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Abstract

Extensive labeled data for image annotation systems, wharm to assign class
labels to image regions, is difficult to obtain. We exploreyarid model frame-

work for utilizing partially labeled data that integrateg@nerative topic model
for image appearance with discriminative label predictigve propose three al-
ternative formulations for imposing a spatial smoothnessrmn the image la-

bels. Tests of the new models and some baseline approaclieeerreal image
datasets demonstrate the effectiveness of incorpordteiatent structure.

1 Introduction

Image annotation, or image labeling, in which the task isateel each pixel or region of an image
with a class label, is becoming an increasingly popular lgrobin the machine learning and machine
vision communities [7, 14]. State-of-the-art methods folate image annotation as a structured
prediction problem, and utilize methods such as Conditi®andom Fields [8, 4], which output
multiple values for each input item. These methods typjaaly on fully labeled data for optimiz-
ing model parameters. It is widely acknowledged that coestl/-labeled images are tedious and
expensive to obtain, which limits the applicability of digginative approaches. However, a large
number ofpartially-labeled images, with a subset of regions labeled in an image, or aapyians
for images, are available (e.g., [12]). Learning labelingdels with such data would help improve
segmentation performance and relax the constraint ofidigtative labeling methods.

A wide range of learning methods have been developed fogysirtially-labeled image data. One
approach adopts a discriminative formulation, and trdesihlabeled regions as missing data [16],
Others take a semi-supervised learning approach by viewitapeled image regions as unlabeled
data. One class of these methods generalizes traditiom&ssgervised learning to structured pre-
diction tasks [1, 10]. However, the common assumption abmismoothness of the label distri-
bution with respect to the input data may not be valid in imkdeeling, due to large intra-class
variation of object appearance. Other semi-supervisetiadstadopt &ybrid approach, combining

a generative model of the input data with a discriminativedeldor image labeling, in which the
unlabeled data are used to regularize the learning of aidlisative model [6, 9]. Only relatively
simple probabilistic models are considered in these aghes without capturing the contextual
information in images.

Our approach described in this paper extends the hybrid Iingdsrategy by incorporating a more
flexible generative model for image data. In particular, weaduce a set of latent variables that
capture image feature patterns in a hidden feature spadehate used to facilitate the labeling
task. First, we extend the Latent Dirichlet Allocation mbfeDA) [3] to include not only input
features but also label information, capturing co-ocawes within and between image feature
patterns and object classes in the data set. Unlike othar mopdels in image modeling [11, 18],
our model integrates a generative model of image appeasgartta discriminative model of region



labels. Second, the original LDA structure does not impasespatial smoothness constraint to
label prediction, yet incorporating such a spatial prianiportant for scene segmentation. Previous
approaches have introduced lateral connections betwgsmt kEpic variables [17, 15]. However,
this complicates the model learning, and as a latent reptatsen of image data, the topic variables
can be non-smooth over the image plane in general. In thisrpage model the spatial dependency
of labels by two different structures: one introduces ddconnections between each label variable
and its neighboring topic variables, and the other incafesr lateral connections between label
variables. We will investigate whether these structuréecéfely capture the spatial prior, and lead
to accurate label predictions.

The remainder of this paper is organized as follows. The segtion presents the base model,
and two different extensions to handle label spatial depecigés. Section 3 and 4 define inference
and learning procedures for these models. Section 5 desaiperimental results, and in the final
section we discuss the model limitations and future dioeti

2 Model description

The structured prediction problem in image labeling candyenfilated as follows. Let an image
x be represented as a set of subregi{m,s}f\i’l. The aim is to assign eachy a labell; from a
categorical se. For instance, subregian;’s can be image patches or pixels, aficconsists of
object classes. Denote the set of labelsxXasl = {li}fiq. A key issue in structured prediction
concerns how to capture the interactions between labélgiuen the input image.

Model 1. We first introduce our base model for capturing individuatgras in image appearance
and label space. Assume each subregioiis represented by two featurés;, t;), in which a;
describes its appearance (including color, texture, étc§ome appearance feature spatend

t; is its position on the image plaré. Our method focuses on the joint distribution of labels
and subregion appearances given positions by modelingoared patterns in the joint space of
L x A. We achieve this by extending the latent Dirichlet allo@atinodel to include both label and
appearance.

