
BoltzRank: Learning to Maximize Expected Ranking Gain

Maksims N. Volkovs mvolkovs@cs.toronto.edu

Richard S. Zemel zemel@cs.toronto.edu

Department of Computer Science, University of Toronto. Toronto, ON, M5S 3H5, CANADA

Abstract

Ranking a set of retrieved documents accord-
ing to their relevance to a query is a popu-
lar problem in information retrieval. Meth-
ods that learn ranking functions are difficult
to optimize, as ranking performance is typi-
cally judged by metrics that are not smooth.
In this paper we propose a new listwise ap-
proach to learning to rank. Our method
creates a conditional probability distribution
over rankings assigned to documents for a
given query, which permits gradient ascent
optimization of the expected value of some
performance measure. The rank probabili-
ties take the form of a Boltzmann distribu-
tion, based on an energy function that de-
pends on a scoring function composed of in-
dividual and pairwise potentials. Including
pairwise potentials is a novel contribution, al-
lowing the model to encode regularities in the
relative scores of documents; existing mod-
els assign scores at test time based only on
individual documents, with no pairwise con-
straints between documents. Experimental
results on the LETOR3.0 data set show that
our method out-performs existing learning
approaches to ranking.

1. Introduction

Ranking in general, and in particular web document
ranking, has received a lot of attention recently pri-
marily due to its direct application in search engines.
In a document retrieval domain, the problem of learn-
ing to rank can be described as follows. During train-
ing, the system is given queries and, for each query,
a retrieved set of documents and their relevance lev-
els. The goal is then to construct a ranking function

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

which, when presented with a new query, would accu-
rately rank the corresponding retrieved documents.

Several metrics are used in information retrieval (IR)
to evaluate the performance of a ranking function.
Two standard metrics are Normalized Discounted Cu-
mulative Gain (NDCG) (Jarvelin et al., 2000) and
Mean Average Precision (MAP) (Baeza-Yates at al.,
1999). NDCG offers some advantages, e.g., a trunca-
tion level parameter that reflects how many documents
are shown to the user, that make it especially well-
suited to document retrieval. We will thus concentrate
on NDCG throughout this paper, but will also demon-
strate that MAP or any other IR evaluation metric can
also be successfully optimized using our approach.

Most current ranking algorithms that have been pro-
posed to solve this problem can be divided into three
main categories: individual, pairwise, and listwise.
The individual methods such as PRank (Crammer
et al., 2001) do not use any relative information be-
tween documents, instead attempting to directly cre-
ate a scoring function, scores of which are then used to
rank the documents. On the other hand, the pairwise
methods, including RankNet (Burges et al., 2005),
its extension LambdaRank (Burges et al., 2006), and
RankBoost (Freund et al., 2003), concentrate on min-
imizing the relative pairwise misclassification error in
document rankings. Finally, listwise methods such as
AdaRank (Xu et al., 2007), SoftRank (Taylor et al.,
2008), ListNet (Cao et al., 2007) and C-CRF (Quin at
al., 2008) use lists of ranked documents as “instances“
during training, and learn a ranking model by mini-
mizing some listwise loss function. The approach pre-
sented in this paper also falls into the listwise category.
We chose to work in the listwise domain because it is
the most natural way to model the ranking problem,
as it is the only approach that allows direct incorpora-
tion of IR evaluation metrics, which are always func-
tions of ranked lists and not individual documents or
their pairs.

Existing ranking methods share two main disad-
vantages that significantly affect their performance.

BoltzRank: Learning to Maximize Expected Ranking Gain

First, current methods are do not directly incorporate
NDCG into the learning process. A surrogate func-
tion such as pairwise misclassification loss or a bound
on NDCG is typically introduced, and optimizing this
function leads to an indirect optimization of NDCG.
The main problem with this approach is that by op-
timizing a different function a significant amount of
effort of the system can be wasted in areas that have
little or no effect on NDCG (Burges, 2006). Second,
none of the current methods consider higher-order in-
teractions between documents at test time. Even the
pairwise methods, which learn based on relative infor-
mation in pairs of documents, produce a scoring func-
tion that operates only on single documents for test
queries. As a result, all the relative information that
is used to learn the parameters of the scoring func-
tion is either disregarded or converted into a function
based on individual documents. Therefore, potentially
highly useful information in feature correlations be-
tween documents is not fully exploited.

