [26]. First, cluster segmentations using K-
means clustering with Euclidean distance as the metric.
Then for each cluster and pixel, compute the fraction of
cases for which the pixel is on across all instances assigned
to the cluster. This yields qki , the probability that pixel i is
assigned label 1 given that it comes from an instance in clus-
ter k. Now define the within cluster average entropy Hk =
− 1
Dv

∑
i

(
qki log q

k
i + (1− qki ) log(1− qki )

)
. Finally, the

variability measure is a weighted average of within clus-
ter average entropies: VK =

∑K
k=1 µkH

k, where µk is
the fraction of data points assigned to cluster k. We found
K = 32 to work well and used it throughout. We found the
quantitative measure matches intuition about the variability
of data sets. See Fig. 2.

5.2. Performance vs. Variability
Next we report results for a pre-trained RBM model

added to a standard CRF (denoted RBM), where we learn
the RBM parameters offline and set tradeoff parameters so
as to maximize accuracy on the training set. We compare
the Unary Only model to the Unary+Pairwise model and
the Unary+Pairwise+RBM model. Pairwise terms are im-
age dependent, hence denoted iPW. Fig. 3 show the results
as a function of the variability measure described in the pre-
vious section. On the y-axis, we show the difference in per-
formance between the Unary+iPW and Unary+iPW+RBM
models versus the Unary Only model. In all but the Person
data set, the Unary+iPW model provides a consistent bene-
fit over the Unary Only model. For the Unary+iPW+RBM
model, there is a clear trend that as the variability of the
data set increases, the benefit gained from adding the RBM
declines.

5.3. Improving on Highly Variable Data
We now turn our attention to the challenging real data

sets of Bird and Person and explore methods for improv-
ing the performance of the RBM component when the data
becomes highly variable.

Training with Expected Loss. The first approach to ex-
tending the pretrained RBM+CRF model that we consider
is to jointly learn the internal potential parameters. Joint
learning with standard contrastive divergence on the Horse
data led to poor performance, as the objective was unstable
in the first few iterations and then steadily got worse during
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Figure 2. Randomly sampled examples from synthetic data set labels. Hardness increases from left to right. Quantitative measures of
variability using K = 32 are reported in the bottom row. Variabilities of Horse, Bird, and Person data sets are 0.176, 0.370, and 0.413.
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Figure 3. Results on (left) synthetic and (right) real data showing
test intersection-over-union scores as a function of data set vari-
ability. The y-axis is difference relative to a Unary Only model.
All models here and below utilize unary potentials. Note that these
results utilize a pretrained RBM model.

Method Horse IOU Bird IOU Person IOU
Unary Only 0.5119 0.5055 0.4979

iPW 0.5736 0.5585 0.5094
iPW+RBM 0.6722 0.5647 0.5126

iPW+jRBM 0.6990 0.5773 0.5253
Table 1. Expected loss test results. RBM is a pretrained RBM.
jRBM is jointly trained using expected loss.

training. So here we focus on the expected loss training de-
scribed in Section 4.3, and denote the resulting models as
jRBM to indicate joint training. Results comparing these
approaches on the three real data sets are given in Tab. 1,
with Unary and iPW results given as baselines. We see that
training with the expected loss criterion improves perfor-
mance across the board.

Image-dependent Hidden Biases. Here we consider
learning image-dependent hidden biases as described in
Section 4.1. As inputs we use the learned unary poten-
tials and the response of the Pb boundary detector [19],
both downsampled to be of size 16×16. We learned
the internal parameters of this ijRBM model, the image-
dependent jointly trained RBM, using the intersection-over-
union expected loss as this gave the best results in the
previous experiment. Results are shown in Tab. 2. For
comparison, we also train Unary+Pairwise models with an
image-independent pairwise potentials (PW) and an image-
dependent pairwise potentials (iPW). In the Bird data, we
see that the image-specific information helps the ijRBM

Method Bird IOU Person IOU
PW 0.5321 0.5082

iPW 0.5585 0.5094
iPW+jRBM 0.5773 0.5253

iPW+ijRBM 0.5858 0.5252
Table 2. Test results using image-specific hidden biases on the
high variability real data sets. PW uses image-independent pair-
wise potentials, and iPW uses image-dependent pairwise poten-
tials. jRBM is jointly trained but image independent. ijRBM is
jointly trained and has learned image-dependent hidden biases.

similarly as to how image-dependent pairwise potentials
improve over image-independent pairwise potentials. In the
Person data, the gains from image-dependent information is
minimal in both cases.

Convolutional Structures. Our final experiment ex-
plores the convolutional analog to the RBM models dis-
cussed in Section 4.1. Unfortunately, we were unable to
achieve good results, which we attribute to the fact that
learning methods for convolutional RBMs are not nearly as
evolved as methods for learning ordinary RBMs. We pro-
vide more details in the supplementary material.

Composition Schemes. We qualitatively compare pat-
terns learned by the “min” composition approach presented
in [26] versus the patterns learned by a simple pre-trained
RBM, which are appropriate for “sum” composition. While
a quantitative comparison that explores more degrees of
freedom offered by CHOPPs is a topic for future work, we
can see in Fig. 1 that the learned filters are very different.
As the variability of the data grows, we expect the utility of
the “sum” composition scheme to increase.

6. Discussion & Future Work
We began by precisely mapping the relationship between

pattern potentials and RBMs, and generalizing both to yield
CHOPPs, a class of high order potential that includes both
as special cases. The main benefit of this mapping is that
it allows the leveraging of complementary work from two
mostly distinct communities. First, it opens the door to
the large and highly evolved literature on learning RBMs.
These methods allow efficient and effective learning when
there are hundreds or thousands of latent variables. There
are also well-studied methods for adding structure over the
latent variables, such as sparsity. Conversely, RBMs may



benefit from the highly developed inference procedures that
are more common in the structured output community, e.g.,
those based on linear programming relaxations. Also inter-
esting is that pairwise potentials provide benefits that are
reasonably orthogonal to those offered by RBM potentials.

Empirically, our work emphasizes the importance of data
set variability in the performance of these methods. It is
possible to achieve large gains on low variability data, but it
is a challenge on high variability data. Our proposed mea-
sure for quantitatively measuring data set variability is sim-
ple but useful in understanding what regime a data set falls
in. This emphasizes that not all “real” data sets are created
equally, as we see moving from Horse to Bird to Person.
While we work with small images and binary masks, we
believe that the high variability data sets we are using pre-
serve the key challenges that arise in trying to model shape
in real image segmentation applications. Note that it would
be straightforward to have a separate set of shape potentials
per object class within a multi-label segmentation setting.

To attain improvements in high variability settings, more
sophisticated methods are needed. Our contributions of
training under an expected loss criterion and adding con-
ditional hidden biases to the model yield improvements
on the high variability data. There are other architectures
to explore for making the high order potentials image-
dependent. In future work, we would like to explore multi-
plicative interactions [25]. The convolutional approach ap-
pears promising, but it did not yield improvements in our
experiments, which we attribute to the relatively nascent
nature of convolutional RBM learning techniques. A re-
lated issue that should be explored in future work is the is-
sue of sparsity in latent variable activations. We showed in
Section 3 that this sparsity can be used to control the type
of compositionality employed by the model. An interest-
ing direction for future work is exploring sparse variants
of RBMs, which sit between these two extremes, and other
forms of structure over latent variables like in deep models.
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