More specifically, we assume each observation @girl;) in imagex is generated from a mixture
of K hidden ‘topic’ components shared across the whole datgiset; the position information.
Following the LDA notation, the mixture proportion is deadtasd, which is image-specific and
shares a common Dirichlet prior parameterizedobyAlso, z; is used as an indicator variable to
specify from which hidden topic component the pair /;) is generated. In addition, we uaeto
denote the appearance feature vector of each inxaige the indicator vector antlfor the position
vector. Our model defines a joint distribution of label vatésl and appearance feature variakdes
given the positiort as follows,

Py(Lalt, a) = /9[]‘[ ™ P(ifas, ti, 2) Plasl) P(]0)) P(0]a)d6 )

whereP(6]|«) is the Dirichlet distribution. We specify the appearanceleid(a;|z;) to be position
invariant but the label predictaP(l;|a;, t;, z;) depends on the position information. Those two
components are formulated as follows, and the graphicatsentation of the model is shown in the
left panel of Figure 1.

(@) Label prediction module P(l;|a;,t;, z;). The label predicto(l;]a;, t;, z;) is modeled by a
probabilistic classifier that takés;, ¢,, z;) as its input and produces a properly normalized distribu-
tion for [;. Note that we represent in its ‘0-1’ vector form when it is used as the classifier input
So if the dimension of4 is M, then the input dimension of the classifiedis+ K + 2. We use a
MLP with one hidden layer in our experiments, although oltevng classifiers are also feasible.

(b) Image appear ance module P(a;|z;). We follow the convention of topic models and model the
topic conditional distributions of the image appearandegia multinomial distribution with param-
eterss,,. As the appearance features typically take on real valuesirst apply k-means clustering
to the image featureg:; } to build a visual vocabulary. Thus a feature, in the appearance space
A can be represented as a visual worénd we haveP(a; = v|z; = k) = Bk0-

While the topic prediction model in Equation 1 is able to captiegularly co-occurring patterns in
the joint space of label and appearance, it ignores spatiispon the label prediction. However,
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Figure 1: Left:A graphical representation of the base tgpidiction model (Model 1). Middle:
Model Il. Right: Model Ill. Circular nodes are random vatied, and shaded nodes are observéd.
is the number of image features in each image, Brdknotes all the training data.

spatial priors, such as spatial smoothness, are crucialb&lihg tasks, as neighboring labels are
usually strongly correlated. To incorporate spatial infation, we extend our base model in two
different ways as follows.

Model 11. We introduce a dependency between each label variable sinéigghboring topic vari-
ables. In this model, each label value is predicted baseleosutmmary information of topics within
a neighborhood. More specifically, we change the label ptiedi model into the following form:

P(li]ai, ti, 2n@y) = P(Zi|ai>tiazj6]v(i) w;iz;), 2

where N (%) is a predefined neighborhood for siteandw; is the weight for the topic variable
zj. We setw; o exp(—[t; — t;|/0?), and normalized to 1, i.e3";c v,y w; = 1. The graphical
representation is shown in the middle panel of Figure 1. Tiislel variant can be viewed as an
extension to the supervised LDA [2]. Here, however, rathanta single label applying to each
input example instead there are multiple labels, one fon e@ment ok.

Modd I11. We add lateral connections between label variables to butdnditional Random Field
of labels. The joint label distribution given input imagedsfined as

1
Pla,t,a) = Zexp(y o f(lil) +7 ) log Py(lifa t, o)}, 3)

where Z is the partition function. The pairwise potentig(l;,[;) = Za,b Uab01;,a01;,5, @Nd the
unary potential is defined as log output of the base topicigtied model weighted by,. Hered is
the Kronecker delta function. Note th&f(/;|a, t,a) = 3. P(li]ai, ti, z;) P(z;]a, t). This model
is shown in the right panel of Figure 1. '

Note that the base model (Model 1) obtains spatially smoaliells simply through the topics cap-
turing location-dependent co-occurring appearanced/fzdteerns, which tend to be nearby in image
space. Model Il explicitly predicts a region’s label fronettopics in its local neighborhood, so that
neighboring labels share similar contexts defined by latmpits. In both of these models, the in-
teraction between labels takes effect through the hiddeut irepresentation. The third model uses
a conventional form of spatial dependency by directly ipooating local smoothing in the label
field. While this structure may impose a stronger spatialrghian other two, it also requires more
complicated learning methods.