In this paper we develop a new, flexible, ranking model
that aims to solve both of the above mentioned prob-
lems. We refer to it as BoltzRank. BoltzRank utilizes
a scoring function composed of individual and pairwise
potentials to define a conditional probability distribu-
tion, in the form of a Boltzmann distribution, over all
permutations of documents retrieved for a given query.
We also formulate our approach based on a general loss
function, which allows BoltzRank to directly include
any IR performance measure into the learning process.

The rest of the paper is organized as follows. Sec-
tion 2 provides a detailed description of the prob-
lem, notation and IR metrics. Section 3 introduces
the BoltzRank method. Experimental results are pre-
sented in Section 4, and the final section contains con-
clusions and future work.

2. General Framework

Here we formalize the problem of learning to rank in
the document retrieval domain. At training time we
are given a set of n queries Q = {q1, ..., qn}, and for
each query qi we are also given a set of documents
Di = {di1,, dimi

}, and their associated relevance
levels Li = {li1, ..., limi

}, where mi denotes the num-
ber of retrieved documents for query qi. Each docu-
ment dij is represented as a feature vector in ℜp, and
the corresponding relevance level lij ∈ ℜ (typically an
integer) indicates how relevant that document is to the
query qi.

Given query qi, our model produces a ranking of doc-
uments Di through a scoring function f(qi, Di), which

outputs a set of scores Si = {si1,, simi
}, sij ∈ ℜ; we

denote Ri = {ri1, ..., rimi
}, rij ∈ {1, ..., mi} as a set of

ranks given to Di when documents in Di are ranked
according to Si. In this representation rij is the po-
sition of the document dij in the ranked order, where
the document with the highest score is assigned a rank
of 1 and the document with the lowest score a rank of
mi. The goal of learning then is to create a scoring
function f (we omit the arguments q, D to reduce no-
tational clutter) such that, given a set of documents
D with relevance levels L retrieved for a new query q,
the permutation R resulting from scores S assigned by
f has maximal agreement with L.

NDCG and MAP are typically used to evaluate the
agreement between the ranking produced by S and the
relevance levels. For a given ranking R, and relevance
levels L, NDCG is defined as:

NDCG(R, L)@T = Nq

T∑
j=1

2rel(j) − 1

log(1 + j)
(1)

where rel(j) is the relevance level of the document with
rank j, and Nq is a normalizing constant that ensures
that a perfect ordering has NDCG value of 1. The nor-
malizing constant allows an NDCG measure averaged
over multiple queries with different numbers of docu-
ments to be meaningful. Furthermore, T is a trunca-
tion constant and is generally set to a small value to
emphasize the utmost importance of getting the top
ranked documents correct.

MAP only allows binary (relevant/not relevant) docu-
ment assignments, and is defined in terms of average
precision (AP):

AP (R, L) =

∑m

j=1 P@j ∗ rel(j)∑m

j=1 rel(j)
(2)

where m is the number of documents; and P@j is the
precision at j:

P@j =

j∑
i=1

rel(i)

j
(3)

MAP is then computed by averaging AP over all
queries.

Both NDCG and MAP include summations over
sorted lists of documents, and therefore are not
smooth, and can not be optimized by any direct
gradient-based method. In this paper we present an
expectation-based method which allows direct opti-
mization of such non-smooth evaluation metrics fre-
quently used in information retrieval. To further em-
phasize that any IR evaluation metric can be opti-
mized with our approach, we will utilize a general error

BoltzRank: Learning to Maximize Expected Ranking Gain

Table 1. A Summary Of Notation

Variable Description

Q = {q1, ..., qn} input queries
mi number of documents for qi

Di = {di1,, dimi
} documents for qi

Li = {li1, ..., limi
} relevance levels for qi

f(qi, Di) scoring function
Si = {si1, ..., simi

} scores given by f to Di

Ri = {ri1, ..., rimi
} ranks obtained by sorting Si

rel(j) relevance of document at rank j
G(Ri, Li) IR performance measure

function G(R, L) to represent the target performance
measure. Table 1 summarizes all the notation intro-
duced above.

3. Our Method: BoltzRank

In this section we describe in detail the idea behind our
approach together with learning and inference meth-
ods. To simplify notation, for the remainder of this
section, we drop the query index i, and work with
general query q and document set D = {d1, ..., dm}.

3.1. Distribution Over Permutations

The main idea that motivates the BoltzRank approach
is the observation that if we define a probability distri-
bution over document permutations, and consider the
expectation of the target performance measure under
this distribution, then it should be possible to propa-
gate the derivatives and update the parameters that
govern the scoring function to maximize this expecta-
tion. Thus we begin this section by defining a flexible
probability distribution over permutations. More for-
mally, given a set of scores S(f) = {s1, ..., sm} assigned
to D by f and corresponding ranking R = {r1, ..., rm},
we define the conditional energy of R given S as an av-
erage over unique document pairs in R:

E(R|S) =
2

m ∗ (m − 1)

∑
rj>rk

gq(rj − rk)(sj − sk) (4)

where gq is any sign preserving function, e.g.,

gq(x) = αqx (5)

where αq is a query-dependent positive constant.
When rj >> rk (k beats j), E(R|S) gets a large neg-
ative contribution if sj << sk and a large positive
one if sj >> sk. E(R|S) thus represents the lack of
compatibility between the relative document orderings
given by R and those given by S(f), with more posi-
tive energy indicating less compatibility. The scoring

function f plays a very important role in this model
and is described in detail in the following section.

Using the energy function we can now define the condi-
tional Boltzmann distribution over document permu-
tations by exponentiating and normalizing:

P (R|S) =
1

Z(S)
exp(−E(R|S)) (6)

Z(S) =
∑
R

exp(−E(R|S)) (7)

Note that we can not compute P (R|S) or Z(S) ex-
actly since both contain sums over exponentially many
document permutations. In practice, however, we will
show that efficient approximations of these quantities
allow inference and learning in the model.

3.2. Properties of the Model

A fundamental problem faced by all the aforemen-
tioned methods is that the IR metric depends on ranks,
which are non-smooth functions of the scores, that is,
they depend on a rank vector obtained by sorting the
scores, a difficult operation to differentiate. A key idea
in BoltzRank is that if we treat the scores produced
by the model as random variables, then we can up-
date parameters with respect to the expectation of
a rank-dependent objective, utilizing sufficient statis-
tics based on the score distribution. Other methods
have taken a similar approach. For example, Soft-
Rank (Taylor et al., 2008) used a ranking form of a
binomial distribution to approximate the distribution
of ranks obtained by sorting scores drawn from a score
distribution. BoltzRank differs from these methods in
terms of how it approximates the score distribution.

BoltzRank directly estimates the probability of a par-
ticular rank vector R, based on the compatibility of
each pairwise relationship in that ranking with the re-
spective scores, combined in a simple manner in the
energy E(R|S). For comparison, SoftRank instead fo-
cuses on estimating the probability that a given docu-
ment has a particular rank for a query. It obtains this
by first directly estimating πij , the probability that
document i out-ranks document j, for every other doc-
ument i 6= j. It then uses these in two different ways
(described below) to compute the probability pj(r),
that document j has rank r.

Here we compare these approaches. We begin with a
simple generative model to generate rank vectors from
a score vector. A distribution over score vectors is
formed by placing independent Gaussians centered on
each document’s score sj , with a common standard de-
viation σs. The distribution P (R|S) over rank vectors
is obtained by drawing i.i.d. samples from this score

BoltzRank: Learning to Maximize Expected Ranking Gain

distribution and then sorting to obtain a rank vector.
One way of understanding the resulting distribution
over rank vectors is in terms of pairwise contests be-
tween two documents. Under this generative model,
the probability that document i is ranked above docu-
ment j, is the integral of the difference of two Gaussian
random variables, which is a Gaussian centered on the
difference in the documents’ scores:

πij = P (Si > Sj) =

∫ ∞

0

N (s|si − sj, 2σ2
s)ds (8)

SoftRank uses this pairwise contest probability in two
ways. The first is a recursive computation for the dis-
tribution of ranks of each document j, which uses the
Rank-Binomial distribution, a ranking form of a bi-
nomial distribution, to estimate the probability of the
various ranks under which j beats all but r of the
other documents. The second is a less expensive nor-
mal approximation to the ranks, which approximates
the expected rank of document j as

∑m
i=1,i6=j πij and

variance equal to
∑m

i=1,i6=j πij(1 − πij), analogous to
the normal approximation to m samples of a true bino-
mial distribution. Both of these methods specify the
joint probability of a specific rank vector as the prod-
uct of each document having that particular rank. In
our comparison of the methods, we assume that all
the methods have the correct score vector, and that
SoftRank has access to the true σs in the generator.

We consider a simple case, in which there are three
documents to be ranked for a single query; we ran-
domly select the scores to be between 0 and 2, and
the standard deviation in the generator is 0.2. Figure
3.2 shows an example of a distribution across rank-
ings for a random score vector, and the distributions
estimated by both of SoftRank’s approximations, the
Normal and the Rank-Binomial, and our Boltzmann
distribution.

We then evaluate the quality of these three approxi-
mations, by comparing each to the true empirical dis-
tribution, using the Kullback-Leibler (KL) divergence,
averaged over 500 sampled score vectors, as a distance
metric. In Figure 2, we see that BoltzRank provides a
more accurate approximation to the true distribution
than either of SoftRank’s approximations.

We can gain some insight into this result by analyz-
ing the approximation to the pairwise probabilities in
BoltzRank. If we use a simple version of the gq() func-
tion, i.e., gq(x) = k ∗ sign(x) we can analytically de-
termine πij :

πij = P (Si > Sj) =
1

1 + exp(−k ∗ (si − sj))

(1 2 3) (1 3 2) (2 1 3) (2 3 1) (3 1 2) (3 2 1)
0

0.2

0.4

0.6

0.8

1

P
(R

|S
)

Normal
Rank−Binomial
Boltzmann
True

Figure 1. The distributions across rank vectors for a partic-
ular score vector. Note that the Normal distribution indeed
provides a good approximation to the computationally in-
tensive Rank-Binomial distribution, but neither of these
provide as good a fit to the true distribution as that given
by our Boltzmann distribution.

Normal Rank−Binomial Boltzmann
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K
L

D
iv

er
ge

nc
e

Figure 2. Comparison of the quality of the two approxi-
mations in SoftRank (Normal and Rank-Binomial) to the
Boltzmann distribution used in BoltzRank, in terms of KL
divergence to the true rank distribution, averaged across
500 sampled score vectors.

This provides a reasonable approximation to the true
πij , as with a proper setting for k, this logistic function
closely matches the cumulative for the normal distri-
bution specified in Equation 8.

3.3. Scoring Function

The scoring function f consists of two potentials: in-
dividual potential φ and pairwise potential ϕ. φ oper-
ates on single documents and assigns absolute scores
to them without considering any relative information.
ϕ takes as input pairs of documents and predicts the
relative difference in scores of the two documents in
each pair. The final score for any given document dj

is then computed in the following way:

f(dj |q, D) = φ(dj) +
∑

k,k 6=j

ϕ(dj , dk) (9)

BoltzRank: Learning to Maximize Expected Ranking Gain

The pairwise potential ϕ allows f to effectively enforce
the learned second order relative constraints during in-
ference which, to the best of our knowledge, has not
been explored in existing ranking models. Enforcing
these constraints comes at the cost of increased infer-
ence time of O(m) for any given document. If ϕ is
dropped from the model then f reduces to the stan-
dard scoring function, which allows for extremely ef-
ficient inference. In our experiments we demonstrate
that adding ϕ significantly improves the accuracy of
the ranker. But even with ϕ excluded, our model still
achieves competitive performance. The system thus
offers a trade-off between inference speed and ranking
accuracy.