3 Inference and Label Prediction

Given a new image = {a, t} and our topic models, we predict its labeling based on theiamm
Posterior Marginals (MPM) criterion:

I} =arg max P(l;|a,t). 4
We consider the label inference procedure for three moéglarately as follows.
Models1&11: The marginal label distributio®(l;|a, t) can be computed as:

P(li|a, t) = ZZN(.) P(li|ai, t;, ZjeN(i) wjzj)P(zN(iﬂa, t) (5)



The summation here is difficult wheN (¢) is large. However, it can be approximated as follows.
Denotev; = e n ;) wizj andvi g = > vy wiq(2;), whereg(z;) = {P(z;la, t)} is the vector
form of posterior distribution. Both; andwv; , are in[0, 1]*. The marginal label distribution can
be written asP(l;|a,t) = (P(liai,ti,v:i)) p(zy, lat)- We take the first-order approximation of
P(l;]a;, t;, v;) aroundv; , using Taylor expansion:

P(li\ai,ti,vi) ~ P(li|ai,ti,vi7q) —+ (’Ui — ’UZ‘_Vq)T . pr(l”(li,ti,vi) Vig* (6)

Taking expectation on both sides of Equation 6 w.P{.zy; |a, t) (notice that(vi>p(zN(i)|a7t) =
v;.4), We have the following approximatiot®(/;|a, t) ~ Zzw) P(lilai, ti, 32 e ny wia(z5))-

Model 111: We first compute the unary potential of the CRF model fromliase topic prediction
model, i.e.,P(li|a, t) = > P(lila;, ti, ;) P(2i|a, t). Then the label marginals in Equation 4 are
computed by applying loopy belief propagation to the cdaddl random field.

In both situations, we need the conditional distributiothefhidden topic variablesgiven observed
data components to compute the label prediction. We takbbsGampling approach by integrating
out the Dirichlet variablé. From Equation 1, we can derive the posterior of each topiabke z;
given other variables, which is required by Gibbs sampling:

P(z; = k|lz—;,a;) < P(a;|z;)(ar + 27 0z k) @
wherez_; denotes all the topic variables iexceptz;, andS is the set of all sites. Given the
samples of the topic variables, we estimate their posteraginal distributionP(z;|a, x) by simply
computing their normalized histograms.

neS\i

4 Learning with partially labeled data

Here we consider estimating the parameters of both extemadelels from a partially labeled image
setD = {x",1"}. For an imagex”, its labell” = (17,17 in which 1}’ denotes the observed labels,
andl} are missing. We also useto denote the set of labeled regions. As the three modelsudte b
with different components, we treat them separately.

Models1&11. We use the Maximum Likelihood criterion to estimate the mMigdeameters. Le®
be the parameter set of the model,

S :argmgxzn:logP(lo,a [t"; ©) (8)

We maximize the log data likelihood by Monte Carlo EM. The émwound of the likelihood can be
written as

Q= Z(Zlog Pl |ai' 8 2N ) + ZlogP(aﬂzf) + log P(2)) p(zn 12 ,an) (9)
n 1€o %

In the E step, the posterior distributions of the topic Valea are estimated by a Gibbs sampling
procedure similar to Equation 7. It uses the following cdindial probability:

P(z; = k|z_;,a;,1,t) « H P(ljlaj, ts, zn(y) Plagz:) (g + Z 0zpi k) (20)
JEN(i)No meS\i

Note that any label variable is marginalized out if it is nmigs In the M step, we update the
model parameters by maximizing the lower bodpdDenote the posterior distribution afasq(-),
the updating equation for parameters of the appearanceleétiu|z) can be derived from the
stationary point ofy:

Biw oY alz =k)d(ai,v). (11)
The classifier in the label prediction module is learned byiméing the following log likelihood,

Lc = Z <1ng(l?|6l?,t?, Z wjzj)>q(zN(,;)) ~ Z 1ng(l?|a?at?7 Z wJQ(ZJ)) (12)

n,ico JEN(3) n,i€o JEN(3)



where the approximation takes the same form as in Equatidvie6use a gradient ascent algorithm
to update the classifier parameters. Note that we need tonlyradew iterations at each M step,
which reduces training time.

Model I11. We estimate the parameters of Model Il in two stages: (1 parameters of the base
topic prediction model are learned using the same proceatine Models 1&Il. More specifically,
we setN (i) = i and estimate the parameters of the appearance module aidlzsifier based
on Maximum Likelihood. (2). Given the base topic predictimodel, we compute the marginal
label probability P,(I;|a, t) and plug in the unary potential function in the CRF model (Sgea-
tion 3). We then estimate the parameters in the CRF by makigizmnditional pseudo-likelihood
as follows:

L,= Z Z log exp{ Z Z uabél?@&l?,b +ylog Py(I7|a™, t™)} —log Z1* | . (13)

n i€o JEN(i) ab

whereZi" =37, exp{}_ e n(i) 2oa,p YabOladir p + v1og Py(lila, t)} is the normalizing constant.
As this cost function is convex, we use a simple gradientrasoethod to optimize the conditional
pseudo-likelihood.