3.4. Learning and Inference

Our model produces a distribution over rank vectors
based on the estimated score vector. Several loss func-
tions could be minimized. We could perform a form
of maximum likelihood learning, as is frequently per-
formed on Boltzmann models, to match the model’s
estimate of the rank distribution, P (R|S), to the true
rank distribution, P (R|L), as specified by the target
relevance levels L.

Here we consider an alternative loss function, in order
to incorporate the relevant IR evaluation metric to be
used at test time. Our objective is to produce a proba-
bility distribution over rankings, as given in Equation
7, that assigns high probability to rankings that max-
imize the target performance measure G. One direct
way to achieve this is by maximizing the expected per-
formance, which leads to a new learning objective:

〈G|S〉P =
∑
R

P (R|S)G(R, L) (10)

where P (R|S) is given in Equation 7. The sum in
Equation 10 is intractable. Therefore instead of op-
timizing 〈G|S〉P directly, we will optimize its Monte-
Carlo estimate:

〈G|S〉
(Rq)
P =

∑
R∈Rq

P (Rq)(R|S)G(R, L) (11)

where Rq is the rank sample set, and P (Rq) is the ap-
proximate rank probability, obtained by normalizing
over this sample:

P (Rq)(R|S) =
exp(−E(R|S))∑

R′∈Rq
exp(−E(R′|S))

(12)

There are a number of ways to get a representa-
tive rank sample set, including various sampling tech-
niques. We exploit our knowledge of the relevance

level set L to form an informative set, and we avoid
re-sampling for computational reasons, which are of
crucial importance in large learning-to-rank data sets.
Ideally, we want Rq to contain samples that have a
full range of values of the target performance mea-
sure, since this would make it most informative during
learning. Given that most IR evaluation metrics place
the most weight on the top ranked documents, it is not
hard to design a procedure that outputs samples with
this property for each query. We give an example of
such a procedure in Section 4 below. It is important
to note here that there is a total of m! possible rank-
ing assignments for a document set of m documents.
Thus in order to make learning feasible we can include
only a small subset of the rankings in Rq. Our exper-
iments however show that even with a small subset of
rankings our model is able to successfully learn and
generalize to new queries.

Once the samples are computed for every query, we
then define our target gain as summed over all queries:

〈G〉TOTAL =

n∑
i=1

〈G|Sqi
〉
(Rqi

)

P (13)

Note that Equation 13 allows us to incorporate and op-
timize any IR performance measure. The derivatives
of this function with respect to f can easily be com-
puted, and straightforward gradient ascent can then
be used to update f . The learning entails using f to
get the scores for all documents and back propagating
the derivatives of the target gain to learn f . This leads
to the algorithm summarized in Algorithm 1. During
inference we simply use Equation 9 to compute the
scores for new documents and then use these scores to
rank the documents.

Optimizing NDCG at training time may not optimize
test NDCG (Taylor et al., 2008); one can gain some
intuition into this by considering training with G based
on NDCG@1, which only aims to get the top-ranked
document correct, and no learning occurs for the rest
of the documents. We thus adopt an approach mo-
tivated by our probabilistic model: we combine our
target performance measure with a form of maximum
likelihood. We aim to minimize the KL divergence
between the true rank distribution, P (R|L) and the
model’s predicted distribution P (R|S). This reduces
to minimizing the cross entropy between the rank sam-
ple distribution under the model and the target rank
sample distribution given by the relevance levels:

C(Rq) = −
∑

R∈Rq

P (Rq)(R|L) log(P (Rq)(R|S)) (14)

where P (Rq) is given in Equation 12. The combined

BoltzRank: Learning to Maximize Expected Ranking Gain

Algorithm 1 BoltzRank Algorithm

Input: {(q1, D1, L1), ..., (qn, Dn, Ln)}
Parameters: learning rate η, tolerance ǫ
initialize scoring function: f
for i = 1 to n do

compute samples: Rqi

end for

repeat

for i = 1 to n do

compute scores: Sqi
= f(qi, Di)

calculate query gain:

Oqi
= λ 〈G|Sqi

〉
(Rqi

)

P − (1 − λ)C(Rqi
)

compute gradients:∇f = ∂Oqi
/∂f

update scoring function: f = f + η∇f
end for

calculate total gain: O
until change in total gain is below ǫ
Output: learned scoring function f

learning objective to maximize then becomes:

O = λ 〈G〉TOTAL − (1 − λ)CTOTAL (15)

where CTOTAL sums C(Rq) over all queries. The cross
entropy term provides additional learning information
by showing the model what the ”target” sample prob-
abilities should be. We tune λ via cross-validation.

If only individual potentials are employed, the com-
plexity of our learning algorithm is O(knm2

max), where
k = |Rq|, is the number of query samples used to ap-
proximate the expectation, n is the number of queries,
and mmax is the maximum number of documents per
query. This complexity remains the same if pair-
wise potential is included, but as was discussed ear-
lier, inference complexity increases from O(nmmax) to
O(nm2

max). Thus if a reasonably small number of sam-
ples is used our learning algorithm will not be signifi-
cantly slower than any pairwise algorithm.

4. Experiments

In this section we describe the experiments that we
carried out on LETOR3.0 OHSUMED and TD2004
(Liu et al. 2007) data sets. We chose these sets because
they are publicly available, include several baseline re-
sults, and provide evaluation tools to ensure accurate
comparison between methods. Note that the recently-
released LETOR3.0 extends LETOR2.0 by including
significantly more features and providing three addi-
tional datasets.

4.1. Data Collections

OHSUMED is a data set of medical publication ab-
stracts. There are 106 queries, and a total of 16,140
query document pairs for which the relevance levels are
provided. The relevance judgments have three possible
levels: 2 = definitely relevant, 1 = possibly relevant,
and 0 = not relevant.

TD2004 is a Topic Distillation data set from
TREC2004 web search track. There are 75 queries
and each query is associated with 1,000 documents.
Each query document pair is given binary relevant/not
relevant relevance judgment. The data set is heav-
ily dominated by uninformative irrelevant documents
with only 1,116 relevant documents out of the total
of 75,000. To speed up the learning we subsampled
the training data by randomly removing 80 percent of
the irrelevant documents for each query; the validation
and test sets were unchanged. Note that subsampling
of TREC data sets is a standard procedure used for
example, by (Taylor at al., 2008).

Both data sets come with five precomputed folds, with
60/20/20 percent splits for training, validation, and
test sets. All the models were trained using the train-
ing set, fine tuned using the validation set, and tested
on the test set. The results shown for each model are
the averages of the results for the five folds.

4.2. Parameter Selection

In all our experiments we chose to use one hidden layer
neural networks for φ and ϕ potentials. In both net-
works we employed scaled tanh activation and out-
put functions. In this representation the input to ϕ
was a concatenation of features of the two documents
in each pair. To investigate the usefulness of ϕ, we
trained two versions of BoltzRank. The first, denoted
as BoltzRank1, utilized a scoring function consisting
of only the φ potential which, through cross valida-
tion, was selected to have 5 hidden units. The second,
denoted as BoltzRank2, combined both φ and ϕ po-
tentials with 3 and 5 hidden units respectively. Again,
the number of hidden units was found to be optimal
through cross validation.1

In order to train both methods, we used the same rank
sample set Rq, formed as follows. First, for each query
in the training set, we computed a set of 100 document
rank permutations. Furthermore, we ensure that each
permutation set included a full range of target per-
formance measure values by carefully selecting which
permutations to include into the set. Most IR eval-

1For both potentials the number of hidden units was
chosen from the set {1, 3, 5, 10}.

BoltzRank: Learning to Maximize Expected Ranking Gain

Table 2. Test NDCG and MAP results, the results for the OHSUMED dat set are in the first half of the table and the
results for the TD2004 dat set in the second half.