5 Experimental evaluation

Data sets and representation. Our experiments are based on three image datasets. Thes first i
subset of the Microsoft Research Cambridge (MSRC) Imagatizae [14] as in [16]. This subset

includes 240 images and 9 different label classes. The desmtris the full MSRC image dataset,

including 591 images and 21 object classes. The third sekaiseded subset of the Corel database
as in [5] (referred therein as Corel-B). It includes 305 nalyulabeled images with 11 classes,

focusing on animals and natural scenes.

We use the normalized cut segmentation algorithm [13] ttdtausuper-pixel representation of the
images, in which the segmentation algorithm is tuned to ggaee@pproximately 1000 segments for
each image on average. We extract a set of basic image fgaiuckiding color, edge and texture
information, from each pixel site. For the color informatjave transform the RGB values into CIE
Lab* color space. The edge and texture are extracted by d S¢ebanks including a difference-
of-Gaussian filter at 3 different scales, and quadratures gdioriented even- and odd-symmetric
filters at 4 orientations and 3 scales.The color descrigtar super-pixel is the average color over
the pixels in that super-pixel. For edge and texture desmspwe first discretize the edge/texture
feature space by k-means, and use each cluster as a bin. Ewmpute the normalized histograms
of the features within a super-pixel as the edge/texturergssr. In the experiments reported here,
we used 20 bins for edge information and 50 bins for textuferination. We also augment each
feature by a SIFT descriptor extracted frorBtax 30 image patch centered at the super-pixel. The
image position of a super-pixel is the average positionopikels. To compute the vocabulary of
visual words in the topic model, we apply k-means to grougstiger-pixel descriptors into clusters.
The cluster centers are used as visual words and each des@@ipncoded by its word index.

Comparison methods. We compare our approach directly with two baseline systeansuper-
pixel-wise classifier and a basic CRF model. We also repertettperimental results from [16],
although they adopt a different data representation irr thgieriments (patches rather than super-
pixels). The super-pixel-wise classifier is an MLP with ondden layer, which predicts labels for
each super-pixel independently. The MLP has 30 hidden,unitamber chosen based on validation
performance. In the basic CRF, the conditional distributibthe labels of an image is defined as:

P(lla,t) o exp{) > uubi,udy, 0+ > hllilai,t;)} (14)
i, UV %

whereh(-) is the log output from the super-pixel classifier. We trai@ @RF model by maximizing
its conditional pseudo-likelihood, and label the imageeldasn the marginal distribution of each
label variable, computed by the loopy belief propagati@goathm.

Performance on M SRC-9. Following the setting in [16], we randomly split the dataisés training
and testing sets with equal size, and use 10% training dataraglidation set. In this experiment,



Table 1: A comparison of classification accuracy of the 3arats of our model with other methods.
The average classification accuracy is at the pixel level.

Label building | grass| tree | cow | sky | plane| face | car | bike | Total

S _Class 61.2 93.2 | 71.3| 57.0| 929 | 375 | 69.0| 56.0 | 54.1 | 74.2
CRF 69.8 94.4 1821|733 942| 62.0 | 80.5] 80.1| 78.6 | 83.5
Model | 64.8 93.0| 76.6 | 72.0| 93.5| 651 | 744 | 61.3| 77.7 | 79.7
Model Il 79.2 94,1 | 81.4] 80.2| 935| 724 | 86.3| 69.5| 86.2 | 855
Model Il 78.1 925 | 85.4| 86.7| 946 | 779 | 83.5| 74.7| 88.3| 86.7
[ [16] [ 736 [ 91.1[821]736][957] 783 [895]845]814] 849]

we set the vocabulary size to 500, the number of hidden tapib®, and each symmetric Dirichlet
parametery, = 0.5, based on validation performance. For Model I, we definertighborhood

of each site as a subset of sites that falls into a circular region cedtatéand with radius oo,
whereo is the fall-off rate of the weights. We setto be 10 pixels, which is roughly/20 of image
size. The classifiers for label prediction have 15 hiddensunThe appearance model for topics
and the classifier are initialized randomly. In the learrmgcedure, the E step uses 500 samples
to estimate the posterior distribution of topics. In the Mpstwe take 3 steps of gradient ascent
learning of the classifiers per iteration.