Method NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5 MAP

BoltzRank1 55.43 53.03 51.77 50.26 48.76 45.22

BoltzRank2 56.81 54.08 51.83 50.23 49.10 46.04
AdaRank.NDCG 53.30 49.22 47.90 46.88 46.73 44.98

AdaRank.MAP 53.88 47.89 46.82 47.21 46.13 44.87

FRank 53.00 50.08 48.12 46.94 45.88 44.39

ListNet 53.26 48.10 47.32 45.61 44.32 44.57

BoltzRank1 45.33 40.00 37.77 36.16 35.91 22.36

BoltzRank2 47.67 41.33 39.02 37.57 36.35 23.90
AdaRank.NDCG 42.67 38.00 36.88 35.24 35.14 19.36

AdaRank.MAP 41.33 39.33 37.57 36.83 36.02 21.89

FRank 49.33 40.67 38.75 35.81 36.29 23.88

ListNet 36.00 34.67 35.73 34.69 33.25 22.31

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sample index

N
D

C
G

@
5

swapping 2’s and 1’s
swapping 1’s and 0’s
swapping 2’s and 1’s + random

1 0.99 0.9 0.5 0
46

47

48

49

50

51

52

53

54

55

56

57

λ

N
D

C
G

NDCG@1

NDCG@2

NDCG@3

NDCG@4

NDCG@5

Figure 3. (a). NDCG@5 values for a rank sample set of
100 samples. The first sample is the target score vector,
with NDCG value of 1. Every other point is a rank vector
obtained by swapping the scores (here, relevance levels of
0, 1, or 2) and randomly resolving ties. (b). NDCG vs. λ

for the OHSUMED data set.

uation metrics place a lot of importance on the top
ranked documents. Thus, if for example NDCG is
used, then swapping documents with relevance lev-
els 2 and 1 will less significantly affect NDCG than
swapping the documents with relevance levels 2 and 0.
Using this, our procedure for computing the rank sam-
ple set for NDCG was as follows. 35% of the sample
were obtained by only swapping subsets of documents
with relevance levels 2 and 1, 20% were obtained by
swapping subsets of documents with relevance levels 1
and 0, and the rest were obtained by swapping sub-
sets of documents with relevance levels 2 and 0 and
randomly permuting the entire set. Once these per-
mutations were computed we then used the relevance
levels to sort the documents (randomly resolving ties)
and stored the resulting ranks. NDCG@5 values for an
example rank sample set resulting from this procedure
are shown in Figure 3(a). We see that the first 55% of

the sample has very high NDCG, with values mostly
above 0.5, and the remainder contains samples with
low NDCG values, mostly below 0.4. Such diversity
of NDCG values and sample structures should provide
a lot of useful information for learning to the system.
Note that this procedure can be tailored readily to any
set of relevance levels. In general, throughout our ex-
periments we found that as long as the samples were
balanced and contained a wide range of target perfor-
mance measure the actual procedure used to compute
them had little effect on the results.

We experimented with various settings for λ in Equa-
tion 15 including 0 and 1 and found that λ = 0.9 per-
formed best. Figure 3(b) shows the behavior of NDCG
for different values of λ. From this figure we see that
as λ decreases the NDCG increases at first and then
drops off. The initial increase in NDCG supports the
argument of (Taylor et al., 2008) that NDCG places
too much emphasis on top-ranked documents, making
learning difficult. On the other hand the significant
decrease in NDCG when λ approaches 0 suggests that
NDCG contains crucially important ranking informa-
tion and thus should not be discarded.

We also experimented with different g functions in-
cluding linear and logistic. We found that as long as
g is sign preserving and bounded its exact form had
little effect on the results. Thus for all experiments
we used a simple linear form: gq(x) = 2x/(mq − 1).
For each fold we conducted ten random restarts each
time retaining the model that gave best validation re-
sults. Finally, we experimented with various sample
sizes ranging from 20 to 1000, and found no signifi-
cant improvement by increasing the sample size be-

BoltzRank: Learning to Maximize Expected Ranking Gain

yond 100.