The performance of our models is first evaluated on the dateitie all the labels available. We
compare the performance of the three model variants to thersuixel classifier (SClass), and the
CRF model. Table 1 shows the average classification accuadey of our model and the baselines
for each class and in total, over 10 different random partgtiof the dataset. We can see that Model
I, which uses latent feature representations as additinpats, achieves much better performance
than the SClass. Also, Model Il and Il improve the accuracy furtheribngorporating the label
spatial priors. We notice that the lateral connections betwlabel variables are more effective than
integrating information from neighboring latent topic fdoles. This is also demonstrated by the
good performance of the simple CRF.

L earning with different amounts of label data. In order to test the robustness of the latent feature
representation, we evaluate our models using data witkrdift amount of labeling information.
We use an image dilation operator on the image regions ldlaslésoid’, and control the proportion
of labeled data by varying the diameters of the dilation afmer(see [16] for similar processing).
Specifically, we use diameter values of 5, 10, 15, 20, 25, 803&nto change the proportion of the
labeled pixels to 62.9%, 52.1%, 44.1%, 36.4%, 30.5%, 24 8&x8.3%, respectively. The original
proportion is 71.9%. We report the average accuracies ofi$ afitraining and testing with random
equal partition of the dataset in Figure 2. The figure showasttie performance of all three models
degrades with fewer labeled data, but the degradationasively gradual. When the proportion of
labeled data decreases from 72% to 20%, the total loss inawcis less than 10%. This suggests
that incorporating latent features makes our models mdsastoagainst missing labels than the
previous work (cf. [16]). We also note that the performant&lodel Ill is more robust than the
other two variants, which may derive from stronger smoahin

Table 2: A comparison of classification accuracy of our thmeelel variants with other methods on
the full MSRC dataset and Corel-B dataset.

S Class| Modell | Model Il | Model lll | [14] | [5]
MSRC 60.0 65.9 72.3 74.0 72.2 -
Corel-B 68.2 69.2 73.4 75.5 - 75.3

Performance on other sets. We further evaluate our models on two larger datasets to kether
they can scale up. The first dataset is the full version of tI8RK2 dataset, and we use the same
training/testing partition as in [14]. The model settinghie same as in MSRC-9 except that we use
a MLP with 20 hidden units for label prediction. The seconthesCorel-B dataset, which is divided
into 175 training images and 130 testing images randomlyu¥éethe same setting of the models
as in the experiments on the full MSRC set. Table 2 summatiieeslassification accuracies of our
models as well as some previous methods. For the full MSRGhsetwo extended versions of our
model achieve the similar performance as in [14], and we earilsat the latent topic representation
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Figure 2: Left: Classification Accuracy with gradually deasing proportion of labeled pixels.
Right top: Examples of an image and its super-pixelizatiRight bottom: Examples of original
labeling and labeling after dilation (the ratio is 36.4).

provides useful cues. Also, our models have the same agcasaeported in [5] on the Corel-B
dataset, while we have a simpler label random field and usealiesrtraining set. It is interesting to
note that the topics and spatial smoothness play less ml#ilabeling performance on Corel-
B. Figure 3 shows some examples of labeling results from blatsets. We can see that our
models handle the extended regions better than those fieetadifuctures, due to the tendency
of (over)smoothing caused by super-pixelization and tredpatial dependency structures.

6 Discussion

In this paper, we presented a hybrid framework for imageliapewhich combines a genera-
tive topic model with discriminative label prediction mdsleThe generative model extends latent
Dirichlet allocation to capture joint patterns in the labed appearance space of images. This la-
tent representation of an image then provides an additiopalt to the label predictor. We also
incorporated the spatial dependency into the model streatutwo different ways, both imposing a
prior of spatial smoothness for labeling on the image pldie results of applying our methods to
three different image datasets suggest that this intedjegiproach may extend to a variety of image
databases with only partial labeling available. The lafgeystem consistently out-performs alter-
native approaches, such as a standard classifier and arst&RE. Its performance also matches
that of the state-of-the-art approaches, and is robushsipdifferent amount of missing labels.

Several avenues exist for future work. First, we would lixemnderstand when the simple first-order
approximation in inference for Model Il holds, e.g., whem thcal curvature of the classifier with
respect to its input is large. In addition, it is importantaddress model selection issues, such as
the number of topics. We currently rely on the validation set more principled approaches are
possible. A final issue concerns the reliance on visual wéodsed by clustering features in a
complicated appearance space. Using a stronger appeanadet may help us understand the role
of different visual cues, as well as construct a more powegednerative model.
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