4.3. Results

Table 2 shows test set NDCG results for the
OHSUMED and TD2004 data sets. We compared
BoltzRank to four baseline methods: AdaRank.NDCG
and AdaRank.MAP (Xu et al., 2007), ListNet (Cao
et al., 2007), and FRank (Tsai et al.,2007)2; these
methods are considered the state-of-the-art in the
pairwise and listwise categories described above.
From the OHSUMED data set results we see that
both BoltzRank methods significantly outperform
other methods, especially for small truncation lev-
els. Furthermore, BoltzRank2 consistently outper-
forms BoltzRank1 on all truncation levels except four.
This indicates that higher order document interactions
do contain helpful information for ranking. The results
for the TD2004 data set further support this conclu-
sion, as BoltzRank1 performs well while BoltzRank2
beats all the baseline methods for all truncation levels
except for one.

Experimental results using MAP as the performance
metric are also shown in Table 2. We see that the re-
sults are similar to those of NDCG, as BoltzRank2
outperforms the other methods on both data sets,
and BoltzRank1 is only outperformed by one baseline
method on one of the data sets.

5. Conclusion

In this paper, we have proposed a new energy-based,
listwise approach to learning to rank. In this approach
potentials that depend on individual documents and
pairs of documents are combined to define a proba-
bility distribution over possible rank assignments to a
set of documents retrieved for a given query. Pairwise
potentials allow us to explore document interactions
beyond individual scoring functions; these have not
been previously explored at test time in this domain.
We are able to optimize non-continuous listwise loss
functions, based on the expectation of the objective
under the probability distribution given by our model.

Future work includes studying the relationship be-
tween the rank samples we use to approximate the
expectation, and the local optimum of the target per-
formance measures that the algorithm finds. An im-
portant issue is how well our approximated ranking
distribution will scale if there are more relevance levels.
Finally, we are exploring applications of this approach
to ranking in collaborative filtering.

2We omit SoftRank because it is not listed in LETOR’s
baselines, making standardized comparison impossible.

References

R. Baeza-Yates and B. Ribeiro-Neto (1999). Modern

Information Retrieval. Addison Wesley.

C. Burges (2006). Ranking As Function Approxima-
tion, In Algorithms for Approximation, Springer.

C. Burges, R. Rango and Q. V. Le (2006). Learning
to rank with nonsmooth cost functions. Proceedings of

the Neural Information Processing Systems, 395-402.

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M.
Deeds, N. Hamilton, and G. Hullender (2005). Learn-
ing to rank using gradient descent. Proceedings of the

International Conference on Machine Learning, 89-96.

Z. Cao, T. Qin, T. Y. Liu, M. F. Tsai and H. Li (2007).
Learning to rank: From pairwise approach to listwise
approach. Proceedings of the International Conference

on Machine Learning, 129-136.

K. Crammer and Y. Singer (2001). Pranking with
ranking. Proceedings of the Neural Information Pro-

cessing Systems, 641-647.

K. Jarvelin and J. Kekalainen (2000). IR evalua-
tion methods for retrieving highly relevant documents.
Proceedings of the Special Interest Group on Informa-

tion Retrieval, 41-48.

Y. Freund, R. D. Iyer, R. E. Schapire and Y. Singer
(2003). An efficient boosting algorithm for combining
preferences. Journal of Machine Learning Research,
4:933-969.

T. Qin, T. Y. Liu, X. D. Zhang, D. S. Wang, H. Li
(2008). Global Ranking Using Conditional Random
Fields. Proceedings of the Neural Information Pro-

cessing Systems, 1281-1288.

Y. T. Liu, T. Qin, J. Xu, Y. W. Xiong and H. Li
(2007). Letor: Benchmark dataset for research on
learning to rank for information retrieval. Proceedings

of the Special Interest Group on Information Retrieval.

M. Taylor, J. Guiver, S. Robertson and T. Minka
(2008). SoftRank: Optimizing non-smooth rank met-
rics. Proceedings of the Web Search and Data Mining,
77-86.

M. F. Tsai, T. Y. Liu, T. Qin, H. H. Chen, and W.
Y. Ma (2007). FRank: A ranking method with delity
loss. Proceedings of the Special Interest Group on In-

formation Retrieval, 383-390.

J. Xu and H. Li (2007). AdaRank: A boosting al-
gorithm for information retrieval. Proceedings of the

Special Interest Group on Information Retrieval, 391-
398.

